Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 288
Filtrar
1.
J Agric Food Chem ; 72(15): 8742-8748, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38564658

RESUMEN

Tyrosinase is capable of oxidizing tyrosine residues in proteins, leading to intermolecular protein cross-linking, which could modify the protein network of food and improve the texture of food. To obtain the recombinant tyrosinase with microbial cell factory instead of isolation tyrosinase from the mushroom Agaricus bisporus, a TYR expression cassette was constructed in this study. The expression cassette was electroporated into Trichoderma reesei Rut-C30 and integrated into its genome, resulting in a recombinant strain C30-TYR. After induction with microcrystalline cellulose for 7 days, recombinant tyrosinase could be successfully expressed and secreted by C30-TYR, corresponding to approximately 2.16 g/L tyrosinase in shake-flask cultures. The recombinant TYR was purified by ammonium sulfate precipitation and gel filtration, and the biological activity of purified TYR was 45.6 U/mL. The purified TYR could catalyze the cross-linking of glycinin, and the emulsion stability index of TYR-treated glycinin emulsion was increased by 30.6% compared with the untreated one. The cross-linking of soy glycinin by TYR resulted in altered properties of oil-in-water emulsions compared to emulsions stabilized by native glycinin. Therefore, cross-linking with this recombinant tyrosinase is a feasible approach to improve the properties of protein-stabilized emulsions and gels.


Asunto(s)
Reactivos de Enlaces Cruzados , Expresión Génica , Globulinas , Hypocreales , Monofenol Monooxigenasa , Proteínas Recombinantes , Proteínas de Soja , Monofenol Monooxigenasa/biosíntesis , Monofenol Monooxigenasa/genética , Monofenol Monooxigenasa/aislamiento & purificación , Monofenol Monooxigenasa/metabolismo , Reactivos de Enlaces Cruzados/aislamiento & purificación , Reactivos de Enlaces Cruzados/metabolismo , Hypocreales/clasificación , Hypocreales/genética , Hypocreales/crecimiento & desarrollo , Hypocreales/metabolismo , Globulinas/química , Globulinas/metabolismo , Proteínas de Soja/química , Proteínas de Soja/metabolismo , Electroporación , Celulosa , Sulfato de Amonio , Cromatografía en Gel , Precipitación Fraccionada , Emulsiones/química , Emulsiones/metabolismo , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Estabilidad Proteica , Retículo Endoplásmico/metabolismo , Señales de Clasificación de Proteína , Aceites/química , Agua/química
2.
Sci Rep ; 14(1): 9625, 2024 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-38671155

RESUMEN

The filamentous ascomycete Trichoderma reesei, known for its prolific cellulolytic enzyme production, recently also gained attention for its secondary metabolite synthesis. Both processes are intricately influenced by environmental factors like carbon source availability and light exposure. Here, we explore the role of the transcription factor STE12 in regulating metabolic pathways in T. reesei in terms of gene regulation, carbon source utilization and biosynthesis of secondary metabolites. We show that STE12 is involved in regulating cellulase gene expression and growth on carbon sources associated with iron homeostasis. STE12 impacts gene regulation in a light dependent manner on cellulose with modulation of several CAZyme encoding genes as well as genes involved in secondary metabolism. STE12 selectively influences the biosynthesis of the sorbicillinoid trichodimerol, while not affecting the biosynthesis of bisorbibutenolide, which was recently shown to be regulated by the MAPkinase pathway upstream of STE12 in the signaling cascade. We further report on the biosynthesis of dehydroacetic acid (DHAA) in T. reesei, a compound known for its antimicrobial properties, which is subject to regulation by STE12. We conclude, that STE12 exerts functions beyond development and hence contributes to balance the energy distribution between substrate consumption, reproduction and defense.


Asunto(s)
Carbono , Proteínas Fúngicas , Regulación Fúngica de la Expresión Génica , Factores de Transcripción , Carbono/metabolismo , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética , Hypocreales/metabolismo , Hypocreales/genética , Hypocreales/crecimiento & desarrollo , Celulosa/metabolismo , Celulosa/biosíntesis , Metabolismo Secundario
3.
Arch Microbiol ; 205(9): 314, 2023 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-37603130

RESUMEN

Manipulative neuroparasites are a fascinating group of organisms that possess the ability to hijack the nervous systems of their hosts, manipulating their behavior in order to enhance their own survival and reproductive success. This review provides an overview of the different strategies employed by manipulative neuroparasites, ranging from viruses to parasitic worms and fungi. By examining specific examples, such as Toxoplasma gondii, Leucochloridium paradoxum, and Ophiocordyceps unilateralis, we highlight the complex mechanisms employed by these parasites to manipulate their hosts' behavior. We explore the mechanisms through which these parasites alter the neural processes and behavior of their hosts, including the modulation of neurotransmitters, hormonal pathways, and neural circuits. This review focuses less on the diseases that neuroparasites induce and more on the process of their neurological manipulation. We also investigate the fundamental mechanisms of host manipulation in the developing field of neuroparasitology, which blends neuroscience and parasitology. Finally, understanding the complex interaction between manipulative neuroparasites and their hosts may help us to better understand the fundamentals of behavior, neurology, and host-parasite relationships.


Asunto(s)
Hypocreales , Sistema Nervioso , Toxoplasma , Trematodos , Toxoplasma/crecimiento & desarrollo , Toxoplasma/fisiología , Trematodos/crecimiento & desarrollo , Trematodos/fisiología , Hypocreales/crecimiento & desarrollo , Hypocreales/fisiología , Virus de la Rabia/fisiología , Animales , Sistema Nervioso/microbiología , Sistema Nervioso/parasitología , Humanos , Interacciones Huésped-Patógeno
4.
Elife ; 112022 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-35950750

RESUMEN

Circadian clocks are important for an individual's fitness, and recent studies have underlined their role in the outcome of biological interactions. However, the relevance of circadian clocks in fungal-fungal interactions remains largely unexplored. We sought to characterize a functional clock in the biocontrol agent Trichoderma atroviride to assess its importance in the mycoparasitic interaction against the phytopathogen Botrytis cinerea. Thus, we confirmed the existence of circadian rhythms in T. atroviride, which are temperature-compensated and modulated by environmental cues such as light and temperature. Nevertheless, the presence of such molecular rhythms appears to be highly dependent on the nutritional composition of the media. Complementation of a clock null (Δfrq) Neurospora crassa strain with the T. atroviride-negative clock component (tafrq) restored core clock function, with the same period observed in the latter fungus, confirming the role of tafrq as a bona fide core clock component. Confrontation assays between wild-type and clock mutant strains of T. atroviride and B. cinerea, in constant light or darkness, revealed an inhibitory effect of light on T. atroviride's mycoparasitic capabilities. Interestingly, when confrontation assays were performed under light/dark cycles, T. atroviride's overgrowth capacity was enhanced when inoculations were at dawn compared to dusk. Deleting the core clock-negative element FRQ in B. cinerea, but not in T. atroviride, was vital for the daily differential phenotype, suggesting that the B. cinerea clock has a more significant influence on the result of this interaction. Additionally, we observed that T. atroviride clock components largely modulate development and secondary metabolism in this fungus, including the rhythmic production of distinct volatile organic compounds (VOCs). Thus, this study provides evidence on how clock components impact diverse aspects of T. atroviride lifestyle and how daily changes modulate fungal interactions and dynamics.


Asunto(s)
Botrytis , Proteínas CLOCK , Ritmo Circadiano , Proteínas Fúngicas , Hypocreales , Interacciones Microbianas , Metabolismo Secundario , Botrytis/crecimiento & desarrollo , Botrytis/metabolismo , Botrytis/efectos de la radiación , Proteínas CLOCK/metabolismo , Ritmo Circadiano/efectos de la radiación , Proteínas Fúngicas/metabolismo , Hypocreales/crecimiento & desarrollo , Hypocreales/metabolismo , Hypocreales/efectos de la radiación , Luz , Temperatura
5.
Microbiol Spectr ; 9(3): e0167921, 2021 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-34908454

RESUMEN

Management of crop root rot disease is one of the key factors in ensuring sustainable development in agricultural production. The accumulation of autotoxins and pathogens in soil has been reported as a primary driver of root rot diseases; however, less is known about the correlation of plants, their associated pathogens and microbiome mediated by autotoxins as well as the contributions autotoxins make to the occurrence of root rot disease. Here, we integrated metabolomic, transcriptomic, and rhizosphere microbiome analyses to identify the root cell wall degradants cellobiose and d-galacturonic acid as being induced by the autotoxic ginsenoside Rg1 of Panax notoginseng, and we found that exogenous cellobiose and d-galacturonic acid in addition to Rg1 could aggravate root rot disease by modifying the rhizosphere microbiome. Microorganisms that correlated positively with root rot disease were enriched and those that correlated negatively were suppressed by exogenous cellobiose, d-galacturonic acid, and Rg1. In particular, they promoted the growth and infection of the soilborne pathogen Ilyonectria destructans by upregulating pathogenicity-related genes. Cellobiose showed the highest ability to modify the microbiome and enhance pathogenicity, followed by Rg1 and then d-galacturonic acid. Collectively, autotoxins damaged root systems to release a series of cell wall degradants, some of which modified the rhizosphere microbiome so that the host plant became more susceptible to root rot disease. IMPORTANCE The accumulation of autotoxins and pathogens in soil has been reported as a primary driver of root rot disease and one of the key factors limiting sustainable development in agricultural production. However, less is known about the correlation of plants, their associated pathogens, and the microbiome mediated by autotoxins, as well as the contributions autotoxins make to the occurrence of root rot disease. In our study, we found that autotoxins can damage root systems, thus releasing a series of cell wall degradants, and both autotoxins and the cell wall degradants they induce could aggravate root rot disease by reassembling the rhizosphere microbiome, resulting in the enrichment of pathogens and microorganisms positively related to the disease but the suppression of beneficial microorganisms. Deciphering this mechanism among plants, their associated pathogens, and the microbiome mediated by autotoxins will advance our fundamental knowledge of and ability to degrade autotoxins or employ microbiome to alleviate root rot disease in agricultural systems.


Asunto(s)
Celobiosa/metabolismo , Ginsenósidos/metabolismo , Ácidos Hexurónicos/metabolismo , Hypocreales/metabolismo , Panax notoginseng/microbiología , Raíces de Plantas/metabolismo , Pared Celular/metabolismo , Hypocreales/crecimiento & desarrollo , Microbiota/genética , Enfermedades de las Plantas/microbiología , Raíces de Plantas/microbiología , Rizosfera
6.
PLoS One ; 16(12): e0260747, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34855862

RESUMEN

The soil-born filamentous fungal pathogen Fusarium oxysporum f. sp. cubense (FOC), which causes vascular wilt disease in banana plants, is one of the most economically important Fusarium species. Biocontrol using endophytic microorganisms is among the most effective methods for controlling banana Fusarium wilt. In this study, volatile organic compounds (VOCs) showed strong antifungal activity against FOC. Seventeen compounds were identified from the VOCs produced by endophytic fungi Sarocladium brachiariae HND5, and three (2-methoxy-4-vinylphenol, 3,4-dimethoxystyrol and caryophyllene) showed antifungal activity against FOC with 50% effective concentrations of 36, 60 and 2900 µL/L headspace, respectively. Transmission electron microscopy (TEM) and double fluorescence staining revealed that 2-methoxy-4-vinylphenol and 3,4-dimethoxystyrol damaged the plasma membranes, resulting in cell death. 3,4-dimethoxystyrol also could induce expression of chitin synthases genes and altered the cell walls of FOC hyphae. Dichloro-dihydro-fluorescein diacetate staining indicated the caryophyllene induced accumulation of reactive oxygen species (ROS) in FOC hyphae. FOC secondary metabolism also responded to active VOC challenge by producing less fusaric acid and expressions of genes related to fusaric acid production were interrupted at sublethal concentrations. These findings indicate the potential of S. brachiariae HND5 as a biocontrol agent against FOC and the antifungal VOCs as fumigants.


Asunto(s)
Antifúngicos/farmacología , Agentes de Control Biológico/farmacología , Fusarium/fisiología , Hypocreales/crecimiento & desarrollo , Musa/efectos de los fármacos , Enfermedades de las Plantas/prevención & control , Compuestos Orgánicos Volátiles/farmacología , Musa/crecimiento & desarrollo , Musa/microbiología , Enfermedades de las Plantas/microbiología
7.
Microbiol Spectr ; 9(3): e0140021, 2021 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-34756064

RESUMEN

The accumulation of autotoxins and soilborne pathogens in soil was shown to be the primary driver of negative plant-soil feedback (NPSF). There is a concerted understanding that plants could enhance their adaptability to biotic or abiotic stress by modifying the rhizosphere microbiome. However, it is not clear whether autotoxins could enrich microbes to degrade themselves or antagonize soilborne pathogens. Here, we found that the microbiome degraded autotoxic ginsenosides, belonging to triterpenoid glycosides, and antagonized pathogens in the rhizosphere soil of Panax notoginseng (sanqi). Deep analysis by 16S rRNA sequencing showed that the bacterial community was obviously changed in the rhizosphere soil and identified the Burkholderia-Caballeronia-Paraburkholderia (BCP) group as the main ginsenoside-enriched bacteria in the rhizosphere soil. Eight strains belonging to the BCP group were isolated, and Burkholderia isolate B36 showed a high ability to simultaneously degrade autotoxic ginsenosides (Rb1, Rg1, and Rd) and antagonize the soilborne pathogen Ilyonectria destructans. Interestingly, ginsenosides could stimulate the growth and biofilm formation of B36, eventually enhancing the antagonistic ability of B36 to I. destructans and the colonization ability in the rhizosphere soil. In summary, autotoxic ginsenosides secreted by P. notoginseng could enrich beneficial microbes in the rhizosphere to simultaneously degrade autotoxins and antagonize pathogen, providing a novel ecological strategy to alleviate NPSF. IMPORTANCE Autotoxic ginsenosides, secreted by sanqi into soil, could enrich Burkholderia sp. to alleviate negative plant-soil feedback (NPSF) by degrading autotoxins and antagonizing the root rot pathogen. In detail, ginsenosides could stimulate the growth and biofilm formation of Burkholderia sp. B36, eventually enhancing the antagonistic ability of Burkholderia sp. B36 to a soilborne pathogen and the colonization of B36 in soil. This ecological strategy could alleviate NPSF by manipulating the rhizosphere microbiome to simultaneously degrade autotoxins and antagonize pathogen.


Asunto(s)
Antibiosis/fisiología , Burkholderia/metabolismo , Ginsenósidos/metabolismo , Hypocreales/crecimiento & desarrollo , Panax notoginseng/microbiología , Burkholderia/crecimiento & desarrollo , Glicósidos/metabolismo , Microbiota/fisiología , Enfermedades de las Plantas/microbiología , Plantas , ARN Ribosómico 16S/genética , Rizosfera , Microbiología del Suelo , Estrés Fisiológico/fisiología
8.
PLoS Genet ; 17(11): e1009924, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34788288

RESUMEN

Higher fungi can rapidly produce large numbers of spores suitable for aerial dispersal. The efficiency of the dispersal and spore resilience to abiotic stresses correlate with their hydrophobicity provided by the unique amphiphilic and superior surface-active proteins-hydrophobins (HFBs)-that self-assemble at hydrophobic/hydrophilic interfaces and thus modulate surface properties. Using the HFB-enriched mold Trichoderma (Hypocreales, Ascomycota) and the HFB-free yeast Pichia pastoris (Saccharomycetales, Ascomycota), we revealed that the rapid release of HFBs by aerial hyphae shortly prior to conidiation is associated with their intracellular accumulation in vacuoles and/or lipid-enriched organelles. The occasional internalization of the latter organelles in vacuoles can provide the hydrophobic/hydrophilic interface for the assembly of HFB layers and thus result in the formation of HFB-enriched vesicles and vacuolar multicisternal structures (VMSs) putatively lined up by HFBs. These HFB-enriched vesicles and VMSs can become fused in large tonoplast-like organelles or move to the periplasm for secretion. The tonoplast-like structures can contribute to the maintenance of turgor pressure in aerial hyphae supporting the erection of sporogenic structures (e.g., conidiophores) and provide intracellular force to squeeze out HFB-enriched vesicles and VMSs from the periplasm through the cell wall. We also show that the secretion of HFBs occurs prior to the conidiation and reveal that the even spore coating of HFBs deposited in the extracellular matrix requires microscopic water droplets that can be either guttated by the hyphae or obtained from the environment. Furthermore, we demonstrate that at least one HFB, HFB4 in T. guizhouense, is produced and secreted by wetted spores. We show that this protein possibly controls spore dormancy and contributes to the water sensing mechanism required for the detection of germination conditions. Thus, intracellular HFBs have a range of pleiotropic functions in aerial hyphae and spores and are essential for fungal development and fitness.


Asunto(s)
Pared Celular/genética , Proteínas Fúngicas/genética , Esporas Fúngicas/genética , Trichoderma/genética , Ascomicetos/genética , Ascomicetos/crecimiento & desarrollo , Interacciones Hidrofóbicas e Hidrofílicas , Hifa/genética , Hifa/crecimiento & desarrollo , Hypocreales/genética , Hypocreales/crecimiento & desarrollo , Esporas Fúngicas/crecimiento & desarrollo , Trichoderma/crecimiento & desarrollo
9.
World J Microbiol Biotechnol ; 37(10): 180, 2021 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-34562178

RESUMEN

Agricultural production is one of most important activities for food supply and demand, that provides a source of raw materials, and generates commercial opportunities for other industries around the world. It may be both positively and negatively affected by climatic and biological factors. Negative biological factors are those caused by viruses, bacteria, or parasites. Given the serious problems posed by phytoparasitic nematodes for farmers, causing crop losses globally every year, the agrochemical industry has developed compounds with the capacity to inhibit their development; however, they can cause the death of other beneficial organisms and their lixiviation can contaminate the water table. On the other hand, the positive biological factors are found in biotechnology, the scientific discipline that develops products, such as nematophagous fungi (of which Purpureocillium lilacinum and Pochonia chlamydosporia have the greatest potential), for the control of pests and/or diseases. The present review focuses on the importance of nematophagous fungi, particularly sedentary endoparasitic nematodes, their research on the development of biological control agents, the mass production of fungi Purpureocillium lilacinum and Pochonia chlamydosporia, and their limited commercialization due to the lack of rigorous methods that enable the anticipation of complex interactions between plant and phytopathogenic agents.


Asunto(s)
Agentes de Control Biológico , Hongos , Nematodos/microbiología , Patología de Plantas , Animales , Hongos/crecimiento & desarrollo , Hongos/patogenicidad , Hypocreales/crecimiento & desarrollo , Hypocreales/patogenicidad , Control Biológico de Vectores , Plantas/parasitología
10.
Molecules ; 26(14)2021 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-34299579

RESUMEN

Herein we report the synthesis of some new 1H-1,2,4-triazole functionalized chromenols (3a-3n) via tandem reactions of 1-(alkyl/aryl)-2-(1H-1,2,4-triazole-1-yl) with salicylic aldehydes and the evaluation of their antifungal activity. In silico prediction of biological activity with computer program PASS indicate that the compounds have a high novelty compared to the known antifungal agents. We did not find any close analog among the over 580,000 pharmaceutical agents in the Cortellis Drug Discovery Intelligence database at the similarity cutoff of 70%. The evaluation of antifungal activity in vitro revealed that the highest activity was exhibited by compound 3k, followed by 3n. Their MIC values for different fungi were 22.1-184.2 and 71.3-199.8 µM, respectively. Twelve from fourteen tested compounds were more active than the reference drugs ketoconazole and bifonazole. The most sensitive fungus appeared to be Trichoderma viride, while Aspergillus fumigatus was the most resistant one. It was found that the presence of the 2-(tert-butyl)-2H-chromen-2-ol substituent on the 4th position of the triazole ring is very beneficial for antifungal activity. Molecular docking studies on C. albicans sterol 14α-demethylase (CYP51) and DNA topoisomerase IV were used to predict the mechanism of antifungal activities. According to the docking results, the inhibition of CYP51 is a putative mechanism of antifungal activity of the novel chromenol derivatives. We also showed that most active compounds have a low cytotoxicity, which allows us to consider them promising antifungal agents for the subsequent testing activity in in vivo assays.


Asunto(s)
Antifúngicos , Cromonas , Hypocreales/crecimiento & desarrollo , Hongos Mitospóricos/crecimiento & desarrollo , Simulación del Acoplamiento Molecular , Antifúngicos/síntesis química , Antifúngicos/química , Antifúngicos/farmacología , Cromonas/síntesis química , Cromonas/química , Cromonas/farmacología , Evaluación Preclínica de Medicamentos
11.
PLoS Genet ; 17(6): e1009600, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34166401

RESUMEN

Animals and plants need to defend themselves from pathogen attack. Their defences drive innovation in virulence mechanisms, leading to never-ending cycles of co-evolution in both hosts and pathogens. A full understanding of host immunity therefore requires examination of pathogen virulence strategies. Here, we take advantage of the well-studied innate immune system of Caenorhabditis elegans to dissect the action of two virulence factors from its natural fungal pathogen Drechmeria coniospora. We show that these two enterotoxins have strikingly different effects when expressed individually in the nematode epidermis. One is able to interfere with diverse aspects of host cell biology, altering vesicle trafficking and preventing the key STAT-like transcription factor STA-2 from activating defensive antimicrobial peptide gene expression. The second increases STA-2 levels in the nucleus, modifies the nucleolus, and, potentially as a consequence of a host surveillance mechanism, causes increased defence gene expression. Our results highlight the remarkably complex and potentially antagonistic mechanisms that come into play in the interaction between co-evolved hosts and pathogens.


Asunto(s)
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/inmunología , Enterotoxinas/genética , Hypocreales/patogenicidad , Inmunidad Innata , Factores de Transcripción STAT/genética , Esporas Fúngicas/patogenicidad , Animales , Péptidos Catiónicos Antimicrobianos/genética , Péptidos Catiónicos Antimicrobianos/inmunología , Coevolución Biológica , Transporte Biológico , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/microbiología , Proteínas de Caenorhabditis elegans/inmunología , Enterotoxinas/metabolismo , Epidermis/inmunología , Epidermis/metabolismo , Epidermis/microbiología , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulación de la Expresión Génica , Genes Reporteros , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Interacciones Huésped-Patógeno/genética , Interacciones Huésped-Patógeno/inmunología , Hypocreales/crecimiento & desarrollo , Longevidad/genética , Longevidad/inmunología , Factores de Transcripción STAT/inmunología , Transducción de Señal , Esporas Fúngicas/crecimiento & desarrollo , Vesículas Transportadoras/metabolismo , Virulencia , Factores de Virulencia/genética , Factores de Virulencia/metabolismo
12.
BMC Microbiol ; 21(1): 178, 2021 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-34116633

RESUMEN

BACKGROUND: The genus Ophiocordyceps, which includes Ophiocordyceps sinensis, has been demonstrated to be one of the most valuable medicinal taxa. The low rate of larval infection and slow development that characterize the cultivation of this genus should be urgently addressed. To identify potential bioinoculants that stimulate the growth of Ophiocordyceps, O. highlandensis was selected as a model system, and a total of 72 samples were collected to systematically compare the microbial communities present during fruiting body development. By applying high-throughput 16S and ITS2 amplicon sequencing technology, the bacterial and fungal communities were identified in O. highlandensis and its surrounding soil, and the functional dynamics of the bacteria were explored. RESULTS: The results indicate that the most abundant bacteria across all the samples from O. highlandensis were Proteobacteria, Firmicutes and Bacteroidetes, while members of Ascomycota were detected among the fungi. The pathways enriched in the developmental stages were associated with carbohydrate degradation, nucleotides and pyridoxal biosynthesis, and the TCA cycle. Compared with that in the fungal community, an unexpectedly high taxonomic and functional fluctuation was discovered in the bacterial community during the maturation of O. highlandensis. Furthermore, bipartite network analysis identified four potential supercore OTUs associated with O. highlandensis growth. CONCLUSIONS: All the findings of this study suggest unexpectedly high taxonomic and functional fluctuations in the bacterial community of O. highlandensis during its maturation. O. highlandensis may recruit different endogenous bacteria across its life cycle to enhance growth and support rapid infection. These results may facilitate Ophiocordyceps cultivation and improve the development of strategies for the identification of potential bioinoculant resources.


Asunto(s)
Bacterias/aislamiento & purificación , Cuerpos Fructíferos de los Hongos/crecimiento & desarrollo , Hypocreales/crecimiento & desarrollo , Bacterias/clasificación , Bacterias/genética , China , ADN Bacteriano/genética , ADN de Hongos/genética , Hongos/clasificación , Hongos/genética , Hongos/aislamiento & purificación , Microbiota , Micobioma , Suelo/química , Microbiología del Suelo
13.
Appl Environ Microbiol ; 87(14): e0017821, 2021 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-33962985

RESUMEN

Within animal-associated microbiomes, the functional roles of specific microbial taxa are often uncharacterized. Here, we use the fungus-growing ant system, a model for microbial symbiosis, to determine the potential defensive roles of key bacterial taxa present in the ants' fungus gardens. Fungus gardens serve as an external digestive system for the ants, with mutualistic fungi in the genus Leucoagaricus converting the plant substrate into energy for the ants. The fungus garden is host to specialized parasitic fungi in the genus Escovopsis. Here, we examine the potential role of Burkholderia spp. that occur within ant fungus gardens in inhibiting Escovopsis. We isolated members of the bacterial genera Burkholderia and Paraburkholderia from 50% of the 52 colonies sampled, indicating that members of the family Burkholderiaceae are common inhabitants in the fungus gardens of a diverse range of fungus-growing ant genera. Using antimicrobial inhibition bioassays, we found that 28 out of 32 isolates inhibited at least one Escovopsis strain with a zone of inhibition greater than 1 cm. Genomic assessment of fungus garden-associated Burkholderiaceae indicated that isolates with strong inhibition all belonged to the genus Burkholderia and contained biosynthetic gene clusters that encoded the production of two antifungals: burkholdine1213 and pyrrolnitrin. Organic extracts of cultured isolates confirmed that these compounds are responsible for antifungal activities that inhibit Escovopsis but, at equivalent concentrations, not Leucoagaricus spp. Overall, these new findings, combined with previous evidence, suggest that members of the fungus garden microbiome play an important role in maintaining the health and function of fungus-growing ant colonies. IMPORTANCE Many organisms partner with microbes to defend themselves against parasites and pathogens. Fungus-growing ants must protect Leucoagaricus spp., the fungal mutualist that provides sustenance for the ants, from a specialized fungal parasite, Escovopsis. The ants take multiple approaches, including weeding their fungus gardens to remove Escovopsis spores, as well as harboring Pseudonocardia spp., bacteria that produce antifungals that inhibit Escovopsis. In addition, a genus of bacteria commonly found in fungus gardens, Burkholderia, is known to produce secondary metabolites that inhibit Escovopsis spp. In this study, we isolated Burkholderia spp. from fungus-growing ants, assessed the isolates' ability to inhibit Escovopsis spp., and identified two compounds responsible for inhibition. Our findings suggest that Burkholderia spp. are often found in fungus gardens, adding another possible mechanism within the fungus-growing ant system to suppress the growth of the specialized parasite Escovopsis.


Asunto(s)
Antifúngicos/metabolismo , Hormigas , Burkholderia/metabolismo , Hypocreales/crecimiento & desarrollo , Lipopéptidos/metabolismo , Parásitos/crecimiento & desarrollo , Pirrolnitrina/metabolismo , Animales , Burkholderia/genética , Microbiota , Familia de Multigenes , Filogenia , Simbiosis
14.
Appl Biochem Biotechnol ; 193(9): 2983-2992, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33999390

RESUMEN

Solid-state cultivation (SSC) is microbial growth on solid supports under limited water conditions. Citric acid is a microbial aerobic metabolic product with several industrial applications, with production potential that can be obtained by SSF. Several wastes from agro-industries are used in SSF, such as sugarcane bagasse and vinasse. Cultures of mixed fungi or co-cultures are used in this SSF in order to complement the inoculum's xylanolytic enzymes for action on the lignocellulosic material (bagasse). Thus, this study aims to evaluate the effect of inoculum (Aspergillus niger and Trichoderma reesei consortium) in the production of citric acid from sugarcane bagasse impregnated with vinasse using bench packed-bed reactors (PBR). The results show the importance of T. reesei and A. niger in inoculum at a ratio of 50:50 and 25:75, suggesting the use of solid support due to the complementation of the hydrolytic enzymes. The highest concentration of citric acid, approximately 1000 mg L-1, was obtained for 100 mm of bed height in 48 and 72 h, with maximum glucose yield in citric acid (2.2 mg citric acid mg glucose-1). kLa indicates that maintaining solid moisture and liquid film thickness is important to keep the oxygen transfer in SSC.


Asunto(s)
Aspergillus niger/crecimiento & desarrollo , Reactores Biológicos , Celulosa/química , Hypocreales/crecimiento & desarrollo , Saccharum/química
15.
Parasitology ; 148(8): 956-961, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33896425

RESUMEN

The use of nematophagous fungi is an alternative for the biological control of nematodes in ruminants. In this study, the compatibility of joint growth of the fungi Monacrosporium sinense and Pochonia chlamydosporia and the joint nematicidal activity of these fungal isolates on bovine infective larvae were evaluated. For that, tests of direct confrontation, the effect of volatile compounds and antibiosis were conducted. In order to carry out the tests, the fungi were inoculated in potato dextrose agar culture medium and, after the incubation period, the growth of the colonies, the formation of an inhibition halo and the effect of volatile metabolites were verified. The compatibility between fungi isolates M. sinense and P. chlamydosporia was confirmed and the nematicidal evaluation proved the best effectiveness was when both were used together, with a 98.90% reduction in the number of bovine nematode infective larvae under in vitro conditions. It was concluded that M. sinense and P. chlamydosporia presented synergistic action, suggesting that the joint application of the fungi increases the effectiveness of biological control of bovine infective larvae.


Asunto(s)
Ascomicetos/fisiología , Enfermedades de los Bovinos/prevención & control , Enfermedades de los Bovinos/parasitología , Hypocreales/fisiología , Nematodos/microbiología , Infecciones por Nematodos/veterinaria , Animales , Antibiosis/fisiología , Ascomicetos/crecimiento & desarrollo , Brasil , Bovinos , Hypocreales/crecimiento & desarrollo , Larva/microbiología , Infecciones por Nematodos/parasitología , Infecciones por Nematodos/prevención & control , Volatilización
16.
Nat Commun ; 12(1): 2451, 2021 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-33907187

RESUMEN

Many pathogens infect hosts through specific organs, such as Ustilaginoidea virens, which infects rice panicles. Here, we show that a microbe-associated molecular pattern (MAMP), Ser-Thr-rich Glycosyl-phosphatidyl-inositol-anchored protein (SGP1) from U. virens, induces immune responses in rice leaves but not panicles. SGP1 is widely distributed among fungi and acts as a proteinaceous, thermostable elicitor of BAK1-dependent defense responses in N. benthamiana. Plants specifically recognize a 22 amino acid peptide (SGP1 N terminus peptide 22, SNP22) in its N-terminus that induces cell death, oxidative burst, and defense-related gene expression. Exposure to SNP22 enhances rice immunity signaling and resistance to infection by multiple fungal and bacterial pathogens. Interestingly, while SGP1 can activate immune responses in leaves, SGP1 is required for U. virens infection of rice panicles in vivo, showing it contributes to the virulence of a panicle adapted pathogen.


Asunto(s)
Proteínas Fúngicas/inmunología , Hypocreales/patogenicidad , Oryza/inmunología , Enfermedades de las Plantas/inmunología , Hojas de la Planta/inmunología , Proteínas de Plantas/inmunología , Secuencia de Aminoácidos , Muerte Celular/genética , Muerte Celular/inmunología , Proteínas Fúngicas/genética , Regulación de la Expresión Génica , Glicosilfosfatidilinositoles/química , Glicosilfosfatidilinositoles/metabolismo , Interacciones Huésped-Patógeno/genética , Interacciones Huésped-Patógeno/inmunología , Hypocreales/genética , Hypocreales/crecimiento & desarrollo , Hypocreales/inmunología , Inflorescencia/genética , Inflorescencia/inmunología , Inflorescencia/microbiología , Oryza/genética , Oryza/microbiología , Moléculas de Patrón Molecular Asociado a Patógenos/inmunología , Moléculas de Patrón Molecular Asociado a Patógenos/metabolismo , Péptidos/genética , Péptidos/inmunología , Células Vegetales/inmunología , Células Vegetales/patología , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Inmunidad de la Planta/genética , Hojas de la Planta/genética , Hojas de la Planta/microbiología , Proteínas de Plantas/genética , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Transducción de Señal , Virulencia
17.
Int J Mol Sci ; 22(8)2021 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-33920773

RESUMEN

Rice false smut is a fungal disease distributed worldwide and caused by Ustilaginoidea virens. In this study, we identified a putative ester cyclase (named as UvEC1) as being significantly upregulated during U. virens infection. UvEC1 contained a SnoaL-like polyketide cyclase domain, but the functions of ketone cyclases such as SnoaL in plant fungal pathogens remain unclear. Deletion of UvEC1 caused defects in vegetative growth and conidiation. UvEC1 was also required for response to hyperosmotic and oxidative stresses and for maintenance of cell wall integrity. Importantly, ΔUvEC1 mutants exhibited reduced virulence. We performed a tandem mass tag (TMT)-based quantitative proteomic analysis to identify differentially accumulating proteins (DAPs) between the ΔUvEC1-1 mutant and the wild-type isolate HWD-2. Proteomics data revealed that UvEC1 has a variety of effects on metabolism, protein localization, catalytic activity, binding, toxin biosynthesis and the spliceosome. Taken together, our findings suggest that UvEC1 is critical for the development and virulence of U. virens.


Asunto(s)
Proteínas Fúngicas/metabolismo , Hypocreales/metabolismo , Hypocreales/patogenicidad , Isomerasas/metabolismo , Oryza/microbiología , Enfermedades de las Plantas/microbiología , Proteómica , Secuencia de Aminoácidos , Proteínas Fúngicas/química , Eliminación de Gen , Genoma Fúngico , Hypocreales/genética , Hypocreales/crecimiento & desarrollo , Isomerasas/química , Micotoxinas/genética , Micotoxinas/metabolismo , Proteoma/metabolismo , Empalmosomas/metabolismo , Esporas Fúngicas/metabolismo , Estrés Fisiológico , Fracciones Subcelulares/metabolismo
18.
Fungal Genet Biol ; 151: 103563, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33915282

RESUMEN

The microscopic development of a mycelium is of importance in all aspects of fungal biology and biotechnology. However, the mechanics of three-dimensional (3D) hyphal growth has been not explored. Using light-sheet fluorescence microscopy, we follow the 3D growth of Trichoderma atroviride in liquid medium and observe two direct collision events among hyphae. In both cases, a hypha undergoing tip extension collides with the side of another hypha, causing mechanical deformation that remains after the collision. From these data we estimate that the force developed by hyphae during tip elongation is at least 260 pN.


Asunto(s)
Hifa/crecimiento & desarrollo , Hypocreales/crecimiento & desarrollo , Fenómenos Biomecánicos , Microscopía Fluorescente
19.
J Microbiol Biotechnol ; 31(6): 815-822, 2021 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-33782223

RESUMEN

Indigenous fungus-feeding nematodes may adversely affect the growth and activity of introduced biocontrol fungi. Alginate pellets of the biocontrol fungus Trichoderma harzianum ThzID1-M3 and sclerotia of the fungal plant pathogen Sclerotinia sclerotiorum were added to nonsterile soil at a soil water potential of -50 or -1,000 kPa. The biomass of ThzID1-M3, nematode populations, and extent of colonization of sclerotia by ThzID1-M3 were monitored over time. The presence of ThzID1-M3 increased the nematode population under both moisture regimes (p < 0.05), and fungivores comprised 69-75% of the nematode population. By day 5, the biomass of ThzID1-M3b and its colonization of sclerotia increased and were strongly correlated (R2 = 0.98), followed by a rapid reduction, under both regimes. At -50 kPa (the wetter of the two environments), fungal biomass and colonization by ThzID1-M3 were less, in the period from 5 to 20 days, while fungivores were more abundant. These results indicate that ThzID1-M3 stimulated the population growth of fungivorous nematodes, which in turn, reduced the biocontrol ability of the fungus to mycoparasitize sclerotia. However, colonization incidence reached 100% by day 5 and remained so for the experimental period under both regimes, although hyphal fragments disappeared by day 20. Our results suggest that indigenous fungivores are an important constraint for the biocontrol activity of introduced fungi, and sclerotia can provide spatial refuge for biocontrol fungi from the feeding activity of fungivorous nematodes.


Asunto(s)
Hypocreales/crecimiento & desarrollo , Nematodos/fisiología , Control Biológico de Vectores , Animales , Ascomicetos/crecimiento & desarrollo , Biomasa , Hifa/crecimiento & desarrollo , Nematodos/microbiología , Suelo/química , Suelo/parasitología , Microbiología del Suelo , Agua/análisis
20.
PLoS Genet ; 17(2): e1009351, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33606681

RESUMEN

Cellulase production in filamentous fungus Trichoderma reesei is highly responsive to various environmental cues involving multiple positive and negative regulators. XYR1 (Xylanase regulator 1) has been identified as the key transcriptional activator of cellulase gene expression in T. reesei. However, the precise mechanism by which XYR1 achieves transcriptional activation of cellulase genes is still not fully understood. Here, we identified the TrCYC8/TUP1 complex as a novel coactivator for XYR1 in T. reesei. CYC8/TUP1 is the first identified transcriptional corepressor complex mediating repression of diverse genes in Saccharomyces cerevisiae. Knockdown of Trcyc8 or Trtup1 resulted in markedly impaired cellulase gene expression in T. reesei. We found that TrCYC8/TUP1 was recruited to cellulase gene promoters upon cellulose induction and this recruitment is dependent on XYR1. We further observed that repressed Trtup1 or Trcyc8 expression caused a strong defect in XYR1 occupancy and loss of histone H4 at cellulase gene promoters. The defects in XYR1 binding and transcriptional activation of target genes in Trtup1 or Trcyc8 repressed cells could not be overcome by XYR1 overexpression. Our results reveal a novel coactivator function for TrCYC8/TUP1 at the level of activator binding, and suggest a mechanism in which interdependent recruitment of XYR1 and TrCYC8/TUP1 to cellulase gene promoters represents an important regulatory circuit in ensuring the induced cellulase gene expression. These findings thus contribute to unveiling the intricate regulatory mechanism underlying XYR1-mediated cellulase gene activation and also provide an important clue that will help further improve cellulase production by T. reesei.


Asunto(s)
Celulasa/genética , Proteínas Fúngicas/genética , Regulación Fúngica de la Expresión Génica , Hypocreales/genética , Regiones Promotoras Genéticas/genética , Transactivadores/genética , Celulasa/metabolismo , Celulosa/metabolismo , Proteínas Fúngicas/clasificación , Proteínas Fúngicas/metabolismo , Técnicas de Silenciamiento del Gen , Hypocreales/crecimiento & desarrollo , Hypocreales/metabolismo , Filogenia , Unión Proteica/genética , Transactivadores/metabolismo , Activación Transcripcional
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA