Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 799
Filtrar
1.
PLoS One ; 19(8): e0306897, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39088516

RESUMEN

Caribbean seagrass beds are facing increasing anthropogenic stress, yet comprehensive ground-level monitoring programs that capture the structure of seagrass communities before the 1980s are rare. We measured the distribution of seagrass beds and species composition and abundance of seagrass and associated macroalgae and macroinvertebrates in 3 years over a 47-year period (1969, 1994, 2016) at Carriacou, Granada, an area not heavily impacted by local human activity. Seagrass cover and physical parameters of fringing beds were measured in transects at high (HWE) and low wave energy (LWE) sites; frequency of occurrence of all species, and biomass and morphology of seagrasses, were measured at 100 m2 stations around the island. Losses in nearshore seagrass cover occurred at HWE but not LWE sites between 1969 and 2016 and were associated with increases in the seagrass-free inshore zone (SFI) and erosional scarps within beds. Total biomass did not vary across years although there were progressive changes in seagrass composition: a decline in the dominant Thalassia testudinum and concomitant increase in Syringodium filiforme, and establishment of invasive Halophila stipulacea in 2016 at LWE sites. Species richness and diversity of the seagrass community were highest in 1994, when 94% of macroalgae (excluding Caulerpa) were most abundant, and sea urchins were least abundant, compared to 1969 and 2016. Multivariate statistical analyses showed differences in community composition across the 3 years that were consistent with trends in urchin abundance. Increases in SFI and scarp number in seagrass beds at HWE sites occurred mainly after 1994 and likely were related to increased wave forcing following degradation of offshore coral reefs between 1994 and 2016. Our observations suggest that landward migration of seagrass beds with rapidly rising sea level in future will not be realized in reef-protected seagrass beds at Carriacou barring reversal in the processes that have caused reef flattening.


Asunto(s)
Biodiversidad , Biomasa , Algas Marinas , Algas Marinas/crecimiento & desarrollo , Algas Marinas/fisiología , Ecosistema , Hydrocharitaceae/crecimiento & desarrollo , Animales , Región del Caribe , Invertebrados/fisiología
2.
Sci Total Environ ; 948: 174547, 2024 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-38992355

RESUMEN

The application of various submerged macrophytes for ecological restoration has gained increasing attention in urban lake ecosystems. The multitrophic microbial communities that colonized in various submerged macrophytes constitute microbial food webs through trophic cascade effects, which affect the biogeochemical cycles of the lake ecosystem and directly determine the effects of ecological restoration. Therefore, it is essential to reveal the diversity, composition, assembly processes, and stability of the microbial communities within epiphytic food webs of diverse submerged macrophytes under eutrophication and ecological restoration scenarios. In this study, we explored the epiphytic microbial food webs of Vallisneria natans and Hydrilla verticillata in both eutrophic and ecological restoration regions. The obtained results indicated that the two regions with different nutrient levels remarkably affected the diversity and composition of epiphytic multitrophic microbial communities of submerged macrophytes, among them, the community composition of epiphytic predators were more prone to change. Secondly, environmental filtering effects played a more important role in driving the community assembly of epiphytic predators than that of prey. Furthermore, the generality and intraguild predation of epiphytic predators were significantly improved within ecological restoration regions, which increased the stability of epiphytic microbial food webs. Additionally, compared with Hydrilla verticillata, the epiphytic microbial food webs of Vallisneria natans exhibited higher multitrophic diversity and higher network stability regardless of regions. Overall, this study focused on the role of the epiphytic microbial food webs of submerged macrophytes in ecological restoration and uncovered the potential of epiphytic predators to enhance the stability of microbial food webs, which may provide new insights into the development of ecological restoration strategies.


Asunto(s)
Restauración y Remediación Ambiental , Cadena Alimentaria , Hydrocharitaceae , Lagos , Lagos/microbiología , Animales , Restauración y Remediación Ambiental/métodos , Hydrocharitaceae/microbiología , Eutrofización , Microbiota , Ecosistema , Conducta Predatoria
3.
Aquat Toxicol ; 273: 107029, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39047440

RESUMEN

Microplastic pollution and biological invasion, as two by-products of human civilization, interfere the ecological function of aquatic ecosystem. The restoration of aquatic vegetation has been considered a practical approach to offset the deterioration of aquatic ecosystem. However, a lack of knowledge still lies in the species selection in the revegetation when confronting the interference from microplastic pollution and exotic counterpart. The present study subjected the native submerged species, Hydrilla verticillata and its exotic confamilial, Elodea nuttallii to the current and future scenarios of polyamide microplastic pollution. The plant performance proxies including biomass and ramet number were measured. We found that the native H. verticillata maintained its performance while the exotic E. nuttallii showed decreases in biomass and ramet number under severest pollution conditions. The restoration of native submerged plant such as H. verticillata appeared to be more effective in stabilizing aquatic vegetation in the scenario of accelerating microplastic pollution. In order to explore the underlying driving mechanism of performance differentiation, stress tolerance indicators for plants, sediment enzymatic activity and sediment fungal microbiome were investigated. We found that polyamide microplastic had weak effects on stress tolerance indicators for plants, sediment enzymatic activity and sediment fungal diversity, reflecting the decoupling between these indicators and plant performance. However, the relative abundance of sediment arbuscular mycorrhizal fungi for H. verticillata significantly increased while E. nuttallii gathered "useless" ectomycorrhizal fungi at the presence of severest polyamide microplastic pollution. We speculate that the arbuscular mycorrhizal fungi assisted the stabilization of plant performance for H. verticillata with exposure to the severest polyamide microplastic pollution.


Asunto(s)
Hydrocharitaceae , Microplásticos , Contaminantes Químicos del Agua , Humedales , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/toxicidad , Microplásticos/toxicidad , Microplásticos/análisis , Hydrocharitaceae/efectos de los fármacos , Nylons , Biomasa , Sedimentos Geológicos/química , Restauración y Remediación Ambiental , Especies Introducidas
4.
Sci Data ; 11(1): 793, 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39025921

RESUMEN

To understand the genomic characteristics of Arctic plants, we generated 28-44 Gb of short-read sequencing data from 13 Arctic plants collected from the High Arctic Svalbard. We successfully estimated the genome sizes of eight species by using the k-mer-based method (180-894 Mb). Among these plants, the mountain sorrel (Oxyria digyna) and Greenland scurvy grass (Cochlearia groenlandica) had relatively small genome sizes and chromosome numbers. We obtained 45 × and 121 × high-fidelity long-read sequencing data. We assembled their reads into high-quality draft genomes (genome size: 561 and 250 Mb; contig N50 length: 36.9 and 14.8 Mb, respectively), and correspondingly annotated 43,105 and 29,675 genes using ~46 and ~85 million RNA sequencing reads. We identified 765,012 and 88,959 single-nucleotide variants, and 18,082 and 7,698 structural variants (variant size ≥ 50 bp). This study provided high-quality genome assemblies of O. digyna and C. groenlandica, which are valuable resources for the population and molecular genetic studies of these plants.


Asunto(s)
Genoma de Planta , Secuenciación Completa del Genoma , Regiones Árticas , Tamaño del Genoma , Hydrocharitaceae/genética
5.
Mar Environ Res ; 199: 106589, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38852494

RESUMEN

This study investigated the physiological responses of two tropical seagrass species, Halophila ovalis and Thalassia hemprichii, to heat stress under varying light conditions in a controlled 5-day experiment. The experimental design included four treatments: control, saturating light, heat stress under sub-saturating light, and heat stress under saturating light (combined stress). We assessed various parameters, including chlorophyll fluorescence, levels of reactive oxygen species (ROS), antioxidant enzyme activities, and growth rates. In H. ovalis, heat stress resulted in a significant reduction in the maximum quantum yield of photosystem II (Fv/Fm) regardless of the light condition. However, the effects of heat stress on the effective quantum yield of photosystem II (ɸPSII) were more pronounced under saturating light conditions. In T. hemprichii, saturating irradiance exacerbated the heat stress effects on Fv/Fm and ɸPSII, although the overall photoinhibition was less severe than in H. ovalis. Heat stress led to ROS accumulation in H. ovalis and reduced the activity of superoxide dismutase (SOD) and ascorbate peroxidase in the sub-saturating light condition. Conversely, T. hemprichii exhibited elevated SOD activity under saturating light. Heat stress suppressed the growth of both seagrass species, regardless of the light environment. The Biomarker Response Index indicated that H. ovalis displayed severe effects in the heat stress treatment under both light conditions, while T. hemprichii exhibited moderate effects in sub-saturating light and major effects in saturating light conditions. However, the Effect Addition Index revealed an antagonistic interaction between heat stress and high light in both seagrass species. This study underscores the intricate responses of seagrasses, emphasizing the importance of considering both local and global stressors when assessing their vulnerability.


Asunto(s)
Respuesta al Choque Térmico , Hydrocharitaceae , Estrés Oxidativo , Fotosíntesis , Hydrocharitaceae/fisiología , Hydrocharitaceae/metabolismo , Hydrocharitaceae/efectos de la radiación , Respuesta al Choque Térmico/fisiología , Especies Reactivas de Oxígeno/metabolismo , Luz , Clorofila/metabolismo , Superóxido Dismutasa/metabolismo , Complejo de Proteína del Fotosistema II/metabolismo
6.
Mar Pollut Bull ; 205: 116642, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38941803

RESUMEN

Since the Industrial Revolution, increasing atmospheric CO2 concentrations have had a substantial negative impact influence on coastal ecosystems because of direct effects including ocean acidification and indirect effects such as extreme rainfall events. Using a two-factor crossover indoor simulation experiment, this study examined the combined effects of acidification and hyposaline stress on Thalassia hemprichii. Seawater acidification increased the photosynthetic pigment content of T. hemprichii leaves and promoted seagrass growth rate. Hyposaline stress slowed down seagrass growth and had an impact on the osmotic potential and osmoregulatory substance content of seagrass leaves. Acidification and salinity reduction had significant interaction effects on the photosynthesis rate, photosynthetic pigment content, chlorophyll fluorescence parameters, and osmotic potential of T. hemprichii, but not on the growth rate. Overall, these findings have shown that the hyposaline stress inhibitory effect on the T. hemprichii physiological performance and growth may be reduced by acidification.


Asunto(s)
Hydrocharitaceae , Agua de Mar , Hydrocharitaceae/fisiología , Hydrocharitaceae/efectos de los fármacos , Agua de Mar/química , Concentración de Iones de Hidrógeno , Fotosíntesis/efectos de los fármacos , Salinidad , Estrés Fisiológico , Hojas de la Planta , Clorofila , Ecosistema
7.
J Gen Virol ; 105(6)2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38888587

RESUMEN

Turtlegrass virus X, which infects the seagrass Thalassia testudinum, is the only potexvirus known to infect marine flowering plants. We investigated potexvirus distribution in seagrasses using a degenerate reverse transcription polymerase chain reaction (RT-PCR) assay originally designed to capture potexvirus diversity in terrestrial plants. The assay, which implements Potex-5 and Potex-2RC primers, successfully amplified a 584 nt RNA-dependent RNA polymerase (RdRp) fragment from TVX-infected seagrasses. Following validation, we screened 74 opportunistically collected, apparently healthy seagrass samples for potexviruses using this RT-PCR assay. The survey examined the host species T. testudinum, Halodule wrightii, Halophila stipulacea, Syringodium filiforme, Ruppia maritima, and Zostera marina. Potexvirus PCR products were successfully generated only from T. testudinum samples and phylogenetic analysis of sequenced PCR products revealed five distinct TVX sequence variants. Although the RT-PCR assay revealed limited potexvirus diversity in seagrasses, the expanded geographic distribution of TVX shown here emphasizes the importance of future studies to investigate T. testudinum populations across its native range and understand how the observed fine-scale genetic diversity affects host-virus interactions.


Asunto(s)
Variación Genética , Filogenia , Potexvirus , Potexvirus/genética , Potexvirus/aislamiento & purificación , Potexvirus/clasificación , Golfo de México , Enfermedades de las Plantas/virología , Hydrocharitaceae/virología , ARN Polimerasa Dependiente del ARN/genética , ARN Viral/genética , Zosteraceae/virología
8.
Sci Total Environ ; 939: 173573, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-38823703

RESUMEN

The impact of global warming on plant abundance has been widely discussed, but it remains unclear how warming affects plant physiological traits, and how these traits contribute to the abundance of aquatic plants. We explored the adjustments in physiological traits of two common aquatic plant species (Potamogeton crispus L. and Elodea canadensis Michx.) and their links to plant abundance in three temperature treatments by determining twelve physiological traits and plant abundance over an 11-month period in outdoor mesocosms. This mesocosms facility has been running uninteruptedly for 16 years, rendering the plants a unique opportunity to adapt to the warming differences. We found that 1) warming reduced the starch storage in winter for P. crispus and in summer for E. canadensis while increased the nitrogenous substances (e.g., TN, FAA, and proline) in winter for P. crispus. 2) For E. canadensis, TC, starch, SC, and sucrose contents were higher in summer than in winter regardless of warming, while TC, SC, and sucrose contents were lower in summer for P. crispus. 3) Warming decreased the association strength between physiological traits and plant abundance for P. crispus but enhanced it for E. canadensis. 4) E. canadensis showed increased interaction strength among physiological traits under warming, indicating increased metabolic exertion in the response to warming, which contributed to the reduction in abundance. Trait interaction strength of P. crispus was reduced under warming, but with less impact on plant abundance compared with E. canadensis. Our study emphasizes that warming alters the network of plant physiological traits and their contribution to abundance and that different strengths of susceptibility to warming of the various plant species may alter the composition of plant communities in freshwater ecosystems.


Asunto(s)
Calentamiento Global , Hydrocharitaceae/fisiología , Potamogetonaceae/fisiología , Estaciones del Año , Plantas
9.
BMC Complement Med Ther ; 24(1): 244, 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38915036

RESUMEN

BACKGROUND: Breast cancer is the most common type of cancer diagnosed in women. Finding novel therapeutic agents with significant cytotoxic action and minimal adverse impact on normal cells becomes crucial. Today, natural anticancer agents present an unconventional method of treating cancer, either as a curative or preventative agent, with considerable concern for marine organisms. METHODS: The anticancer effect of the alcoholic extract of different Red Sea Seagrasses on MCF-7 human breast cancer cell line has been investigated. Seagrasses were collected from Wadi El Gamal, Red Sea and extracted. Qualitative HPLC analysis was performed on the extracts for the identification of their active biomarkers. This study was aimed to explore the cytotoxic impact of Thalassia hemprichii (Ehren.) and Enhalus acoroides (L.f.) Royle on MCF-7 and their mode of action. Their anti-proliferative effects on cancer cells were performed using Neutral red assay. On the other hand, their apoptotic effect and their capacity to induce cell cycle arrest were investigated by flow cytometry assay. The effect of Seagrasses on the mitochondrial membrane potential (ΔψM) was studied by using JC-1 mitochondrial membrane potential assay kit in Seagrasses treated cancer cells to Δψ Caspases 3/7activity was examined using the colorimetric method. Gene expression analysis and quantitative real time RT-PCR for the sea grasses on MCF-7 was performed. Immune-blotting technique for Bcl-2 and p53 was investigated. RESULTS: HPLC analysis demonstrated that the extracts contained mainly flavonoids and polyphenols such as Caffeic acid, Chlorogenic acids, catechin and kaempferol that might be responsible for these anticancer effects. Seagrasses alcoholic crude extract markedly suppressed the growth and expansion of MCF-7 cells concentration-dependently with no toxicity against normal human skin fibroblast HSF. Thalassia hemprichii and Enhalus acoroides trigger mode of cell death primarily via apoptosis as confirmed by the flow cytometry. Additionally, they have ability to induce G0/S cell cycle arrest in MCF-7. The data showed the depletion in mitochondrial membrane potential (ΔψM) in the treated cells dose-dependently Caspases 3/7activities markedly increased following 24 h treatment. Finally, Gene expression analysis showed a marked reduction in Bcl-2, Survivin and CDC2 gene expression levels and a significant increase in the expression of p53 and CC2D1A as compared to control cells. CONCLUSION: In summary, the Methanolic extract of seagrass, Thalassia hemperchii and Enhalus ocoroides are able to induce concentration-dependent cytotoxic effects in human MCF-7 cells through intrinsic pathway of apoptosis in MCF-7 cells. This study reveals the beneficial importance of sea grasses as a source of anticancer agents. Further in vivo study is recommended for the active isolated biomolecules.


Asunto(s)
Apoptosis , Neoplasias de la Mama , Extractos Vegetales , Humanos , Células MCF-7 , Apoptosis/efectos de los fármacos , Neoplasias de la Mama/tratamiento farmacológico , Femenino , Extractos Vegetales/farmacología , Hydrocharitaceae , Proliferación Celular/efectos de los fármacos , Antineoplásicos/farmacología
10.
Plant Physiol Biochem ; 212: 108785, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38824692

RESUMEN

High concentrations of copper can pollute coastal waters, primarily from agricultural runoff and mining activities, which can harm marine organisms, including seagrasses. The molecular mechanism of copper toxicity to seagrass currently remains unclear. To determine the response to copper, physiological and multi-omic analyses were conducted to explore the molecular mechanism by which copper affects the global threatened seagrass Halophila beccarii Asch. Excessive copper stress causes oxidative damage and stimulates the activity of the antioxidant enzyme system to remove excess reactive oxygen species (ROS), thereby reducing the damage caused by copper stress. Cu increases the activities of superoxide dismutase (EC 1.15.1.1), catalase (EC 1.11.1.6), peroxidase (EC 1.11.1.7), ascorbate peroxidase (EC 1.11.1.11), glutathione peroxidase (EC 1.11.1.9), ascorbate oxidase (EC 1.10.3.3), glutathione reductase (EC 1.6.4.2), and dehydroascorbate reductase (EC 1.8.5.1) and the content of malondialdehyde and reduces the activity of monodehydroascorbate reductase (EC 1.6.5.4). Under copper stress, H. beccarii upregulates the metabolic pathways of steroid biosynthesis and cutin, suberin, and wax biosynthesis, downregulates the metabolic pathways of arginine and proline metabolism and fructose and mannose metabolism; the levels of expression of the ribosome-related genes; upregulates the levels of expression of circadian rhythm-related proteins and downregulates the levels of glutathione metabolism and the proteins related to carbon fixation. This study provides new insights into the response of seagrass to copper stress and reports potential candidate metabolites, genes, and proteins that can be considered as biomarkers to improve the protection and management of seagrass meadows.


Asunto(s)
Cobre , Cobre/metabolismo , Cobre/toxicidad , Hydrocharitaceae/metabolismo , Hydrocharitaceae/efectos de los fármacos , Hydrocharitaceae/genética , Estrés Oxidativo/efectos de los fármacos , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Proteómica , Antioxidantes/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Multiómica
11.
BMC Genom Data ; 25(1): 48, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38783174

RESUMEN

OBJECTIVES: Ottelia Pers. is in the Hydrocharitaceae family. Species in the genus are aquatic, and China is their centre of origin in Asia. Ottelia alismoides (L.) Pers., which is distributed worldwide, is a distinguishing element in China, while other species of this genus are endemic to China. However, O. alismoides is also considered endangered due to habitat loss and pollution in some Asian countries. Ottelia alismoides is the only submerged macrophyte that contains three carbon dioxide-concentrating mechanisms, i.e. bicarbonate (HCO3-) use, crassulacean acid metabolism and the C4 pathway. In this study, we present its first genome assembly to help illustrate the various carbon metabolism mechanisms and to enable genetic conservation in the future. DATA DESCRIPTION: Using DNA and RNA extracted from one O. alismoides leaf, this work produced ∼ 73.4 Gb HiFi reads, ∼ 126.4 Gb whole genome sequencing short reads and ∼ 21.9 Gb RNA-seq reads. The de novo genome assembly was 6,455,939,835 bp in length, with 11,923 scaffolds/contigs and an N50 of 790,733 bp. Genome assembly completeness assessment with Benchmarking Universal Single-Copy Orthologs revealed a score of 94.4%. The repetitive sequence in the assembly was 4,875,817,144 bp (75.5%). A total of 116,176 genes were predicted. The protein sequences were functionally annotated against multiple databases, facilitating comparative genomic analysis.


Asunto(s)
Carbono , Genoma de Planta , Hydrocharitaceae , Hydrocharitaceae/genética , Hydrocharitaceae/metabolismo , Carbono/metabolismo , Anotación de Secuencia Molecular , Secuenciación Completa del Genoma , China
12.
Sci Total Environ ; 932: 173030, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38719043

RESUMEN

Antibiotic pollution and biological invasion pose significant risks to freshwater biodiversity and ecosystem health. However, few studies have compared the ecological adaptability and ciprofloxacin (CIPR) degradation potential between alien and native macrophytes. We examined growth, physiological response, and CIPR accumulation, translocation and metabolic abilities of two alien plants (Eichhornia crassipes and Myriophyllum aquaticum) and one native submerged species (Vallisneria natans) exposed to CIPR at 0, 1 and 10 mg/L. We found that E. crassipes and M. aquaticum's growth were unaffected by CIPR while V. natans was significantly hindered under the 10 mg/L treatment. CIPR significantly decreased the maximal quantum yield of PSII, actual quantum yield of PSII and relative electron transfer rate in E. crassipes and V. natans but didn't impact these photosynthetic characteristics in M. aquaticum. All the plants can accumulate, translocate and metabolize CIPR. M. aquaticum and E. crassipes in the 10 mg/L treatment group showed greater CIPR accumulation potential than V. natans indicated by higher CIPR contents in their roots. The oxidative cleavage of the piperazine ring acts as a key pathway for these aquatic plants to metabolize CIPR and the metabolites mainly distributed in plant roots. M. aquaticum and E. crassipes showed a higher production of CIPR metabolites compared to V. natans, with M. aquaticum exhibiting the strongest CIPR metabolic ability, as indicated by the most extensive structural breakdown of CIPR and the largest number of potential metabolic pathways. Taken together, alien species outperformed the native species in ecological adaptability, CIPR accumulation and metabolic capacity. These findings may shed light on the successful invasion mechanisms of alien aquatic species under antibiotic pressure and highlight the potential ecological impacts of alien species, particularly M. aquaticum. Additionally, the interaction of antibiotic contamination and invasion might further challenge the native submerged macrophytes and pose greater risks to freshwater ecosystems.


Asunto(s)
Ciprofloxacina , Contaminantes Químicos del Agua , Contaminantes Químicos del Agua/toxicidad , Contaminantes Químicos del Agua/metabolismo , Especies Introducidas , Eichhornia/metabolismo , Eichhornia/fisiología , Antibacterianos/toxicidad , Hydrocharitaceae/fisiología , Hydrocharitaceae/metabolismo , Biodegradación Ambiental
13.
Bioresour Technol ; 402: 130779, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38701977

RESUMEN

Submerged macrophytes are effective in ecological restoration of water bodies polluted by nitrogen and phosphorus, and its restoration capacity depends on underwater illumination condition. This study explored the influencing mechanism of illumination on Vallisneria spinulosa Yan (V. spinulosa Yan) for water restoration. Addition of underwater light source increased the total nitrogen, ammonia nitrogen, total phosphorus, and phosphate removal loads of the V. spinulosa Yan growth system by 61.5, 39.2, 8.5, and 5.0 mg m-2 d-1, respectively. Meanwhile, the growth of V. spinulosa Yan was obviously promoted, even with high water turbidity. Although the biological nitrogen removal processes were inhibited by adding underwater light source, the growth of V. spinulosa Yan can be significantly improved, thus enhancing the efficiency of water purification via the absorption of nitrogen and phosphorus by V. spinulosa Yan. This study provides a theoretical foundation and technical support for application of submerged macrophytes in ecological water restoration.


Asunto(s)
Luz , Nitrógeno , Fósforo , Rizosfera , Purificación del Agua , Purificación del Agua/métodos , Hydrocharitaceae/metabolismo , Hydrocharitaceae/crecimiento & desarrollo , Biodegradación Ambiental , Agua , Ecosistema
14.
Plant Physiol Biochem ; 211: 108675, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38705047

RESUMEN

Controlling light qualities have been acknowledged as an effective method to enhance the efficiency of phytoremediation, as light has a significant impact on plant growth. This study examined the effects of light qualities on cadmium (Cd) tolerance in aquatic plant Egeria densa using a combination of biochemical and transcriptomic approaches. The study revealed that E. densa exhibits higher resistance to Cd toxicity under red light (R) compared to blue light (B), as evidenced by a significant decrease in photosynthetic inhibition and damage to organelle ultrastructure. After Cd exposure, there was a significantly reduced Cd accumulation and enhanced levels of both glutathione reductase (GR) activity and glutathione (GSH), along with an increase in jasmonic acid (JA) in R-grown E. densa compared to B. Transcriptional analysis revealed that R caused an up-regulation of Cd transporter genes such as ABCG (G-type ATP-binding cassette transporter), ABCC (C-type ATP-binding cassette transporter), and CAX2 (Cation/H+ exchanger 2), while down-regulated the expression of HIPP26 (Heavy metal-associated isoprenylated plant protein 26), resulting in reduced Cd uptake and enhanced Cd exportation and sequestration into vacuoles. Moreover, the expression of genes involved in phytochromes and JA synthesis was up-regulated in Cd treated E. densa under R. In summary, the results suggest that R could limit Cd accumulation and improve antioxidant defense to mitigate Cd toxicity in E. densa, which might be attributed to the enhanced JA and phytochromes. This study provides a foundation for using light control methods with aquatic macrophytes to remediate heavy metal contamination in aquatic systems.


Asunto(s)
Antioxidantes , Cadmio , Luz , Cadmio/toxicidad , Cadmio/metabolismo , Antioxidantes/metabolismo , Hydrocharitaceae/metabolismo , Hydrocharitaceae/efectos de los fármacos , Hydrocharitaceae/efectos de la radiación , Oxilipinas/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/efectos de la radiación , Ciclopentanos/metabolismo , Fotosíntesis/efectos de los fármacos , Glutatión/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Luz Roja
15.
Plant Physiol Biochem ; 211: 108672, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38718531

RESUMEN

Luminescent materials can adjust the spectrum of light energy utilization by plants. However, current research on the effects of luminescent materials on aquatic plants and periphytic biofilms is limited. This study investigated the effects of the luminescent materials 4-(di-p-tolylamino) benzaldehyde-A (DTB-A) and 4-(di-p-tolylamino) benzaldehyde-M (DTB-M) on the submerged macrophyte Vallisneria natans (V. natans) and periphytic biofilm. Result demonstrated that low concentrations of DTB (0.1 µM) significantly promoted the growth and photosynthetic rate of V. natans. In terms of enzyme activity, exposure to a higher concentration of DTB (10 µM) increased the activities of peroxidase (POD), superoxide dismutase (SOD) and catalase (CAT). A combination of DTB-A and DTB-M treatment significantly changed the V. natans morphology and physiological characteristics, reducing the thickness of the cell wall and subsequently, promoting protein accumulation in leaves. There was no difference in the removal of ammonia or phosphate by V. natans at the 0.1 µM concentration, and the removal of ammonia and phosphate by V. natans decreased significantly as the concentration of luminescent material increased. A total of 3563 OTUs were identified in the biofilm community. The microbial community was dominated by Pseudomonas and Fusobacteria. Furthermore, results showed that an obvious decrease in diversity in the DTB-A and DTB-M mixed treatment group. In addition, the migratory aggregation of DTB molecules in plants was observed by fluorescence imaging. Overall, these findings extend our understanding of the mechanism of effect of luminescent materials on submerged macrophytes and their periphytic microorganisms.


Asunto(s)
Biopelículas , Hydrocharitaceae , Biopelículas/efectos de los fármacos , Biopelículas/crecimiento & desarrollo , Hydrocharitaceae/metabolismo , Hydrocharitaceae/microbiología , Benzaldehídos/metabolismo , Benzaldehídos/farmacología , Fotosíntesis/efectos de los fármacos , Luminiscencia , Catalasa/metabolismo , Peroxidasa/metabolismo , Hojas de la Planta/metabolismo , Superóxido Dismutasa/metabolismo , Sustancias Luminiscentes/metabolismo
16.
Environ Pollut ; 351: 124078, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38703986

RESUMEN

As of now, submerged plants and biochar have demonstrated significant benefits in aquaculture pond sediment remediation. However, there is limited research on the synergistic effects of biochar and submerged plants in mitigating hydrophobic organic contaminant (HOC) accumulation in aquaculture benthic organisms and in controlling the nutrient (nitrogen and phosphorus) levels in aquaculture water. This study assesses a submerged plant-biochar system's efficacy in removing HOCs from simulated freshwater aquaculture ponds. Vallisneria natans was planted in sediment with varying levels of wheat straw biochar, while Corbicula fluminea served as the targeted benthic organism. The bioaccumulation experiment identified the optimal biochar ratio for the Vallisneria natans-biochar system in controlling HOCs in aquaculture products. Analyses included final accumulation concentrations in benthic organisms, changes in freely-dissolved concentrations in aquaculture sediment, and a mass balance calculation to explore key factors in their removal from the system. Results indicated that the Vallisneria natans-1.5% biochar composite system achieved optimal control of HOCs in sediment and aquaculture products. Biochar addition to the sediment in the composite system demonstrated a "promotion with low addition, inhibition with high addition" effect on Vallisneria natans growth. Notably, the addition of 1.5% biochar (VN1.5 group) significantly promoted the growth of Vallisneria natans leaves and roots. Comparing the final pollutant proportions in different environmental media, concentrations in water (0.20%-1.8%), clam accumulation (0.032%-0.11%), and plant absorption (0.10%-0.44%) constituted a minimal portion of the overall pollutant load in the system. The majority of pollutants (24%-65%) were degraded in the aquaculture environment, with microbial degradation likely playing a predominant role. Bacterial phyla, particularly Proteobacteria and Firmicutes, were identified as potential direct contributors to pollutant degradation in the Vallisneria natans-biochar system.


Asunto(s)
Acuicultura , Carbón Orgánico , Sedimentos Geológicos , Estanques , Contaminantes Químicos del Agua , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/metabolismo , Carbón Orgánico/química , Estanques/química , Sedimentos Geológicos/química , Corbicula , Biodegradación Ambiental , Hydrocharitaceae/metabolismo , Animales
17.
Sci Total Environ ; 937: 173523, 2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-38797423

RESUMEN

Seagrass meadows are globally recognized as critical natural carbon sinks, commonly known as 'blue carbon'. However, seagrass decline attributed to escalating human activities and climate change, significantly influences their carbon sequestration capacity. A key aspect in comprehending the impact of seagrass decline on carbon sequestration is understanding how degradation affects the stored blue carbon, primarily consisting of sediment organic carbon (SOC). While it is widely acknowledged that seagrass decline affects the input of organic carbon, little is known about its impact on SOC pool stability. To address this knowledge, we examined variations in total SOC and recalcitrant SOC (RSOC) at a depth of 15 cm in nine seagrass meadows located on the coast of Southern China. Our findings revealed that the ratio of RSOC to SOC (RSOC/SOC) ranged from 27 % to 91 % in the seagrass meadows, and the RSOC/SOC increased slightly with depth. Comparing different seagrass species, we observed that SOC and RSOC stocks were 1.94 and 3.19-fold higher under Halophila beccarii and Halophila ovalis meadows compared to Thalassia hemprichii and Enhalus acoroides meadows. Redundancy and correlation analyses indicated that SOC and RSOC content and stock, as well as the RSOC/SOC ratio, decreased with declining seagrass shoot density, biomass, and coverage. This implies that the loss of seagrass, caused by human activities and climate change, results in a reduction in carbon sequestration stability. Further, the RSOC decreased by 15 %, 29 %, and 40 % under unvegetated areas compared to adjacent Halophila spp., T. hemprichii and E. acoroides meadows, respectively. Given the anticipated acceleration of seagrass decline due to climate change and increasing coastal development, our study provides timely information for developing coastal carbon protection strategies. These strategies should focus on preserving seagrass and restoring damaged seagrass meadows, to maximize their carbon sequestration capacity.


Asunto(s)
Secuestro de Carbono , Carbono , Cambio Climático , Sedimentos Geológicos , Sedimentos Geológicos/química , China , Carbono/análisis , Monitoreo del Ambiente , Hydrocharitaceae , Alismatales
18.
J Hazard Mater ; 473: 134662, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38788574

RESUMEN

Sediment cadmium contamination poses risks to aquatic ecosystems. Phytoremediation is an environmentally sustainable method to mitigate cadmium contamination. Submerged macrophytes are affected by cadmium stress, but plant growth-promoting rhizobacteria (PGPR) can restore the health status of submerged macrophytes. Herein, we aimed to reduce sediment cadmium concentration and reveal the mechanism by which the combined application of the PGPR Enterobacter ludwigii and the submerged macrophyte Vallisneria natans mitigates cadmium contamination. Sediment cadmium concentration decreased by 21.59% after submerged macrophytes were planted with PGPR, probably because the PGPR colonized the rhizosphere and roots of the macrophytes. The PGPR induced a 5.09-fold increase in submerged macrophyte biomass and enhanced plant antioxidant response to cadmium stress, as demonstrated by decreases in oxidative product levels (reactive oxygen species and malondialdehyde), which corresponded to shift in rhizosphere metabolism, notably in antioxidant defence systems (i.e., the peroxidation of linoleic acid into 9-hydroperoxy-10E,12Z-octadecadienoic acid) and in some amino acid metabolism pathways (i.e., arginine and proline). Additionally, PGPR mineralized carbon in the sediment to promote submerged macrophyte growth. Overall, PGPR mitigated sediment cadmium accumulation via a synergistic plantmicrobe mechanism. This work revealed the mechanism by which PGPR and submerged macrophytes control cadmium concentration in contaminated sediment.


Asunto(s)
Biodegradación Ambiental , Cadmio , Enterobacter , Sedimentos Geológicos , Contaminantes Químicos del Agua , Cadmio/toxicidad , Cadmio/metabolismo , Enterobacter/metabolismo , Enterobacter/crecimiento & desarrollo , Enterobacter/efectos de los fármacos , Sedimentos Geológicos/microbiología , Sedimentos Geológicos/química , Contaminantes Químicos del Agua/metabolismo , Contaminantes Químicos del Agua/toxicidad , Rizosfera , Hydrocharitaceae/metabolismo , Hydrocharitaceae/microbiología , Hydrocharitaceae/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Raíces de Plantas/microbiología , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/crecimiento & desarrollo , Biomasa
19.
Sci Total Environ ; 933: 173230, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38750745

RESUMEN

The pollution of various brominated flame retardants (BFRs) is concurrence, while their environmental fate and toxicology in water-sediment-submerged plant systems remain unclear. In this study, Vallisneria natans plants were co-exposed to 2,3,4,5,6-pentabromotoluene (PBT), hexabromobenzene (HBB), 1,2-bis (2,4,6-tribromophenoxy) ethane (BTBPE), decabromodiphenyl ether (BDE209), and decabromodiphenyl ethane (DBDPE). The ∑BFRs concentration in the root was 2.15 times higher than that in the shoot. Vallisneria natans accumulated more BTBPE and HBB in 0.2, 1, and 5 mg/kg treatments, while they accumulated more DBDPE and BDE209 in 25 and 50 mg/kg treatments. The bioaccumulation factors in the shoot and root were 1.08-96.95 and 0.04-0.70, respectively. BFRs in sediments had a more pronounced effect on bioaccumulation levels than BFRs in water, and biotranslocation was another potential influence factor. The SOD activity, POD activity, and MDA content were significantly increased under co-exposure. The DBDPE separate exposure impacted the metabolism of substances and energy, inhibited mismatch repair, and disrupted ribosomal functions in Vallisneria natans. However, DBDPE enhanced their photosynthesis by upregulating the expression level of genes related to the light reaction. This study provides a broader understanding of the bioaccumulation and toxicity of BFRs in submerged plants, shedding light on the scientific management of products containing BFRs.


Asunto(s)
Retardadores de Llama , Estrés Oxidativo , Fotosíntesis , Contaminantes Químicos del Agua , Retardadores de Llama/metabolismo , Contaminantes Químicos del Agua/metabolismo , Fotosíntesis/efectos de los fármacos , Bioacumulación , Sedimentos Geológicos/química , Éteres Difenilos Halogenados/metabolismo , Hydrocharitaceae/metabolismo
20.
Ecotoxicol Environ Saf ; 277: 116373, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38653023

RESUMEN

Cr (VI) is extremely harmful to both the environment and human health, and it can linger in the environment for a very long period. In this research, the Leersia hexandra Swartz constructed wetland-microbial fuel cell (CW-MFC) system was constructed to purify Cr (VI) wastewater. By comparing with the constructed wetland (CW) system, the system electricity generation, pollutants removal, Cr enrichment, and morphological transformation of the system were discussed. The results demonstrated that the L. hexandra CW-MFC system promoted removal of pollutants and production of electricity of the system. The maximum voltage of the system was 499 mV, the COD and Cr (VI) removal efficiency was 93.73% and 97.00%. At the same time, it enhanced the substrate and L. hexandra ability to absorb Cr and change it morphologically transformation. Additionally, the results of XPS and XANES showed that the majority of the Cr in the L. hexandra and substrate was present as Cr (III). In the L. hexandra CW-MFC system, Geobacter also functioned as the primary metal catabolic reducing and electrogenic bacteria. As a result, L. hexandra CW-MFC system possesses the added benefit of removing Cr (VI) while producing energy compared to the traditional CW system.


Asunto(s)
Fuentes de Energía Bioeléctrica , Cromo , Aguas Residuales , Contaminantes Químicos del Agua , Humedales , Aguas Residuales/química , Eliminación de Residuos Líquidos/métodos , Biodegradación Ambiental , Hydrocharitaceae , Geobacter/metabolismo , Electricidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...