Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 176
Filtrar
1.
Circ Cardiovasc Imaging ; 16(1): e014091, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36649452

RESUMEN

Myocarditis is defined as inflammation of the myocardium according to clinical, histological, biochemical, immunohistochemical, or imaging findings. Inflammation can be categorized histologically by cell type or pattern, and many causes have been implicated, including infectious, most commonly viral, systemic autoimmune diseases, vaccine-associated processes, environmental factors, toxins, and hypersensitivity to drugs. Sarcoid myocarditis is increasingly recognized as an important cause of cardiomyopathy and has important diagnostic, prognostic, and therapeutic implications in patients with systemic sarcoidosis. The clinical presentation of myocarditis may include an asymptomatic, subacute, acute, fulminant, or chronic course and may have focal or diffuse involvement of the myocardium depending on the cause and time point of the disease. For most causes of myocarditis except sarcoidosis, myocardial biopsy is the gold standard but is limited due to risk, cost, availability, and variable sensitivity. Diagnostic criteria have been established for both myocarditis and cardiac sarcoidosis and include clinical and imaging findings particularly the use of cardiac magnetic resonance and positron emission tomography. Beyond diagnosis, imaging findings may also provide prognostic value. This case-based review focuses on the current state of multimodality imaging for the diagnosis and management of myocarditis and cardiac sarcoidosis, highlighting multimodality imaging approaches with practical clinical vignettes, with a discussion of knowledge gaps and future directions.


Asunto(s)
Miocarditis , Sarcoidosis , Humanos , Miocarditis/diagnóstico por imagen , Sarcoidosis/diagnóstico por imagen , Imagen Multimodal/estadística & datos numéricos
2.
Comput Math Methods Med ; 2022: 2895575, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35237339

RESUMEN

OBJECTIVE: This study sets out to investigate the role of magnetic resonance imaging (MRI) combined with magnetic resonance myelography (MRM) in patients after percutaneous transforaminal endoscopic discectomy (PTED) and to evaluate its value in postoperative rehabilitation. METHODS: The clinical date of 96 patients with lumbar disc herniation (LDH) after PTED was retrospectively analyzed. The enrolled patients were divided into MRI group (n = 32) and MRI + MRM group (n = 64) according to whether MRM was performed. The nerve root sleeve (morphology, deformation) and dural indentation, intervertebral space height (ISH), intervertebral space angle (ISA), degree of pain (Visual Analogue Scale (VAS)), vertebral function (Japanese Orthopaedic Association (JOA)), and long-term recurrence were compared between the two groups. RESULTS: Compared with the MRI group, the MRI + MRM group better displayed nerve root morphology, sheath sleeve deformation, and dural indentation. Both MRI and MRI + MRM showed ISH and ISA changes well. Compared with the MRI group, the MRI + MRM group had a significantly lower VAS score for lumbar and leg pain, a significantly higher JOA score, and a significantly lower 2-year recurrence rate. CONCLUSION: MRM combined with MRI is more beneficial to improve the prognosis of LDH patients after PTED.


Asunto(s)
Desplazamiento del Disco Intervertebral/diagnóstico por imagen , Desplazamiento del Disco Intervertebral/cirugía , Vértebras Lumbares/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Mielografía/métodos , Adulto , Biología Computacional , Discectomía Percutánea , Femenino , Humanos , Imagen por Resonancia Magnética/estadística & datos numéricos , Masculino , Persona de Mediana Edad , Imagen Multimodal/métodos , Imagen Multimodal/estadística & datos numéricos , Mielografía/estadística & datos numéricos , Pronóstico
3.
Comput Math Methods Med ; 2022: 9123332, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35186117

RESUMEN

OBJECTIVE: To study the effect of a multi-image source 3D modeling imaging examination system on the diagnosis of cardiovascular diseases in cardiac surgery. METHODS: The data of 680 confirmed patients and 1590 suspected patients in the cardiac surgery department of all hospitals of a large chain hospital management group were selected. All patients gave the examination results of multiple image sources and independent examination results of multiple image sources, respectively, their examination sensitivity, specificity, and reliability were compared, and the treatment efficiency and nursing satisfaction of the virtual reference group were deduced in MATLAB. Perform the bivariate t-test and comparative statistics in SPSS. RESULTS: The multi-image source 3D modeling examination system had higher examination sensitivity, specificity, and reliability and higher examination sensitivity in the early stage of the disease. It was deduced that the clinical efficiency and nursing satisfaction based on the examination results were significantly improved (t < 10.000, p < 0.01). CONCLUSION: The multi-image source 3D modeling imaging examination system is suitable for the diagnosis of cardiovascular diseases in cardiac surgery.


Asunto(s)
Enfermedades Cardiovasculares/diagnóstico por imagen , Imagen Multimodal/métodos , Inteligencia Artificial , Macrodatos , Enfermedades Cardiovasculares/enfermería , China , Biología Computacional , Humanos , Interpretación de Imagen Asistida por Computador/estadística & datos numéricos , Imagenología Tridimensional/estadística & datos numéricos , Imagen Multimodal/enfermería , Imagen Multimodal/estadística & datos numéricos , Interfaz Usuario-Computador
4.
Comput Math Methods Med ; 2022: 7137524, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35178119

RESUMEN

Image fusion can be performed on images either in spatial domain or frequency domain methods. Frequency domain methods will be most preferred because these methods can improve the quality of edges in an image. In image fusion, the resultant fused images will be more informative than individual input images, thus more suitable for classification problems. Artificial intelligence (AI) algorithms play a significant role in improving patient's treatment in the health care industry and thus improving personalized medicine. This research work analyses the role of image fusion in an improved brain tumour classification model, and this novel fusion-based cancer classification model can be used for personalized medicine more effectively. Image fusion can improve the quality of resultant images and thus improve the result of classifiers. Instead of using individual input images, the high-quality fused images will provide better classification results. Initially, the contrast limited adaptive histogram equalization technique preprocess input images such as MRI and SPECT images. Benign and malignant class brain tumor images are applied with discrete cosine transform-based fusion method to obtain fused images. AI algorithms such as support vector machine classifier, KNN classifier, and decision tree classifiers are tested with features obtained from fused images and compared with the result obtained from individual input images. Performances of classifiers are measured using the parameters accuracy, precision, recall, specificity, and F1 score. SVM classifier provided the maximum accuracy of 96.8%, precision of 95%, recall of 94%, specificity of 93%, F1 score of 91%, and performed better than KNN and decision tree classifiers when extracted features from fused images are used. The proposed method results are compared with existing methods and provide satisfactory results.


Asunto(s)
Algoritmos , Neoplasias Encefálicas/clasificación , Neoplasias Encefálicas/diagnóstico por imagen , Aumento de la Imagen/métodos , Aprendizaje Automático , Biología Computacional , Bases de Datos Factuales/estadística & datos numéricos , Árboles de Decisión , Detección Precoz del Cáncer/métodos , Detección Precoz del Cáncer/estadística & datos numéricos , Humanos , Imagen Multimodal/métodos , Imagen Multimodal/estadística & datos numéricos , Redes Neurales de la Computación , Neuroimagen/métodos , Neuroimagen/estadística & datos numéricos , Medicina de Precisión/métodos , Medicina de Precisión/estadística & datos numéricos , Máquina de Vectores de Soporte
5.
Comput Math Methods Med ; 2021: 9572363, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34899972

RESUMEN

OBJECTIVE: To analyse the X-ray and computed tomography (CT) findings of 128 patients with sports-related knee fractures and to improve the diagnosis rate based on the existing methods of diagnosis of sports knee fractures on X-ray and CT images. METHOD: In this study, we retrospectively analyse the medical records of 128 cases of sports-related fractures in the hospital, analyse the results of X-ray examination and CT imaging of patients with sports knee fractures, and compare the results obtained by the two examination methods, while referring to MRI images performed. RESULTS: CT examination of knee fractures, tibial plateau fractures, and knee joint free body results were compared with X-ray results (P < 0.05), while CT examination of patella fractures and X-ray results were compared. The difference was not statistically significant (P > 0.05). CONCLUSION: For imaging examination of knee fractures, a single ordinary X-ray or CT scan should be selected according to the specific situation of the patient. For patients with suspected unstable fractures, when the patient's informed consent and the condition are not allowed, ordinary X-ray film combined with CT examination is used to improve the accuracy of diagnosis and avoid the existence of hidden fractures, resulting in medical accidents.


Asunto(s)
Traumatismos en Atletas/diagnóstico por imagen , Fracturas Óseas/diagnóstico por imagen , Traumatismos de la Rodilla/diagnóstico por imagen , Tomografía Computarizada por Rayos X/métodos , Adolescente , Adulto , Anciano , Biología Computacional , Femenino , Humanos , Masculino , Persona de Mediana Edad , Imagen Multimodal/métodos , Imagen Multimodal/estadística & datos numéricos , Radiografía/métodos , Radiografía/estadística & datos numéricos , Estudios Retrospectivos , Fracturas de la Tibia/diagnóstico por imagen , Tomografía Computarizada por Rayos X/estadística & datos numéricos , Adulto Joven
6.
Sci Rep ; 11(1): 21832, 2021 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-34750471

RESUMEN

High positive margin rates in oncologic breast-conserving surgery are a pressing clinical problem. Volumetric X-ray scanning is emerging as a powerful ex vivo specimen imaging technique for analyzing resection margins, but X-rays lack contrast between non-malignant and malignant fibrous tissues. In this study, combined micro-CT and wide-field optical image radiomics were developed to classify malignancy of breast cancer tissues, demonstrating that X-ray/optical radiomics improve malignancy classification. Ninety-two standardized features were extracted from co-registered micro-CT and optical spatial frequency domain imaging samples extracted from 54 breast tumors exhibiting seven tissue subtypes confirmed by microscopic histological analysis. Multimodal feature sets improved classification performance versus micro-CT alone when adipose samples were included (AUC = 0.88 vs. 0.90; p-value = 3.65e-11) and excluded, focusing the classification task on exclusively non-malignant fibrous versus malignant tissues (AUC = 0.78 vs. 0.85; p-value = 9.33e-14). Extending the radiomics approach to high-dimensional optical data-termed "optomics" in this study-offers a promising optical image analysis technique for cancer detection. Radiomic feature data and classification source code are publicly available.


Asunto(s)
Neoplasias de la Mama/diagnóstico por imagen , Neoplasias de la Mama/cirugía , Mastectomía Segmentaria/métodos , Imagen Óptica/métodos , Microtomografía por Rayos X/métodos , Tejido Adiposo/diagnóstico por imagen , Neoplasias de la Mama/clasificación , Femenino , Humanos , Técnicas In Vitro , Márgenes de Escisión , Imagen Multimodal/instrumentación , Imagen Multimodal/métodos , Imagen Multimodal/estadística & datos numéricos , Imagen Óptica/instrumentación , Imagen Óptica/estadística & datos numéricos , Fenómenos Ópticos , Procesos Estocásticos , Microtomografía por Rayos X/instrumentación , Microtomografía por Rayos X/estadística & datos numéricos
7.
Comput Math Methods Med ; 2021: 4186666, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34646334

RESUMEN

Alzheimer's disease (AD) is one of the most important causes of mortality in elderly people, and it is often challenging to use traditional manual procedures when diagnosing a disease in the early stages. The successful implementation of machine learning (ML) techniques has also shown their effectiveness and its reliability as one of the better options for an early diagnosis of AD. But the heterogeneous dimensions and composition of the disease data have undoubtedly made diagnostics more difficult, needing a sufficient model choice to overcome the difficulty. Therefore, in this paper, four different 2D and 3D convolutional neural network (CNN) frameworks based on Bayesian search optimization are proposed to develop an optimized deep learning model to predict the early onset of AD binary and ternary classification on magnetic resonance imaging (MRI) scans. Moreover, certain hyperparameters such as learning rate, optimizers, and hidden units are to be set and adjusted for the performance boosting of the deep learning model. Bayesian optimization enables to leverage advantage throughout the experiments: A persistent hyperparameter space testing provides not only the output but also about the nearest conclusions. In this way, the series of experiments needed to explore space can be substantially reduced. Finally, alongside the use of Bayesian approaches, long short-term memory (LSTM) through the process of augmentation has resulted in finding the better settings of the model that too in less iterations with an relative improvement (RI) of 7.03%, 12.19%, 10.80%, and 11.99% over the four systems optimized with manual hyperparameters tuning such that hyperparameters that look more appealing from past data as well as the conventional techniques of manual selection.


Asunto(s)
Enfermedad de Alzheimer/clasificación , Enfermedad de Alzheimer/diagnóstico por imagen , Teorema de Bayes , Aprendizaje Profundo , Estudios de Casos y Controles , Disfunción Cognitiva/clasificación , Disfunción Cognitiva/diagnóstico por imagen , Biología Computacional , Diagnóstico Precoz , Humanos , Imagenología Tridimensional/estadística & datos numéricos , Imagen por Resonancia Magnética/estadística & datos numéricos , Imagen Multimodal/estadística & datos numéricos , Redes Neurales de la Computación , Neuroimagen/estadística & datos numéricos , Distribución Normal , Pronóstico
8.
Comput Math Methods Med ; 2021: 1544955, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34630627

RESUMEN

A multimodal medical image fusion algorithm based on multiple latent low-rank representation is proposed to improve imaging quality by solving fuzzy details and enhancing the display of lesions. Firstly, the proposed method decomposes the source image repeatedly using latent low-rank representation to obtain several saliency parts and one low-rank part. Secondly, the VGG-19 network identifies the low-rank part's features and generates the weight maps. Then, the fused low-rank part can be obtained by making the Hadamard product of the weight maps and the source images. Thirdly, the fused saliency parts can be obtained by selecting the max value. Finally, the fused saliency parts and low-rank part are superimposed to obtain the fused image. Experimental results show that the proposed method is superior to the traditional multimodal medical image fusion algorithms in the subjective evaluation and objective indexes.


Asunto(s)
Algoritmos , Encéfalo/diagnóstico por imagen , Interpretación de Imagen Asistida por Computador/métodos , Imagen Multimodal/métodos , Complejo SIDA Demencia/diagnóstico por imagen , Adulto , Anciano , Enfermedad de Alzheimer/diagnóstico por imagen , Astrocitoma/diagnóstico por imagen , Infarto Encefálico/diagnóstico por imagen , Neoplasias Encefálicas/diagnóstico por imagen , Biología Computacional , Humanos , Interpretación de Imagen Asistida por Computador/estadística & datos numéricos , Persona de Mediana Edad , Imagen Multimodal/estadística & datos numéricos , Toxoplasmosis Cerebral/diagnóstico por imagen
9.
BMC Cancer ; 21(1): 1015, 2021 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-34507549

RESUMEN

BACKGROUND: Graft versus host disease (GvHD) is a frequent complication of allogeneic stem cell transplantation (alloSCT), significantly increasing mortality. Previous imaging studies focused on the assessment of intestinal GvHD with contrast-enhanced MRI/CT or 18F-FDG-PET imaging alone. The objective of this retrospective study was to elucidate the diagnostic value of a combined 18F-FDG-PET-MRI protocol in patients with acute intestinal GvHD. METHODS: Between 2/2015 and 8/2019, 21 patients with acute intestinal GvHD underwent 18F-FDG-PET-MRI. PET, MRI and PET-MRI datasets were independently reviewed. Readers assessed the number of affected segments of the lower gastrointestinal tract and the reliability of the diagnosis on a 5-point Likert scale and quantitative PET (SUVmax, SUVpeak, metabolic volume (MV)) and MRI parameter (wall thickness), were correlated to clinical staging of acute intestinal GvHD. RESULTS: The detection rate for acute intestinal GvHD was 56.8% for PET, 61.4% for MRI and 100% for PET-MRI. PET-MRI (median Likert-scale value: 5; range: 4-5) offers a significantly higher reliability of the diagnosis compared to PET (median: 4; range: 2-5; p = 0.01) and MRI alone (median: 4; range: 3-5; p = 0.03). The number of affected segments in PET-MRI (rs = 0.677; p <  0.001) and the MV (rs = 0.703; p <  0.001) correlated significantly with the clinical stage. SUVmax (rs = 0.345; p = 0.14), SUVpeak (rs = 0.276; p = 0.24) and wall thickening (rs = 0.174; p = 0.17) did not show a significant correlation to clinical stage. CONCLUSION: 18F-FDG-PET-MRI allows for highly reliable assessment of acute intestinal GvHD and adds information indicating clinical severity.


Asunto(s)
Fluorodesoxiglucosa F18 , Enfermedad Injerto contra Huésped/diagnóstico por imagen , Enfermedades Intestinales/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Imagen Multimodal/métodos , Tomografía de Emisión de Positrones/métodos , Radiofármacos , Enfermedad Aguda , Adulto , Anciano , Aloinjertos , Femenino , Humanos , Imagen por Resonancia Magnética/estadística & datos numéricos , Masculino , Persona de Mediana Edad , Imagen Multimodal/estadística & datos numéricos , Tomografía de Emisión de Positrones/estadística & datos numéricos , Estándares de Referencia , Reproducibilidad de los Resultados , Estudios Retrospectivos , Trasplante de Células Madre/efectos adversos , Imagen de Cuerpo Entero/métodos
10.
Comput Math Methods Med ; 2021: 4504306, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34367316

RESUMEN

BACKGROUND: Medical image registration is an essential task for medical image analysis in various applications. In this work, we develop a coarse-to-fine medical image registration method based on progressive images and SURF algorithm (PI-SURF) for higher registration accuracy. METHODS: As a first step, the reference image and the floating image are fused to generate multiple progressive images. Thereafter, the floating image and progressive image are registered to get the coarse registration result based on the SURF algorithm. For further improvement, the coarse registration result and the reference image are registered to perform fine image registration. The appropriate progressive image has been investigated by experiments. The mutual information (MI), normal mutual information (NMI), normalized correlation coefficient (NCC), and mean square difference (MSD) similarity metrics are used to demonstrate the potential of the PI-SURF method. RESULTS: For the unimodal and multimodal registration, the PI-SURF method achieves the best results compared with the mutual information method, Demons method, Demons+B-spline method, and SURF method. The MI, NMI, and NCC of PI-SURF are improved by 15.5%, 1.31%, and 7.3%, respectively, while MSD decreased by 13.2% for the multimodal registration compared with the optimal result of the state-of-the-art methods. CONCLUSIONS: The extensive experiments show that the proposed PI-SURF method achieves higher quality of registration.


Asunto(s)
Algoritmos , Interpretación de Imagen Asistida por Computador/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Encéfalo/diagnóstico por imagen , Biología Computacional , Humanos , Interpretación de Imagen Asistida por Computador/estadística & datos numéricos , Procesamiento de Imagen Asistido por Computador/estadística & datos numéricos , Imagen Multimodal/métodos , Imagen Multimodal/estadística & datos numéricos , Diseño de Software
11.
Comput Math Methods Med ; 2021: 9942149, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34194539

RESUMEN

Since Late-Gadolinium Enhancement (LGE) of cardiac magnetic resonance (CMR) visualizes myocardial infarction, and the balanced-Steady State Free Precession (bSSFP) cine sequence can capture cardiac motions and present clear boundaries; multimodal CMR segmentation has played an important role in the assessment of myocardial viability and clinical diagnosis, while automatic and accurate CMR segmentation still remains challenging due to a very small amount of labeled LGE data and the relatively low contrasts of LGE. The main purpose of our work is to learn the real/fake bSSFP modality with ground truths to indirectly segment the LGE modality of cardiac MR by using a proposed cross-modality multicascade framework: cross-modality translation network and automatic segmentation network, respectively. In the segmentation stage, a novel multicascade pix2pix network is designed to segment the fake bSSFP sequence obtained from a cross-modality translation network. Moreover, we propose perceptual loss measuring features between ground truth and prediction, which are extracted from the pretrained vgg network in the segmentation stage. We evaluate the performance of the proposed method on the multimodal CMR dataset and verify its superiority over other state-of-the-art approaches under different network structures and different types of adversarial losses in terms of dice accuracy in testing. Therefore, the proposed network is promising for Indirect Cardiac LGE Segmentation in clinical applications.


Asunto(s)
Corazón/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Infarto del Miocardio/diagnóstico por imagen , Algoritmos , Biología Computacional , Medios de Contraste , Gadolinio , Humanos , Interpretación de Imagen Asistida por Computador/métodos , Interpretación de Imagen Asistida por Computador/estadística & datos numéricos , Imagen por Resonancia Magnética/estadística & datos numéricos , Imagen por Resonancia Cinemagnética/métodos , Imagen por Resonancia Cinemagnética/estadística & datos numéricos , Imagen Multimodal/métodos , Imagen Multimodal/estadística & datos numéricos
12.
Philos Trans A Math Phys Eng Sci ; 379(2204): 20200195, 2021 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-34218668

RESUMEN

Multimodal imaging is an active branch of research as it has the potential to improve common medical imaging techniques. Diffuse optical tomography (DOT) is an example of a low resolution, functional imaging modality that typically has very low resolution due to the ill-posedness of its underlying inverse problem. Combining the functional information of DOT with a high resolution structural imaging modality has been studied widely. In particular, the combination of DOT with ultrasound (US) could serve as a useful tool for clinicians for the formulation of accurate diagnosis of breast lesions. In this paper, we propose a novel method for US-guided DOT reconstruction using a portable time-domain measurement system. B-mode US imaging is used to retrieve morphological information on the probed tissues by means of a semi-automatical segmentation procedure based on active contour fitting. A two-dimensional to three-dimensional extrapolation procedure, based on the concept of distance transform, is then applied to generate a three-dimensional edge-weighting prior for the regularization of DOT. The reconstruction procedure has been tested on experimental data obtained on specifically designed dual-modality silicon phantoms. Results show a substantial quantification improvement upon the application of the implemented technique. This article is part of the theme issue 'Synergistic tomographic image reconstruction: part 2'.


Asunto(s)
Interpretación de Imagen Asistida por Computador/estadística & datos numéricos , Imagen Multimodal/estadística & datos numéricos , Tomografía Óptica/estadística & datos numéricos , Ultrasonografía/estadística & datos numéricos , Algoritmos , Neoplasias de la Mama/diagnóstico por imagen , Femenino , Análisis de Fourier , Humanos , Aumento de la Imagen/métodos , Imagenología Tridimensional/estadística & datos numéricos , Modelos Lineales , Fantasmas de Imagen
13.
Philos Trans A Math Phys Eng Sci ; 379(2204): 20210111, 2021 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-34218672

RESUMEN

This special issue is the second part of a themed issue that focuses on synergistic tomographic image reconstruction and includes a range of contributions in multiple disciplines and application areas. The primary subject of study lies within inverse problems which are tackled with various methods including statistical and computational approaches. This volume covers algorithms and methods for a wide range of imaging techniques such as spectral X-ray computed tomography (CT), positron emission tomography combined with CT or magnetic resonance imaging, bioluminescence imaging and fluorescence-mediated imaging as well as diffuse optical tomography combined with ultrasound. Some of the articles demonstrate their utility on real-world challenges, either medical applications (e.g. motion compensation for imaging patients) or applications in material sciences (e.g. material decomposition and characterization). One of the desired outcomes of the special issues is to bring together different scientific communities which do not usually interact as they do not share the same platforms such as journals and conferences. This article is part of the theme issue 'Synergistic tomographic image reconstruction: part 2'.


Asunto(s)
Interpretación de Imagen Asistida por Computador/estadística & datos numéricos , Imagen Multimodal/estadística & datos numéricos , Tomografía/estadística & datos numéricos , Algoritmos , Humanos , Movimiento (Física) , Interpretación de Imagen Radiográfica Asistida por Computador/estadística & datos numéricos , Programas Informáticos , Tomografía Computarizada por Rayos X/estadística & datos numéricos
14.
Philos Trans A Math Phys Eng Sci ; 379(2204): 20200208, 2021 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-34218674

RESUMEN

SIRF is a powerful PET/MR image reconstruction research tool for processing data and developing new algorithms. In this research, new developments to SIRF are presented, with focus on motion estimation and correction. SIRF's recent inclusion of the adjoint of the resampling operator allows gradient propagation through resampling, enabling the MCIR technique. Another enhancement enabled registering and resampling of complex images, suitable for MRI. Furthermore, SIRF's integration with the optimization library CIL enables the use of novel algorithms. Finally, SPM is now supported, in addition to NiftyReg, for registration. Results of MR and PET MCIR reconstructions are presented, using FISTA and PDHG, respectively. These demonstrate the advantages of incorporating motion correction and variational and structural priors. This article is part of the theme issue 'Synergistic tomographic image reconstruction: part 2'.


Asunto(s)
Algoritmos , Interpretación de Imagen Asistida por Computador/estadística & datos numéricos , Imagen por Resonancia Magnética/estadística & datos numéricos , Imagen Multimodal/estadística & datos numéricos , Tomografía de Emisión de Positrones/estadística & datos numéricos , Artefactos , Humanos , Imagenología Tridimensional/estadística & datos numéricos , Movimiento (Física) , Respiración , Programas Informáticos
15.
Philos Trans A Math Phys Eng Sci ; 379(2204): 20200190, 2021 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-34218676

RESUMEN

A software-based workflow is proposed for managing the execution of simulation and image reconstruction for SPECT, PET, CBCT, MRI, BLI and FMI packages in single and multimodal biomedical imaging applications. The workflow is composed of a Bash script, the purpose of which is to provide an interface to the user, and to organize data flow between dedicated programs for simulation and reconstruction. The currently incorporated simulation programs comprise GATE for Monte Carlo simulation of SPECT, PET and CBCT, SpinScenario for simulating MRI, and Lipros for Monte Carlo simulation of BLI and FMI. Currently incorporated image reconstruction programs include CASToR for SPECT and PET as well as RTK for CBCT. MetaImage (mhd) standard is used for voxelized phantom and image data format. Meshlab project (mlp) containers incorporating polygon meshes and point clouds defined by the Stanford triangle format (ply) are employed to represent anatomical structures for optical simulation, and to represent tumour cell inserts. A number of auxiliary programs have been developed for data transformation and adaptive parameter assignment. The software workflow uses fully automatic distribution to, and consolidation from, any number of Linux workstations and CPU cores. Example data are presented for clinical SPECT, PET and MRI systems using the Mida head phantom and for preclinical X-ray, PET and BLI systems employing the Digimouse phantom. The presented method unifies and simplifies multimodal simulation setup and image reconstruction management and might be of value for synergistic image research. This article is part of the theme issue 'Synergistic tomographic image reconstruction: part 2'.


Asunto(s)
Imagen Multimodal/estadística & datos numéricos , Programas Informáticos , Animales , Simulación por Computador , Humanos , Interpretación de Imagen Asistida por Computador/estadística & datos numéricos , Ratones , Método de Montecarlo , Fantasmas de Imagen , Interpretación de Imagen Radiográfica Asistida por Computador/estadística & datos numéricos , Flujo de Trabajo
16.
Philos Trans A Math Phys Eng Sci ; 379(2204): 20200207, 2021 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-34218675

RESUMEN

Subject motion in positron emission tomography (PET) is a key factor that degrades image resolution and quality, limiting its potential capabilities. Correcting for it is complicated due to the lack of sufficient measured PET data from each position. This poses a significant barrier in calculating the amount of motion occurring during a scan. Motion correction can be implemented at different stages of data processing either during or after image reconstruction, and once applied accurately can substantially improve image quality and information accuracy. With the development of integrated PET-MRI (magnetic resonance imaging) scanners, internal organ motion can be measured concurrently with both PET and MRI. In this review paper, we explore the synergistic use of PET and MRI data to correct for any motion that affects the PET images. Different types of motion that can occur during PET-MRI acquisitions are presented and the associated motion detection, estimation and correction methods are reviewed. Finally, some highlights from recent literature in selected human and animal imaging applications are presented and the importance of motion correction for accurate kinetic modelling in dynamic PET-MRI is emphasized. This article is part of the theme issue 'Synergistic tomographic image reconstruction: part 2'.


Asunto(s)
Algoritmos , Imagen por Resonancia Magnética/estadística & datos numéricos , Imagen Multimodal/estadística & datos numéricos , Tomografía de Emisión de Positrones/estadística & datos numéricos , Animales , Artefactos , Encéfalo/diagnóstico por imagen , Sistema Cardiovascular/diagnóstico por imagen , Bases de Datos Factuales , Humanos , Interpretación de Imagen Asistida por Computador/estadística & datos numéricos , Movimiento (Física) , Movimiento , Contracción Miocárdica , Neoplasias/diagnóstico por imagen , Respiración , Programas Informáticos
17.
J Urol ; 206(5): 1157-1165, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34181465

RESUMEN

PURPOSE: We sought to evaluate whether bilateral prostate cancer detected at active surveillance (AS) enrollment is associated with progression to Grade Group (GG) ≥2 and to compare the efficacy of combined targeted biopsy plus systematic biopsy (Cbx) vs systematic biopsy (Sbx) or targeted biopsy alone to detect bilateral disease. MATERIALS AND METHODS: A prospectively maintained database of patients referred to our institution from 2007-2020 was queried. The study cohort included all AS patients with GG1 on confirmatory Cbx and followup of at least 1 year. Cox proportional hazard analysis identified baseline characteristics associated with progression to ≥GG2 at any point throughout followup. RESULTS: Of 579 patients referred, 103 patients had GG1 on Cbx and were included in the study; 49/103 (47.6%) patients progressed to ≥GG2, with 30/72 (41.7%) patients with unilateral disease progressing and 19/31 (61.3%) patients with bilateral disease progressing. Median time to progression was 68 months vs 52 months for unilateral and bilateral disease, respectively (p=0.006). Both prostate specific antigen density (HR 1.72, p=0.005) and presence of bilateral disease (HR 2.21, p=0.012) on confirmatory biopsy were associated with AS progression. At time of progression, GG and risk group were significantly higher in patients with bilateral versus unilateral disease. Cbx detected 16% more patients with bilateral disease than Sbx alone. CONCLUSIONS: Bilateral disease and prostate specific antigen density at confirmatory Cbx conferred greater risk of earlier AS progression. Cbx was superior to Sbx for identifying bilateral disease. AS risk-stratification protocols may benefit from including presence of bilateral disease and should use Cbx to detect bilateral disease.


Asunto(s)
Próstata/diagnóstico por imagen , Próstata/patología , Neoplasias de la Próstata/diagnóstico , Espera Vigilante/estadística & datos numéricos , Anciano , Biopsia con Aguja Gruesa/métodos , Biopsia con Aguja Gruesa/estadística & datos numéricos , Imagen de Difusión por Resonancia Magnética/estadística & datos numéricos , Progresión de la Enfermedad , Humanos , Biopsia Guiada por Imagen/métodos , Biopsia Guiada por Imagen/estadística & datos numéricos , Calicreínas/sangre , Imagen por Resonancia Magnética Intervencional/estadística & datos numéricos , Masculino , Persona de Mediana Edad , Imagen Multimodal/métodos , Imagen Multimodal/estadística & datos numéricos , Clasificación del Tumor , Estudios Prospectivos , Antígeno Prostático Específico/sangre , Neoplasias de la Próstata/sangre , Neoplasias de la Próstata/patología , Neoplasias de la Próstata/terapia , Medición de Riesgo/métodos , Medición de Riesgo/estadística & datos numéricos , Factores de Riesgo , Ultrasonografía Intervencional/estadística & datos numéricos
18.
Philos Trans A Math Phys Eng Sci ; 379(2200): 20200194, 2021 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-33966458

RESUMEN

Electrical and elasticity imaging are promising modalities for a suite of different applications, including medical tomography, non-destructive testing and structural health monitoring. These emerging modalities are capable of providing remote, non-invasive and low-cost opportunities. Unfortunately, both modalities are severely ill-posed nonlinear inverse problems, susceptive to noise and modelling errors. Nevertheless, the ability to incorporate complimentary datasets obtained simultaneously offers mutually beneficial information. By fusing electrical and elastic modalities as a joint problem, we are afforded the possibility to stabilize the inversion process via the utilization of auxiliary information from both modalities as well as joint structural operators. In this study, we will discuss a possible approach to combine electrical and elasticity imaging in a joint reconstruction problem giving rise to novel multi-modality applications for use in both medical and structural engineering. This article is part of the theme issue 'Synergistic tomographic image reconstruction: part 1'.


Asunto(s)
Diagnóstico por Imagen de Elasticidad/métodos , Impedancia Eléctrica , Procesamiento de Imagen Asistido por Computador/métodos , Tomografía/métodos , Simulación por Computador , Elasticidad , Diagnóstico por Imagen de Elasticidad/estadística & datos numéricos , Humanos , Procesamiento de Imagen Asistido por Computador/estadística & datos numéricos , Conceptos Matemáticos , Imagen Multimodal/métodos , Imagen Multimodal/estadística & datos numéricos , Dinámicas no Lineales , Tomografía/estadística & datos numéricos
19.
Philos Trans A Math Phys Eng Sci ; 379(2200): 20200189, 2021 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-33966460

RESUMEN

This special issue focuses on synergistic tomographic image reconstruction in a range of contributions in multiple disciplines and various application areas. The topic of image reconstruction covers substantial inverse problems (Mathematics) which are tackled with various methods including statistical approaches (e.g. Bayesian methods, Monte Carlo) and computational approaches (e.g. machine learning, computational modelling, simulations). The issue is separated in two volumes. This volume focuses mainly on algorithms and methods. Some of the articles will demonstrate their utility on real-world challenges, either medical applications (e.g. cardiovascular diseases, proton therapy planning) or applications in material sciences (e.g. material decomposition and characterization). One of the desired outcomes of the special issue is to bring together different scientific communities which do not usually interact as they do not share the same platforms (such as journals and conferences). This article is part of the theme issue 'Synergistic tomographic image reconstruction: part 1'.


Asunto(s)
Procesamiento de Imagen Asistido por Computador/métodos , Tomografía/métodos , Algoritmos , Teorema de Bayes , Simulación por Computador , Humanos , Procesamiento de Imagen Asistido por Computador/estadística & datos numéricos , Aprendizaje Automático , Conceptos Matemáticos , Método de Montecarlo , Imagen Multimodal/métodos , Imagen Multimodal/estadística & datos numéricos , Tomografía/estadística & datos numéricos
20.
Philos Trans A Math Phys Eng Sci ; 379(2200): 20200205, 2021 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-33966461

RESUMEN

Imaging is omnipresent in modern society with imaging devices based on a zoo of physical principles, probing a specimen across different wavelengths, energies and time. Recent years have seen a change in the imaging landscape with more and more imaging devices combining that which previously was used separately. Motivated by these hardware developments, an ever increasing set of mathematical ideas is appearing regarding how data from different imaging modalities or channels can be synergistically combined in the image reconstruction process, exploiting structural and/or functional correlations between the multiple images. Here we review these developments, give pointers to important challenges and provide an outlook as to how the field may develop in the forthcoming years. This article is part of the theme issue 'Synergistic tomographic image reconstruction: part 1'.


Asunto(s)
Interpretación de Imagen Asistida por Computador/métodos , Imagen Multimodal/métodos , Algoritmos , Teorema de Bayes , Fenómenos Biofísicos , Diagnóstico por Imagen/métodos , Diagnóstico por Imagen/estadística & datos numéricos , Diagnóstico por Imagen/tendencias , Humanos , Interpretación de Imagen Asistida por Computador/estadística & datos numéricos , Funciones de Verosimilitud , Aprendizaje Automático , Imagen por Resonancia Magnética/métodos , Imagen por Resonancia Magnética/estadística & datos numéricos , Cadenas de Markov , Conceptos Matemáticos , Imagen Multimodal/estadística & datos numéricos , Imagen Multimodal/tendencias , Redes Neurales de la Computación , Tomografía de Emisión de Positrones/métodos , Tomografía de Emisión de Positrones/estadística & datos numéricos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...