Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 262
Filtrar
1.
Cell Rep ; 37(1): 109794, 2021 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-34610299

RESUMEN

Cortical spreading depolarizations (CSDs) are increasingly suspected to play an exacerbating role in a range of acute brain injuries, including stroke, possibly through their interactions with cortical blood flow. We use simultaneous wide-field imaging of neural activity and hemodynamics in Thy1-GCaMP6f mice to explore the neurovascular dynamics of CSDs during and following Rose Bengal-mediated photothrombosis. CSDs are observed in all mice as slow-moving waves of GCaMP fluorescence extending far beyond the photothrombotic area. Initial CSDs are accompanied by profound vasoconstriction and leave residual oligemia and ischemia in their wake. Later, CSDs evoke variable responses, from constriction to biphasic to vasodilation. However, CSD-evoked vasoconstriction is found to be more likely during rapid, high-amplitude CSDs in regions with stronger oligemia and ischemia, which, in turn, worsens after each repeated CSD. This feedback loop may explain the variable but potentially devastating effects of CSDs in the context of acute brain injury.


Asunto(s)
Lesiones Encefálicas/patología , Depresión de Propagación Cortical/fisiología , Hemodinámica , Enfermedad Aguda , Animales , Lesiones Encefálicas/metabolismo , Proteínas de Unión al Calcio/genética , Corteza Cerebral/irrigación sanguínea , Corteza Cerebral/fisiopatología , Femenino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Neuronas/metabolismo , Rosa Bengala/toxicidad , Trombosis/inducido químicamente , Trombosis/patología , Antígenos Thy-1/genética , Vasoconstricción , Imagen de Colorante Sensible al Voltaje/métodos
2.
Sci Rep ; 11(1): 20570, 2021 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-34663875

RESUMEN

Chronic kidney disease (CKD) affects more than 20 million people in the US, and it is associated with a significantly increased risk of sudden cardiac death (SCD). Despite the significance, the mechanistic relationship between SCD and CKD is not clear and there are few effective therapies. Using optical mapping techniques, we tested the hypothesis that mouse models of progressive diabetic kidney disease (DKD) exhibit enhanced ventricular arrhythmia incidence and underlying arrhythmia substrates. Compared to wild-type mice, both Leprdb/db eNOS-/- (2KO) and high fat diet plus low dose streptozotocin (HFD + STZ) mouse models of DKD experienced sudden death and greater arrhythmia inducibility, which was more common with isoproterenol than programmed electrical stimulation. 2KO mice demonstrated slowed conduction velocity, prolonged action potential duration (APD), and myocardial fibrosis; both 2KO and HFD + STZ mice exhibited arrhythmias and calcium dysregulation with isoproterenol challenge. Finally, circulating concentrations of the uremic toxin asymmetric dimethylarginine (ADMA) were elevated in 2KO mice. Incubation of human cardiac myocytes with ADMA prolonged APD, as also observed in 2KO mice hearts ex vivo. The present study elucidates an arrhythmia-associated mechanism of sudden death associated with DKD, which may lead to more effective treatments in the vulnerable DKD patient population.


Asunto(s)
Arritmias Cardíacas/fisiopatología , Nefropatías Diabéticas/fisiopatología , Potenciales de Acción/fisiología , Animales , Arritmias Cardíacas/patología , Complicaciones de la Diabetes/fisiopatología , Diabetes Mellitus/fisiopatología , Nefropatías Diabéticas/patología , Modelos Animales de Enfermedad , Frecuencia Cardíaca/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Miocitos Cardíacos/patología , Taquicardia Ventricular/patología , Taquicardia Ventricular/fisiopatología , Imagen de Colorante Sensible al Voltaje/métodos
3.
Am J Physiol Heart Circ Physiol ; 321(2): H412-H421, 2021 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-34213393

RESUMEN

Detailed global maps of atrial electrical activity are needed to understand mechanisms of atrial rhythm disturbance in small animal models of heart disease. To date, optical mapping systems have not provided enough spatial resolution across sufficiently extensive regions of intact atrial preparations to achieve this goal. The aim of this study was to develop an integrated platform for quantifying regional electrical properties and analyzing reentrant arrhythmia in a biatrial preparation. Intact atria from 6/7-mo-old female spontaneously hypertensive rats (SHRs; n = 6) were isolated and secured in a constant flow superfusion chamber at 37°C. Optical mapping was performed with the membrane-voltage dye di-4-ANEPPS using LED excitation and a scientific complementary metal-oxide semiconductor (sCMOS) camera. Programmed stimulus trains were applied from right atrial (RA) and left atrial (LA) sites to assess rate-dependent electrical behavior and to induce atrial arrhythmia. Signal-to-noise ratio was improved by sequential processing steps that included spatial smoothing, temporal filtering, and, in stable rhythms, ensemble-averaging. Activation time, repolarization time, and action potential duration (APD) maps were constructed at high spatial resolution for a wide range of coupling intervals. These data were highly consistent within and between experiments. They confirmed preferential atrial conduction pathways and demonstrated distinct medial-to-lateral APD gradients. We also showed that reentrant arrhythmias induced in this preparation were explained by the spatial variation of these electrical properties. Our new methodology provides a robust means of 1) quantifying regional electrical properties in the intact rat atria at higher spatiotemporal resolution than previously reported, and 2) characterizing reentrant arrhythmia and analyzing mechanisms that give rise to it.NEW & NOTEWORTHY Despite wide-ranging optical mapping studies, detailed information on regional atrial electrical properties in small animal models of heart disease and how these contribute to reentrant arrhythmia remains limited. We have developed a novel experimental platform that enables both to be achieved in a geometrically intact isolated rat bi-atrial preparation.


Asunto(s)
Arritmias Cardíacas/diagnóstico por imagen , Atrios Cardíacos/diagnóstico por imagen , Imagen de Colorante Sensible al Voltaje/métodos , Animales , Arritmias Cardíacas/fisiopatología , Atrios Cardíacos/fisiopatología , Ratas , Ratas Endogámicas SHR
4.
Nat Commun ; 12(1): 3630, 2021 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-34131136

RESUMEN

Voltage-sensitive dye imaging (VSDI) is a powerful technique for interrogating membrane potential dynamics in assemblies of cortical neurons, but with effective resolution limits that confound interpretation. To address this limitation, we developed an in silico model of VSDI in a biologically faithful digital reconstruction of rodent neocortical microcircuitry. Using this model, we extend previous experimental observations regarding the cellular origins of VSDI, finding that the signal is driven primarily by neurons in layers 2/3 and 5, and that VSDI measurements do not capture individual spikes. Furthermore, we test the capacity of VSD image sequences to discriminate between afferent thalamic inputs at various spatial locations to estimate a lower bound on the functional resolution of VSDI. Our approach underscores the power of a bottom-up computational approach for relating scales of cortical processing.


Asunto(s)
Simulación por Computador , Potenciales Evocados Visuales/fisiología , Neuronas/fisiología , Imagen de Colorante Sensible al Voltaje/métodos , Animales , Electrofisiología/métodos , Potenciales de la Membrana/fisiología , Corteza Visual/fisiología , Imagen de Colorante Sensible al Voltaje/instrumentación
5.
Sci Rep ; 11(1): 5295, 2021 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-33674659

RESUMEN

Genetically-encoded calcium indicators (GECIs) are essential for studying brain function, while voltage indicators (GEVIs) are slowly permeating neuroscience. Fundamentally, GECI and GEVI measure different things, but both are advertised as reporters of "neuronal activity". We quantified the similarities and differences between calcium and voltage imaging modalities, in the context of population activity (without single-cell resolution) in brain slices. GECI optical signals showed 8-20 times better SNR than GEVI signals, but GECI signals attenuated more with distance from the stimulation site. We show the exact temporal discrepancy between calcium and voltage imaging modalities, and discuss the misleading aspects of GECI imaging. For example, population voltage signals already repolarized to the baseline (~ disappeared), while the GECI signals were still near maximum. The region-to-region propagation latencies, easily captured by GEVI imaging, are blurred in GECI imaging. Temporal summation of GECI signals is highly exaggerated, causing uniform voltage events produced by neuronal populations to appear with highly variable amplitudes in GECI population traces. Relative signal amplitudes in GECI recordings are thus misleading. In simultaneous recordings from multiple sites, the compound EPSP signals in cortical neuropil (population signals) are less distorted by GEVIs than by GECIs.


Asunto(s)
Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Señalización del Calcio/genética , Calcio/metabolismo , Neuronas/metabolismo , Imagen de Colorante Sensible al Voltaje/métodos , Animales , Femenino , Indicadores y Reactivos , Masculino , Potenciales de la Membrana/genética , Ratones , Ratones Transgénicos , Relación Señal-Ruido
6.
Nat Rev Cardiol ; 18(5): 349-367, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33340010

RESUMEN

The electromechanical function of the heart involves complex, coordinated activity over time and space. Life-threatening cardiac arrhythmias arise from asynchrony in these space-time events; therefore, therapies for prevention and treatment require fundamental understanding and the ability to visualize, perturb and control cardiac activity. Optogenetics combines optical and molecular biology (genetic) approaches for light-enabled sensing and actuation of electrical activity with unprecedented spatiotemporal resolution and parallelism. The year 2020 marks a decade of developments in cardiac optogenetics since this technology was adopted from neuroscience and applied to the heart. In this Review, we appraise a decade of advances that define near-term (immediate) translation based on all-optical electrophysiology, including high-throughput screening, cardiotoxicity testing and personalized medicine assays, and long-term (aspirational) prospects for clinical translation of cardiac optogenetics, including new optical therapies for rhythm control. The main translational opportunities and challenges for optogenetics to be fully embraced in cardiology are also discussed.


Asunto(s)
Arritmias Cardíacas , Electrofisiología Cardíaca , Optogenética , Imagen de Colorante Sensible al Voltaje , Animales , Arritmias Cardíacas/diagnóstico por imagen , Arritmias Cardíacas/genética , Arritmias Cardíacas/terapia , Electrofisiología Cardíaca/métodos , Electrofisiología Cardíaca/tendencias , Técnicas de Imagen Cardíaca/instrumentación , Técnicas de Imagen Cardíaca/métodos , Técnicas de Imagen Cardíaca/tendencias , Modelos Animales de Enfermedad , Cardiopatías/diagnóstico por imagen , Cardiopatías/fisiopatología , Cardiopatías/terapia , Humanos , Opsinas/farmacología , Opsinas/fisiología , Imagen Óptica/instrumentación , Imagen Óptica/tendencias , Optogenética/instrumentación , Optogenética/métodos , Optogenética/tendencias , Medicina de Precisión , Investigación Biomédica Traslacional , Imagen de Colorante Sensible al Voltaje/instrumentación , Imagen de Colorante Sensible al Voltaje/métodos , Imagen de Colorante Sensible al Voltaje/tendencias
7.
Curr Opin Chem Biol ; 57: 166-176, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32823064

RESUMEN

Neurons and glia are functionally organized into circuits and higher-order structures that allow the precise information processing required for complex behaviors. To better understand the structure and function of the brain, we must understand synaptic connectivity, action potential generation and propagation, as well as well-orchestrated molecular signaling. Recently, dramatically improved sensors for voltage, intracellular calcium, and neurotransmitters/modulators, combined with advanced microscopy provide new opportunities for in vivo dissection of cellular and circuit activity in awake, behaving animals. This review focuses on the current trends in genetically encoded sensors for molecules and cellular events and their potential applicability to the study of nervous system in health and disease.


Asunto(s)
Técnicas Biosensibles/métodos , Química Encefálica , Encéfalo/fisiología , Proteínas Luminiscentes/análisis , Imagen de Colorante Sensible al Voltaje/métodos , Potenciales de Acción , Animales , Encéfalo/citología , Calcio/análisis , Calcio/metabolismo , Humanos , Proteínas Luminiscentes/genética , Microscopía Fluorescente/métodos , Neuronas/citología , Neuronas/fisiología , Neurotransmisores/análisis , Neurotransmisores/metabolismo
8.
BMC Bioinformatics ; 21(1): 285, 2020 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-32631227

RESUMEN

BACKGROUND: The long reads produced by third generation sequencing technologies have significantly boosted the results of genome assembly but still, genome-wide assemblies solely based on read data cannot be produced. Thus, for example, optical mapping data has been used to further improve genome assemblies but it has mostly been applied in a post-processing stage after contig assembly. RESULTS: We propose OPTICALKERMIT which directly integrates genome wide optical maps into contig assembly. We show how genome wide optical maps can be used to localize reads on the genome and then we adapt the Kermit method, which originally incorporated genetic linkage maps to the miniasm assembler, to use this information in contig assembly. Our experimental results show that incorporating genome wide optical maps to the contig assembly of miniasm increases NGA50 while the number of misassemblies decreases or stays the same. Furthermore, when compared to the Canu assembler, OPTICALKERMIT produces an assembly with almost three times higher NGA50 with a lower number of misassemblies on real A. thaliana reads. CONCLUSIONS: OPTICALKERMIT successfully incorporates optical mapping data directly to contig assembly of eukaryotic genomes. Our results show that this is a promising approach to improve the contiguity of genome assemblies.


Asunto(s)
Genoma/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Imagen de Colorante Sensible al Voltaje/métodos , Humanos
9.
Physiol Res ; 69(4): 599-607, 2020 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-32584139

RESUMEN

Optical mapping is a fluorescence-based physiological method to image spreading of action potential in excitable tissues, such as the heart and central nervous system. Because of the requirements for high speed imaging in low light conditions, highly sensitive high-speed cameras together with an optical system with maximum photon efficiency are required. While the optimization of these two components is relatively straightforward, the choice of the perfect light source is less simple; depending on the other (usually fixed) components, various parameters may acquire different weight in decision-making process. Here we describe the rationale for building an optical mapping setup and consider the relative advantages and disadvantages of three different commonly available light sources: mercury vapor lamp (HBO), xenon lamp (XBO), and light emitting diode (LED). Using the same optical system (fluorescence macroscope) and high-speed camera (Ultima L), we have tested each of the sources for its ability to provide bright and even illumination of the field of view and measured its temporal fluctuations in intensity. Then we used each in the actual optical mapping experiment using isolated, perfused adult mouse heart or chick embryonic heart to determine the actual signal to noise ratio at various acquisition rates. While the LED sources have undergone significant improvements in the recent past, the other alternatives may still surpass them in some parameters, so they may not be the automatic number one choice for every application.


Asunto(s)
Calcio/análisis , Colorantes Fluorescentes/química , Corazón/fisiología , Imagen de Colorante Sensible al Voltaje/métodos , Potenciales de Acción , Animales , Calcio/metabolismo , Embrión de Pollo , Luz , Ratones , Imagen de Colorante Sensible al Voltaje/normas
10.
PLoS One ; 15(5): e0232529, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32357163

RESUMEN

Electrical defibrillation is a well-established treatment for cardiac dysrhythmias. Studies have suggested that shock-induced spatial sawtooth patterns and virtual electrodes are responsible for defibrillation efficacy. We hypothesize that high-frequency shocks enhance defibrillation efficacy by generating temporal sawtooth patterns and using rapid virtual electrodes synchronized with shock frequency. High-speed optical mapping was performed on isolated rat hearts at 2000 frames/s. Two defibrillation electrodes were placed on opposite sides of the ventricles. An S1-S2 pacing protocol was used to induce ventricular tachyarrhythmia (VTA). High-frequency shocks of equal energy but varying frequencies of 125-1000 Hz were used to evaluate VTA vulnerability and defibrillation success rate. The 1000-Hz shock had the highest VTA induction rate in the shorter S1-S2 intervals (50 and 100 ms) and the highest VTA defibrillation rate (70%) among all frequencies. Temporal sawtooth patterns and synchronous shock-induced virtual electrode responses could be observed with frequencies of up to 1000 Hz. The improved defibrillation outcome with high-frequency shocks suggests a lower energy requirement than that of low-frequency shocks for successful ventricular defibrillation.


Asunto(s)
Cardioversión Eléctrica/métodos , Taquicardia Ventricular/terapia , Fibrilación Ventricular/terapia , Animales , Modelos Animales de Enfermedad , Electrodos , Fenómenos Electrofisiológicos , Femenino , Ventrículos Cardíacos/fisiopatología , Técnicas In Vitro , Modelos Cardiovasculares , Ratas , Ratas Sprague-Dawley , Taquicardia Ventricular/fisiopatología , Interfaz Usuario-Computador , Fibrilación Ventricular/fisiopatología , Función Ventricular , Imagen de Colorante Sensible al Voltaje/instrumentación , Imagen de Colorante Sensible al Voltaje/métodos
11.
Sci Rep ; 10(1): 8548, 2020 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-32444634

RESUMEN

The emergence of optical imaging has revolutionized the investigation of cardiac electrical activity and associated disorders in various cardiac pathologies. The electrical signals of the heart and the propagation pathways are crucial for elucidating the mechanisms of various cardiac pathological conditions, including arrhythmia. The synthesis of near-infrared voltage-sensitive dyes and the voltage sensitivity of the FDA-approved dye Cardiogreen have increased the importance of optical mapping (OM) as a prospective tool in clinical practice. We aimed to develop a method for the high-spatiotemporal-resolution OM of the large animal hearts in situ using di-4-ANBDQBS and Cardiogreen under patho/physiological conditions. OM was adapted to monitor cardiac electrical behaviour in an open-chest pig heart model with physiological or artificial blood circulation. We detail the methods and display the OM data obtained using di-4-ANBDQBS and Cardiogreen. Activation time, action potential duration, repolarization time and conduction velocity maps were constructed. The technique was applied to track cardiac electrical activity during regional ischaemia and arrhythmia. Our study is the first to apply high-spatiotemporal-resolution OM in the pig heart in situ to record cardiac electrical activity qualitatively under artificial blood perfusion. The use of an FDA-approved voltage-sensitive dye and artificial blood perfusion in a swine model, which is generally accepted as a valuable pre-clinical model, demonstrates the promise of OM for clinical application.


Asunto(s)
Colorantes Fluorescentes/química , Corazón/fisiología , Modelos Cardiovasculares , Isquemia Miocárdica/fisiopatología , Taquicardia Ventricular/fisiopatología , Fibrilación Ventricular/fisiopatología , Imagen de Colorante Sensible al Voltaje/métodos , Animales , Mapeo del Potencial de Superficie Corporal/métodos , Porcinos
12.
Cell Syst ; 10(5): 417-423.e3, 2020 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-32343961

RESUMEN

Cellular membrane potential plays a key role in the formation and retrieval of memories in the metazoan brain, but it remains unclear whether such memory can also be encoded in simpler organisms like bacteria. Here, we show that single-cell-level memory patterns can be imprinted in bacterial biofilms by light-induced changes in the membrane potential. We demonstrate that transient optical perturbations generate a persistent and robust potassium-channel-mediated change in the membrane potential of bacteria within the biofilm. The light-exposed cells respond in an anti-phase manner, relative to unexposed cells, to both natural and induced oscillations in extracellular ion concentrations. This anti-phase response, which persists for hours following the transient optical stimulus, enables a direct single-cell resolution visualization of spatial memory patterns within the biofilm. The ability to encode robust and persistent membrane-potential-based memory patterns could enable computations within prokaryotic communities and suggests a parallel between neurons and bacteria.


Asunto(s)
Potenciales de la Membrana/fisiología , Memoria/fisiología , Microbiota/genética , Bacterias/metabolismo , Biopelículas , Potenciales de la Membrana/genética , Microbiota/fisiología , Modelos Teóricos , Fenómenos Ópticos , Canales de Potasio/fisiología , Imagen de Colorante Sensible al Voltaje/métodos
13.
Neuroimage ; 213: 116755, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32199955

RESUMEN

The aim of this paper is to present a dynamic causal modeling (DCM) framework for hippocampal activity measured via voltage-sensitive dye imaging (VSDI). We propose a DCM model of the hippocampus that summarizes interactions between the hilus, CA3 and CA1 regions. The activity of each region is governed via a neuronal mass model with two inhibitory and one/two excitatory neuronal populations, which can be linked to measurement VSDI by scaling neuronal activity. To optimize the model structure for the hippocampus, we propose two Bayesian schemes: Bayesian hyperparameter optimization to estimate the unknown electrophysiological properties necessary for constructing a mesoscopic hippocampus model; and Bayesian model reduction to determine the parameterization of neural properties, and to test and include potential connections (morphologically inferred without direct evidence yet) in the model by evaluating group-level model evidence. The proposed method was applied to model spatiotemporal patterns of accumulative responses to consecutive stimuli in separate groups of wild-type mice and epileptic aristaless-related homeobox gene (Arx) conditional knock-out mutant mice (Arx-/+;Dlx5/6CRE-IRES-GFP) in order to identify group differences in the effective connectivity within the hippocampus. The causal role of each group-differing connectivity in generating mutant-like responses was further tested. The group-level analysis identified altered intra- and inter-regional effective connectivity, some of which are crucial for explaining mutant-like responses. The modelling results for the hippocampal activity suggest the plausibility of the proposed mesoscopic hippocampus model and the usefulness of utilizing the Bayesian framework for model construction in the mesoscale modeling of neural interactions using DCM.


Asunto(s)
Mapeo Encefálico/métodos , Simulación por Computador , Hipocampo/fisiología , Modelos Neurológicos , Imagen de Colorante Sensible al Voltaje/métodos , Animales , Teorema de Bayes , Ratones , Red Nerviosa/fisiología
14.
Neurosci Res ; 152: 3-14, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31991206

RESUMEN

Genetically encoded fluorescent indicators have transformed the way neuroscientists record neuronal activities and interrogate the nervous system in vivo. In this review, we discuss recent advances and new additions to the toolkit of indicators for calcium ion entry, membrane voltage change, neurotransmitter release, and other neuronal molecular processes. We highlight new engineering approaches for indicator design and development, and identify key areas for future improvement. From molecular tool developers' perspective, we aim to provide practical information for neuroscientists to evaluate and choose the most appropriate indicators for enabling new insights into brain function.


Asunto(s)
Microscopía/métodos , Neuronas/fisiología , Imagen Óptica/métodos , Optogenética/métodos , Animales , Calcio/metabolismo , Señalización del Calcio , Ingeniería , Ingeniería Genética , Humanos , Indicadores y Reactivos , Potenciales de la Membrana/fisiología , Neurotransmisores/metabolismo , Imagen de Colorante Sensible al Voltaje/métodos
15.
Neurosci Res ; 152: 15-24, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31758973

RESUMEN

Voltage imaging is the next generation of functional imaging in neuroscience. It promises to resolve neuronal activity 10 to 100-times faster than calcium imaging and to report not only supra but also subthreshold activity on a single cell or even subcellular level. Lately, several different voltage sensors and imaging techniques were published which can achieve this. Here, we focus on a technique based on the synthetic pure electrochromic voltage-sensitive dyes ANNINE-6 and ANNINE-6plus and the excitation of this dye at the red spectral edge of absorption to maximize voltage sensitivity and minimize phototoxicity and bleaching. Importantly, voltage imaging with ANNINE dyes can be done with one and two-photon excitation. Two-photon microscopy allows in vivo, depth resolved imaging and line-scan recordings with sub-millisecond temporal resolution. Interestingly for many future applications, the spectral characteristics of ANNINE dyes allows simultaneous imaging with green indicators, like the genetically encoded calcium indicator GCaMP6. We used this method to study supra and subthreshold dendritic voltage changes in Purkinje neurons of awake mice. Simultaneously, we imaged dendritic calcium and recorded electrical activity from the soma or locally applied drugs to show the full potential of the technique to study dendritic integration in awake animals.


Asunto(s)
Dendritas/fisiología , Microscopía/métodos , Células de Purkinje/fisiología , Imagen de Colorante Sensible al Voltaje/métodos , Potenciales de Acción/fisiología , Alcanosulfonatos , Animales , Encéfalo/fisiología , Calcio/fisiología , Crisenos , Colorantes Fluorescentes , Potenciales de la Membrana , Ratones , Neuronas/fisiología , Compuestos de Amonio Cuaternario , Vigilia
16.
Nat Rev Neurosci ; 20(12): 719-727, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31705060

RESUMEN

A central goal in neuroscience is to determine how the brain's neuronal circuits generate perception, cognition and emotions and how these lead to appropriate behavioural actions. A methodological platform based on genetically encoded voltage indicators (GEVIs) that enables the monitoring of large-scale circuit dynamics has brought us closer to this ambitious goal. This Review provides an update on the current state of the art and the prospects of emerging optical GEVI imaging technologies.


Asunto(s)
Tecnología Biomédica/tendencias , Transferencia Resonante de Energía de Fluorescencia/tendencias , Neuronas/química , Optogenética/tendencias , Imagen de Colorante Sensible al Voltaje/tendencias , Animales , Tecnología Biomédica/métodos , Transferencia Resonante de Energía de Fluorescencia/métodos , Humanos , Neuronas/fisiología , Optogenética/métodos , Imagen de Colorante Sensible al Voltaje/métodos
17.
ACS Chem Neurosci ; 10(12): 4768-4775, 2019 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-31725259

RESUMEN

Genetically encoded voltage indicators (GEVIs) allow optical recording of neuronal activities with high spatial resolution. While most existing GEVIs emit in the green range, red-shifted GEVIs are highly sought after because they would enable simultaneous stimulation and recording of neuronal activities when paired with optogenetic actuators, or two-color imaging of signaling and neuronal activities when used along with GFP-based indicators. In this study, we present several improved red-shifted GEVIs based on the electrochromic Förster resonance energy transfer (eFRET) between orange/red fluorescent proteins/dyes and rhodopsin mutants. Through structure-guided mutagenesis and cell-based sensitivity screening, we identified a mutant rhodopsin with a single mutation that exhibited more than 2-fold improvement in voltage sensitivity. Notably, this mutation has been independently discovered by Pieribone et al. ( Pieribone, V. A. et al. Nat Methods 2018 , 15 ( 12 ), 1108 - 1116 ). In cultured rat hippocampal neurons, our sensors faithfully reported action potential waveforms and subthreshold activities. We also demonstrated that this mutation could enhance the sensitivity of hybrid indicators, thus providing insights for future development.


Asunto(s)
Transferencia Resonante de Energía de Fluorescencia/métodos , Neuronas/fisiología , Rodopsinas Microbianas/química , Imagen de Colorante Sensible al Voltaje/métodos , Acetabularia/genética , Potenciales de Acción , Sustitución de Aminoácidos , Animales , Células Cultivadas , Colorantes Fluorescentes/química , Colorantes Fluorescentes/metabolismo , Células HEK293 , Hipocampo/citología , Humanos , Proteínas Luminiscentes/química , Modelos Moleculares , Mutación Missense , Optogenética , Mutación Puntual , Conformación Proteica , Ingeniería de Proteínas , Transporte de Proteínas , Ratas , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Rodopsinas Microbianas/genética
18.
Science ; 365(6454): 699-704, 2019 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-31371562

RESUMEN

Genetically encoded voltage indicators (GEVIs) enable monitoring of neuronal activity at high spatial and temporal resolution. However, the utility of existing GEVIs has been limited by the brightness and photostability of fluorescent proteins and rhodopsins. We engineered a GEVI, called Voltron, that uses bright and photostable synthetic dyes instead of protein-based fluorophores, thereby extending the number of neurons imaged simultaneously in vivo by a factor of 10 and enabling imaging for significantly longer durations relative to existing GEVIs. We used Voltron for in vivo voltage imaging in mice, zebrafish, and fruit flies. In the mouse cortex, Voltron allowed single-trial recording of spikes and subthreshold voltage signals from dozens of neurons simultaneously over a 15-minute period of continuous imaging. In larval zebrafish, Voltron enabled the precise correlation of spike timing with behavior.


Asunto(s)
Monitoreo Fisiológico/métodos , Neuroimagen/métodos , Neuronas/fisiología , Imagen de Colorante Sensible al Voltaje/métodos , Animales , Conducta Animal , Fluorescencia , Transferencia Resonante de Energía de Fluorescencia , Ingeniería Genética , Larva , Proteínas Luminiscentes/química , Proteínas Luminiscentes/genética , Mesencéfalo/citología , Mesencéfalo/fisiología , Ratones , Optogenética , Dominios Proteicos , Rodopsinas Microbianas/química , Rodopsinas Microbianas/genética , Natación , Pez Cebra
19.
J Vis Exp ; (148)2019 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-31282882

RESUMEN

Wide-field single photon voltage-sensitive dye (VSD) imaging of brain slice preparations is a useful tool to assess the functional connectivity in neural circuits. Due to the fractional change in the light signal, it has been difficult to use this method as a quantitative assay. This article describes special optics and slice handling systems, which render this technique stable and reliable. The present article demonstrates the slice handling, staining, and recording of the VSD-stained hippocampal slices in detail. The system maintains physiological conditions for a long time, with good staining, and prevents mechanical movements of the slice during the recordings. Moreover, it enables staining of slices with a small amount of the dye. The optics achieve high numerical aperture at low magnification, which allows recording of the VSD signal at the maximum frame rate of 10 kHz, with 100 pixel x 100-pixel spatial resolution. Due to the high frame rate and spatial resolution, this technique allows application of the post-recording filters that provide sufficient signal-to-noise ratio to assess the changes in neural circuits.


Asunto(s)
Hipocampo/fisiología , Imagen de Colorante Sensible al Voltaje/métodos , Animales , Encéfalo , Neuronas/fisiología , Fotones , Relación Señal-Ruido
20.
Nat Methods ; 16(7): 573, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31249409
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA