Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Med Hypotheses ; 79(1): 34-7, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22537410

RESUMEN

Muscle spindles are increasingly recognized as playing a pivotal role in the cause of dystonia. This development and own laryngeal observations that support the idea of causally "well-intentioned" stuttering motivated us to present the following hypothesis: stuttering events compensate for a sensory problem that arises when the abductor/adductor ratio of afferent impulse rates from the posterior cricoarytenoid and lateral cricoarytenoid muscle spindles is abnormally reduced and processed for the occasional determination of the vocal fold position. This hypothesis implies that functional and structural brain abnormalities might be interpreted as secondary compensatory reactions. Verification of this hypothesis (using technologies such as microneurography, dissection and muscle afferent block) is important because its confirmation could relink dystonia and stuttering research, change the direction of stuttering therapy and destigmatize stuttering radically.


Asunto(s)
Laringe/anomalías , Husos Musculares/anomalías , Tartamudeo/etiología , Humanos , Modelos Teóricos
2.
J Neurosci ; 29(15): 4719-35, 2009 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-19369542

RESUMEN

The mechanisms controlling the formation of synaptic connections between muscle spindle afferents and spinal motor neurons are believed to be regulated by factors originating from muscle spindles. Here, we find that the connections form with appropriate specificity in mice with abnormal spindle development caused by the conditional elimination of the neuregulin 1 receptor ErbB2 from muscle precursors. However, despite a modest ( approximately 30%) decrease in the number of afferent terminals on motor neuron somata, the amplitude of afferent-evoked synaptic potentials recorded in motor neurons was reduced by approximately 80%, suggesting that many of the connections that form are functionally silent. The selective elimination of neurotrophin 3 (NT3) from muscle spindles had no effect on the amplitude of afferent-evoked ventral root potentials until the second postnatal week, revealing a late role for spindle-derived NT3 in the functional maintenance of the connections. These findings indicate that spindle-derived factors regulate the strength of the connections but not their initial formation or their specificity.


Asunto(s)
Vías Aferentes/fisiología , Neuronas Motoras/fisiología , Husos Musculares/fisiología , Neurotrofina 3/fisiología , Células Receptoras Sensoriales/fisiología , Potenciales Sinápticos/fisiología , Vías Aferentes/patología , Animales , Potenciales Postsinápticos Excitadores/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Neuronas Motoras/patología , Husos Musculares/anomalías , Husos Musculares/fisiopatología , Neurotrofina 3/genética , Receptor ErbB-2/deficiencia , Receptor ErbB-2/genética , Receptor ErbB-2/fisiología , Células Receptoras Sensoriales/patología , Potenciales Sinápticos/genética
3.
Dev Dyn ; 235(11): 3039-50, 2006 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-17013886

RESUMEN

Two factors, the ETS transcription factor ER81 and skeletal muscle-derived neurotrophin-3 (NT3), are essential for the formation of muscle spindles and the function of spindle afferent-motoneuron synapses in the spinal cord. Spindles either degenerate completely or are abnormal, and spindle afferents fail to project to spinal motoneurons in Er81 null mice; however, the interactions between ER81 and NT3 during the processes of afferent neuron and muscle spindle development are poorly understood. To examine if overexpression of NT3 in muscle rescues spindles and afferent-motoneuron connectivity in the absence of ER81, we generated myoNT3;Er81(-/-) double-mutant mice that selectively overexpress NT3 in muscle in the absence of ER81. Spindle reflex arcs in myoNT3;Er81(-/-) mutants differed greatly from Er81 null mice. Muscle spindle densities were greater and more afferents projected into the ventral spinal cord in myoNT3;Er81(-/-) mice. Spindles of myoNT3;Er81(-/-) muscles responded normally to repetitive muscle taps, and the monosynaptic inputs from Ia afferents to motoneurons, grossly reduced in Er81(-/-) mutants, were restored to wild-type levels in myoNT3;Er81(-/-) mice. Thus, an excess of muscle-derived NT3 reverses deficits in spindle numbers and afferent function induced by the absence of ER81. We conclude that muscle-derived NT3 can modulate spindle density and afferent-motoneuron connectivity independently of ER81.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Neuronas Motoras/fisiología , Husos Musculares/anomalías , Neuronas Aferentes/fisiología , Neurotrofina 3/metabolismo , Factores de Transcripción/metabolismo , Animales , Recuento de Células , Proteínas de Unión al ADN/análisis , Proteínas de Unión al ADN/genética , Eliminación de Gen , Ratones , Ratones Mutantes , Neuronas Motoras/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/ultraestructura , Husos Musculares/química , Husos Musculares/ultraestructura , Músculo Esquelético/química , Músculo Esquelético/metabolismo , Músculo Esquelético/ultraestructura , Mutación , Neuronas Aferentes/metabolismo , Neurotrofina 3/análisis , Neurotrofina 3/genética , Sinapsis/fisiología , Factores de Transcripción/análisis , Factores de Transcripción/genética
4.
Neuroscience ; 105(3): 747-60, 2001.
Artículo en Inglés | MEDLINE | ID: mdl-11516838

RESUMEN

To investigate the nerve growth factor requirement of developing oro-facial somatosensory afferents, we have studied the survival of sensory fibers subserving nociception, mechanoreception or proprioception in receptor tyrosine kinase (trkA) knockout mice using immunohistochemistry. trkA receptor null mutant mice lack nerve fibers in tooth pulp, including sympathetic fibers, and showed only sparse innervation of the periodontal ligament. Ruffini endings were formed definitively in the periodontal ligament of the trkA knockout mice, although calcitonin gene-related peptide- and substance P-immunoreactive fibers were reduced in number or had disappeared completely. trkA gene deletion had also no obvious effect on the formation of Meissner corpuscles in the palate. In the vibrissal follicle, however, some mechanoreceptive afferents were sensitive for trkA gene deletion, confirming a previous report [Fundin et al. (1997) Dev. Biol. 190, 94-116]. Moreover, calretinin-positive fibers innervating longitudinal lanceolate endings were completely lost in trkA knockout mice, as were the calretinin-containing parent cells in the trigeminal ganglion.These results indicate that trkA is indispensable for developing nociceptive neurons innervating oral tissues, but not for developing mechanoreceptive neurons innervating oral tissues (Ruffini endings and Meissner corpuscles), and that calretinin-containing, trkA dependent neurons in the trigeminal ganglion normally participate in mechanoreception through longitudinal lanceolate endings of the vibrissal follicle.


Asunto(s)
Pulpa Dental/anomalías , Mecanorreceptores/metabolismo , Neuronas Aferentes/metabolismo , Nociceptores/anomalías , Receptor trkA/deficiencia , Ganglio del Trigémino/anomalías , Vibrisas/anomalías , Animales , Péptido Relacionado con Gen de Calcitonina/metabolismo , Proteínas de Unión al Calcio/metabolismo , Pulpa Dental/citología , Pulpa Dental/inervación , Dopamina beta-Hidroxilasa/metabolismo , Inmunohistoquímica , Músculos Masticadores/anomalías , Músculos Masticadores/citología , Músculos Masticadores/inervación , Mecanorreceptores/citología , Ratones , Ratones Noqueados/anomalías , Ratones Noqueados/genética , Ratones Noqueados/metabolismo , Husos Musculares/anomalías , Husos Musculares/citología , Proteínas de Neurofilamentos/metabolismo , Neuronas Aferentes/citología , Nociceptores/citología , Nociceptores/metabolismo , Hueso Paladar/anomalías , Hueso Paladar/citología , Hueso Paladar/inervación , Ligamento Periodontal/anomalías , Ligamento Periodontal/citología , Ligamento Periodontal/inervación , Receptor trkA/genética , Proteínas S100/metabolismo , Sustancia P/metabolismo , Tioléster Hidrolasas/metabolismo , Ganglio del Trigémino/citología , Ganglio del Trigémino/metabolismo , Ubiquitina Tiolesterasa , Vibrisas/citología , Vibrisas/inervación
6.
Trends Neurosci ; 22(4): 167-73, 1999 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-10203854

RESUMEN

The EGR family of transcription regulatory factors, which is implicated in orchestrating the changes in gene expression that underlie neuronal plasticity, has attracted the attention of both molecular and systems neuroscientists. In this article, the advances made in both these fields of research are reviewed. Recent systems-based studies underscore the remarkable sensitivity and specificity of the induction of the expression of genes encoding EGR-family members in naturally occurring plasticity paradigms. However, they also challenge conventional views of the role of this family in plasticity. Recent molecular studies have identified the gonadotropin subunit, luteinizing hormone beta, as an EGR1-regulated gene in vivo and uncovered an essential role for EGR3 in muscle-spindle development. In addition, the discovery of novel proteins that are capable of suppressing EGR-mediated transcription cast doubt over the prevalent assumption that changes in EGR mRNA or protein levels provide an accurate measure of EGR-driven transcriptional activity.


Asunto(s)
Proteínas de Unión al ADN/fisiología , Regulación de la Expresión Génica/fisiología , Proteínas Inmediatas-Precoces , Proteínas del Tejido Nervioso/fisiología , Factores de Transcripción/fisiología , Animales , Ritmo Circadiano/fisiología , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Discriminación en Psicología/fisiología , Dopamina/fisiología , Proteína 1 de la Respuesta de Crecimiento Precoz , Proteína 2 de la Respuesta de Crecimiento Precoz , Proteína 3 de la Respuesta de Crecimiento Precoz , Factores de Transcripción de la Respuesta de Crecimiento Precoz , Femenino , Regulación del Desarrollo de la Expresión Génica/fisiología , Genes Inmediatos-Precoces , Infertilidad/genética , Aprendizaje/fisiología , Hormona Luteinizante/genética , Hormona Luteinizante/fisiología , Masculino , Ratones , Ratones Noqueados , Familia de Multigenes , Husos Musculares/anomalías , Husos Musculares/fisiología , Proteínas del Tejido Nervioso/deficiencia , Proteínas del Tejido Nervioso/genética , Malformaciones del Sistema Nervioso/genética , Plasticidad Neuronal/fisiología , Norepinefrina/fisiología , Pájaros Cantores/fisiología , Transmisión Sináptica/fisiología , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transcripción Genética , Percepción Visual/fisiología , Vocalización Animal/fisiología
7.
Nat Genet ; 20(1): 87-91, 1998 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-9731539

RESUMEN

Muscle spindles are skeletal muscle sensory organs that provide axial and limb position information (proprioception) to the central nervous system. Spindles consist of encapsulated muscle fibers (intrafusal fibers) that are innervated by specialized motor and sensory axons. Although the molecular mechanisms involved in spindle ontogeny are poorly understood, the innervation of a subset of developing myotubes (type I) by peripheral sensory afferents (group Ia) is a critical event for inducing intrafusal fiber differentiation and subsequent spindle formation. The Egr family of zinc-finger transcription factors, whose members include Egr1 (NGFI-A), Egr2 (Krox-20), Egr3 and Egr4 (NGFI-C), are thought to regulate critical genetic programs involved in cellular growth and differentiation (refs 4-8, and W.G.T. et al., manuscript submitted). Mice deficient in Egr3 were generated by gene targeting and had gait ataxia, increased frequency of perinatal mortality, scoliosis, resting tremors and ptosis. Although extrafusal skeletal muscle fibers appeared normal, Egr3-deficient animals lacked muscle spindles, a finding that is consistent with their profound gait ataxia. Egr3 was highly expressed in developing muscle spindles, but not in Ia afferent neurons or their terminals during developmental periods that coincided with the induction of spindle morphogenesis by sensory afferent axons. These results indicate that type I myotubes are dependent upon Egr3-mediated transcription for proper spindle development.


Asunto(s)
Ataxia/genética , Proteínas de Unión al ADN/fisiología , Regulación del Desarrollo de la Expresión Génica , Husos Musculares/anomalías , Propiocepción/genética , Factores de Transcripción/fisiología , Animales , Encéfalo/anomalías , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Proteína 3 de la Respuesta de Crecimiento Precoz , Ganglios Espinales/metabolismo , Inmunohistoquímica , Ratones , Ratones Noqueados , Husos Musculares/embriología , Husos Musculares/metabolismo , Neuronas Aferentes/metabolismo , Parvalbúminas/metabolismo , Escoliosis/genética , Médula Espinal/anomalías , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...