Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.499
Filtrar
1.
Org Lett ; 26(19): 4082-4087, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38717253

RESUMEN

DNA-encoded library (DEL) technologies enable the fast exploration of gigantic chemical space to identify ligands for the target protein of interest and have become a powerful hit finding tool for drug discovery projects. However, amenable DEL chemistry is restricted to a handful of reactions, limiting the creativity of drug hunters. Here, we describe a new on-DNA synthetic pathway to access sulfides and sulfoximines. These moieties, usually contemplated as challenging to achieve through alkylation and oxidation, can now be leveraged in routine DEL selection campaigns.


Asunto(s)
ADN , Sulfuros , ADN/química , Sulfuros/química , Sulfuros/síntesis química , Estructura Molecular , Iminas/química , Oxidación-Reducción , Alquilación , Descubrimiento de Drogas
2.
Bioorg Med Chem Lett ; 106: 129761, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38642810

RESUMEN

Helicase-primase is an interesting target for the therapy of herpes simplex virus (HSV) infections. Since amenamevir is already approved for varicella-zoster virus (VZV) and HSV in Japan and pritelivir has received breakthrough therapy status for the treatment of acyclovir-resistant HSV infections in immunocompromised patients, the target has sparked interest in me-too approaches. Here, we describe the attempt to improve nervous tissue penetration in Phaeno Therapeutics drug candidate HN0037 to target the latent reservoir of HSV by installing less polar moieties, mainly a difluorophenyl instead of a pyridyl group, and replacing the primary sulfonamide with a methyl sulfoximine moiety. However, all obtained stereoisomers exhibited a weaker inhibitory activity on HSV-1 and HSV-2.


Asunto(s)
Antivirales , ADN Primasa , Sulfonamidas , Sulfonamidas/química , Sulfonamidas/farmacología , Sulfonamidas/síntesis química , ADN Primasa/antagonistas & inhibidores , ADN Primasa/metabolismo , Antivirales/farmacología , Antivirales/química , Antivirales/síntesis química , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/síntesis química , Relación Estructura-Actividad , ADN Helicasas/antagonistas & inhibidores , ADN Helicasas/metabolismo , Herpesvirus Humano 1/efectos de los fármacos , Herpesvirus Humano 2/efectos de los fármacos , Humanos , Estructura Molecular , Pruebas de Sensibilidad Microbiana , Relación Dosis-Respuesta a Droga , Iminas/química , Iminas/farmacología , Iminas/síntesis química
3.
Chem Res Toxicol ; 37(5): 698-710, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38619497

RESUMEN

Reactive metabolite formation is a major mechanism of hepatotoxicity. Although reactive electrophiles can be soft or hard in nature, screening strategies have generally focused on the use of glutathione trapping assays to screen for soft electrophiles, with many data sets available to support their use. The use of a similar assay for hard electrophiles using cyanide as the trapping agent is far less common, and there is a lack of studies with sufficient supporting data. Using a set of 260 compounds with a defined hepatotoxicity status by the FDA, a comprehensive literature search yielded cyanide trapping data on an unbalanced set of 20 compounds that were all clinically hepatotoxic. Thus, a further set of 19 compounds was selected to generate cyanide trapping data, resulting in a more balanced data set of 39 compounds. Analysis of the data demonstrated that the cyanide trapping assay had high specificity (92%) and a positive predictive value (83%) such that hepatotoxic compounds would be confidently flagged. Structural analysis of the adducts formed revealed artifactual methylated cyanide adducts to also occur, highlighting the importance of full structural identification to confirm the nature of the adduct formed. The assay was demonstrated to add the most value for compounds containing typical structural alerts for hard electrophile formation: half of the severe hepatotoxins with these structural alerts formed cyanide adducts, while none of the severe hepatotoxins with no relevant structural alerts formed adducts. The assay conditions used included cytosolic enzymes (e.g., aldehyde oxidase) and an optimized cyanide concentration to minimize the inhibition of cytochrome P450 enzymes by cyanide. Based on the demonstrated added value of this assay, it is to be initiated for use at GSK as part of the integrated hepatotoxicity strategy, with its performance being reviewed periodically as more data is generated.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas , Cianuros , Cianuros/metabolismo , Cianuros/química , Humanos , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/etiología , Iminas/química , Iminas/metabolismo , Hígado/metabolismo , Hígado/efectos de los fármacos , Estructura Molecular
4.
Mar Drugs ; 22(4)2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38667766

RESUMEN

Macrocyclic imine phycotoxins are an emerging class of chemical compounds associated with harmful algal blooms and shellfish toxicity. Earlier binding and electrophysiology experiments on nAChR subtypes and their soluble AChBP surrogates evidenced common trends for substantial antagonism, binding affinities, and receptor-subtype selectivity. Earlier, complementary crystal structures of AChBP complexes showed that common determinants within the binding nest at each subunit interface confer high-affinity toxin binding, while distinctive determinants from the flexible loop C, and either capping the nest or extending toward peripheral subsites, dictate broad versus narrow receptor subtype selectivity. From these data, small spiroimine enantiomers mimicking the functional core motif of phycotoxins were chemically synthesized and characterized. Voltage-clamp analyses involving three nAChR subtypes revealed preserved antagonism for both enantiomers, despite lower subtype specificity and binding affinities associated with faster reversibility compared with their macrocyclic relatives. Binding and structural analyses involving two AChBPs pointed to modest affinities and positional variability of the spiroimines, along with a range of AChBP loop-C conformations denoting a prevalence of antagonistic properties. These data highlight the major contribution of the spiroimine core to binding within the nAChR nest and confirm the need for an extended interaction network as established by the macrocyclic toxins to define high affinities and marked subtype specificity. This study identifies a minimal set of functional pharmacophores and binding determinants as templates for designing new antagonists targeting disease-associated nAChR subtypes.


Asunto(s)
Iminas , Toxinas Marinas , Antagonistas Nicotínicos , Receptores Nicotínicos , Toxinas Marinas/química , Toxinas Marinas/farmacología , Toxinas Marinas/toxicidad , Iminas/química , Iminas/farmacología , Antagonistas Nicotínicos/farmacología , Antagonistas Nicotínicos/química , Receptores Nicotínicos/metabolismo , Receptores Nicotínicos/efectos de los fármacos , Animales , Compuestos Macrocíclicos/farmacología , Compuestos Macrocíclicos/química , Relación Estructura-Actividad
5.
Molecules ; 29(8)2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38675623

RESUMEN

Since the discovery of cisplatin in the 1960s, the search for metallo-drugs that are more efficient than platinum complexes with negligible side effects has attracted much interest. Among the other metals that have been examined for potential applications as anticancer agents is copper. The interest in copper was recently boosted by the discovery of cuproptosis, a recently evidenced form of cell death mediated by copper. However, copper is also known to induce the proliferation of cancer cells. In view of these contradictory results, there is a need to find the most suitable copper chelators, among which Schiff-based derivatives offer a wide range of possibilities. Gathering several metal complexes in a single, larger entity may provide enhanced properties. Among the nanometric objects suitable for such purpose are dendrimers, precisely engineered hyperbranched macromolecules, which are outstanding candidates for improving therapy and diagnosis. In this review article, we present an overview of the use of a particular Schiff base, namely pyridine-imine, linked to the surface of dendrimers, suitable for complexing copper, and the use of such dendrimer complexes in biology, in particular against cancers.


Asunto(s)
Antineoplásicos , Complejos de Coordinación , Cobre , Dendrímeros , Piridinas , Bases de Schiff , Cobre/química , Dendrímeros/química , Humanos , Piridinas/química , Antineoplásicos/química , Antineoplásicos/farmacología , Complejos de Coordinación/química , Complejos de Coordinación/farmacología , Bases de Schiff/química , Iminas/química , Neoplasias/tratamiento farmacológico , Animales , Quelantes/química , Quelantes/farmacología
6.
Nitric Oxide ; 147: 26-41, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38614230

RESUMEN

Nitric oxide (NO) acts in different physiological processes, such as blood pressure control, antiparasitic activities, neurotransmission, and antitumor action. Among the exogenous NO donors, ruthenium nitrosyl/nitro complexes are potential candidates for prodrugs, due to their physicochemical properties, such as thermal and physiological pH stability. In this work, we proposed the synthesis and physical characterization of the new nitro terpyridine ruthenium (II) complexes of the type [RuII(L)(NO2)(tpy)]PF6 where tpy = 2,2':6',2″-terpyridine; L = 3,4-diaminobenzoic acid (bdq) or o-phenylenediamine (bd) and evaluation of influence of diimine bidentate ligand NH.NHq-R (R = H or COOH) in the HSA/DNA interaction as well as antiviral activity. The interactions between HSA and new nitro complexes [RuII(L)(NO2)(tpy)]+ were evaluated. The Ka values for the HSA-[RuII(bdq)(NO2)(tpy)]+ is 10 times bigger than HSA-[RuII(bd)(NO2)(tpy)]+. The sites of interaction between HSA and the complexes via synchronous fluorescence suppression indicate that the [RuII(bdq)(NO2)(tpy)]+ is found close to the Trp-241 residue, while the [RuII(bd)(NO2)(tpy)]+ complex is close to Tyr residues. The interaction with fish sperm fs-DNA using direct spectrophotometric titration (Kb) and ethidium bromide replacement (KSV and Kapp) showed weak interaction in the system fs-DNA-[RuII(bdq)(NO)(tpy)]+. Furthermore, fs-DNA-[RuII(bd)(NO2)(tpy)]+ and fs-DNA-[RuII(bd)(NO)(tpy)]3+ system showed higher intercalation constant. Circular dichroism spectra for fs-DNA-[RuII(bd)(NO2)(tpy)]+ and fs-DNA-[RuII(bd)(NO)(tpy)]3+, suggest semi-intercalative accompanied by major groove binding interaction modes. The [RuII(bd)(NO2)(tpy)]+ and [RuII(bd)(NO)(tpy)]3+ inhibit replication of Zika and Chikungunya viruses based in the nitric oxide release under S-nitrosylation reaction with cysteine viral.


Asunto(s)
Antivirales , ADN , Rutenio , Humanos , ADN/metabolismo , ADN/química , Rutenio/química , Rutenio/farmacología , Antivirales/farmacología , Antivirales/química , Antivirales/metabolismo , Ligandos , Animales , Albúmina Sérica Humana/química , Albúmina Sérica Humana/metabolismo , Piridinas/química , Piridinas/farmacología , Iminas/química , Iminas/farmacología , Complejos de Coordinación/farmacología , Complejos de Coordinación/química , Complejos de Coordinación/metabolismo
7.
Int J Mol Sci ; 25(6)2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38542315

RESUMEN

Fluorinated imines (Schiff bases) and fluorinated hydrazones are of particular interest in medicinal chemistry due to their potential usefulness in treating opportunistic strains of bacteria that are resistant to commonly used antibacterial agents. The present review paper is focused on these fluorinated molecules revealing strong, moderate or weak in vitro antibacterial activities, which have been reported in the scientific papers during the last fifteen years. Fluorinated building blocks and reaction conditions used for the synthesis of imines and hydrazones are mentioned. The structural modifications, which have an influence on the antibacterial activity in all the reported classes of fluorinated small molecules, are highlighted, focusing mainly on the importance of specific substitutions. Advanced research techniques and innovations for the synthesis, design and development of fluorinated imines and hydrazones are also summarized.


Asunto(s)
Antibacterianos , Hidrazonas , Hidrazonas/química , Antibacterianos/farmacología , Iminas/farmacología , Iminas/química , Bases de Schiff/química , Bacterias
8.
J Am Soc Mass Spectrom ; 35(2): 344-356, 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38252626

RESUMEN

Nitrile imines produced by photodissociation of 2,5-diaryltetrazoles undergo cross-linking reactions with amide groups in peptide-tetrazole (tet-peptide) conjugates and a tet-peptide-dinucleotide complex. Tetrazole photodissociation in gas-phase ions is efficient, achieving ca. 50% conversion with 2 laser pulses at 250 nm. The formation of cross-links was detected by CID-MS3 that showed structure-significant dissociations by loss of side-chain groups and internal peptide segments. The structure and composition of cross-linking products were established by a combination of UV-vis action spectroscopy and cyclic ion mobility mass spectrometry (c-IMS). The experimental absorption bands were found to match the bands calculated for vibronic absorption spectra of nitrile imines and cross-linked hydrazone isomers. The calculated collision cross sections (CCSth) for these ions were related to the matching experimental CCSexp from multipass c-IMS measurements. Loss of N2 from tet-peptide conjugates was calculated to be a mildly endothermic reaction with ΔH0 = 80 kJ mol-1 in the gas phase. The excess energy in the photolytically formed nitrile imine is thought to drive endothermic proton transfer, followed by exothermic cyclization to a sterically accessible peptide amide group. The exothermic nitrile imine reaction with peptide amides is promoted by proton transfer and may involve an initial [3 + 2] cycloaddition followed by cleavage of the oxadiazole intermediate. Nucleophilic groups, such as cysteine thiol, did not compete with the amide cyclization. Nitrile imine cross-linking to 2'-deoxycytidylguanosine was found to be >80% efficient and highly specific in targeting guanine. The further potential for exploring nitrile-imine cross-linking for biomolecular structure analysis is discussed.


Asunto(s)
Iminas , Protones , Iminas/química , Nitrilos , Péptidos/química , Iones , Amidas/química , Oligonucleótidos , Tetrazoles/química
9.
J Biol Chem ; 300(2): 105642, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38199566

RESUMEN

Imine reductases (IREDs) and reductive aminases have been used in the synthesis of chiral amine products for drug manufacturing; however, little is known about their biological contexts. Here we employ structural studies and site-directed mutagenesis to interrogate the mechanism of the IRED RedE from the biosynthetic pathway to the indolocarbazole natural product reductasporine. Cocrystal structures with the substrate-mimic arcyriaflavin A reveal an extended active site cleft capable of binding two indolocarbazole molecules. Site-directed mutagenesis of a conserved aspartate in the primary binding site reveals a new role for this residue in anchoring the substrate above the NADPH cofactor. Variants targeting the secondary binding site greatly reduce catalytic efficiency, while accumulating oxidized side-products. As indolocarbazole biosynthetic intermediates are susceptible to spontaneous oxidation, we propose the secondary site acts to protect against autooxidation, and the primary site drives catalysis through precise substrate orientation and desolvation effects. The structure of RedE with its extended active site can be the starting point as a new scaffold for engineering IREDs and reductive aminases to intercept large substrates relevant to industrial applications.


Asunto(s)
Iminas , Oxidorreductasas , Sitios de Unión , Catálisis , Cristalografía por Rayos X , Iminas/química , Iminas/metabolismo , Oxidación-Reducción , Oxidorreductasas/metabolismo , Estructura Terciaria de Proteína , Estructura Cuaternaria de Proteína , Modelos Moleculares
10.
J Biomol Struct Dyn ; 42(4): 2013-2033, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37166274

RESUMEN

The advent of influenza A (H1N1) drug-resistant strains led to the search quest for more potent inhibitors of the influenza A virus, especially in this devastating COVID-19 pandemic era. Hence, the present research utilized some molecular modelling strategies to unveil new camphor imine-based compounds as anti-influenza A (H1N1) pdm09 agents. The 2D-QSAR results revealed GFA-MLR (R2train = 0.9158, Q2=0.8475) and GFA-ANN (R2train = 0.9264, Q2=0.9238) models for the anti-influenza A (H1N1) pdm09 activity prediction which have passed the QSAR model acceptability thresholds. The results from the 3D-QSAR studies also revealed CoMFA (R2train =0.977, Q2=0.509) and CoMSIA_S (R2train =0.976, Q2=0.527) models for activity predictions. Based on the notable information derived from the 2D-QSAR, 3D-QSAR, and docking analysis, ten (10) new camphor imine-based compounds (22a-22j) were designed using the most active compound 22 as the template. Furthermore, the high predicted activity and binding scores of compound 22j were further justified by the high reactive sites shown in the electrostatic potential maps and other quantum chemical calculations. The MD simulation of 22j in the active site of the influenza hemagglutinin (HA) receptor confirmed the dynamic stability of the complex. Moreover, the appraisals of drug-likeness and ADMET properties of the proposed compounds showed zero violation of Lipinski's criteria with good pharmacokinetic profiles. Hence, the outcomes in this work recommend further in-depth in vivo and in-vitro investigations to validate these theoretical findings.Communicated by Ramaswamy H. Sarma.


Asunto(s)
Subtipo H1N1 del Virus de la Influenza A , Gripe Humana , Humanos , Gripe Humana/tratamiento farmacológico , Alcanfor/farmacología , Alcanfor/química , Iminas/farmacología , Iminas/química , Pandemias , Relación Estructura-Actividad Cuantitativa , Anticuerpos , Simulación del Acoplamiento Molecular
11.
ChemSusChem ; 17(3): e202301243, 2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-37751248

RESUMEN

The first enantioselective reduction of 2-substituted cyclic imines to the corresponding amines (pyrrolidines, piperidines, and azepines) by imine reductases (IREDs) in non-conventional solvents is reported. The best results were obtained in a glycerol/phosphate buffer 1 : 1 mixture, in which heterocyclic amines were produced with full conversions (>99 %), moderate to good yields (22-84 %) and excellent S-enantioselectivities (up to >99 % ee). Remarkably, the process can be performed at a 100 mM substrate loading, which, for the model compound, means a concentration of 14.5 g L-1 . A fed-batch protocol was also developed for a convenient scale-up transformation, and one millimole of substrate 1 a was readily converted into 120 mg of enantiopure amine (S)-2 a with a remarkable 80 % overall yield. This aspect strongly contributes to making the process potentially attractive for large-scale applications in terms of economic and environmental sustainability for a good number of substrates used to produce enantiopure cyclic amines of high pharmaceutical interest.


Asunto(s)
Iminas , Oxidorreductasas , Iminas/química , Solventes , Estereoisomerismo , Aminas/química
12.
Chemistry ; 30(7): e202302485, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-37967030

RESUMEN

Iminoboronates and diazaborines are related classes of compounds that feature an imine ortho to an arylboronic acid (iminoboronate) or a hydrazone that cyclizes with an ortho arylboronic acid (diazaborine). Rather than acting as independent chemical motifs, the arylboronic acid impacts the rate of imine/hydrazone formation, hydrolysis, and exchange with competing nucleophiles. Increasing evidence has shown that the imine/hydrazone functionality also impacts arylboronic acid reactivity toward diols and reactive oxygen and nitrogen species (ROS/RNS). Untangling the communication between C=N linked functionalities and arylboronic acids has revealed a powerful and tunable motif for bioconjugation chemistries and other applications in chemical biology. Here, we survey the applications of iminoboronates and diazaborines in these fields with an eye toward understanding their utility as a function of neighboring group effects.


Asunto(s)
Ácidos Borónicos , Iminas , Ácidos Borónicos/química , Iminas/química , Hidrazonas/química , Biología
13.
Nature ; 622(7983): 507-513, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37730997

RESUMEN

Marine-derived cyclic imine toxins, portimine A and portimine B, have attracted attention because of their chemical structure and notable anti-cancer therapeutic potential1-4. However, access to large quantities of these toxins is currently not feasible, and the molecular mechanism underlying their potent activity remains unknown until now. To address this, a scalable and concise synthesis of portimines is presented, which benefits from the logic used in the two-phase terpenoid synthesis5,6 along with other tactics such as exploiting ring-chain tautomerization and skeletal reorganization to minimize protecting group chemistry through self-protection. Notably, this total synthesis enabled a structural reassignment of portimine B and an in-depth functional evaluation of portimine A, revealing that it induces apoptosis selectively in human cancer cell lines with high potency and is efficacious in vivo in tumour-clearance models. Finally, practical access to the portimines and their analogues simplified the development of photoaffinity analogues, which were used in chemical proteomic experiments to identify a primary target of portimine A as the 60S ribosomal export protein NMD3.


Asunto(s)
Antineoplásicos , Técnicas de Química Sintética , Iminas , Compuestos de Espiro , Humanos , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Iminas/síntesis química , Iminas/química , Iminas/farmacología , Neoplasias/tratamiento farmacológico , Proteómica , Ribosomas/metabolismo , Proteínas de Unión al ARN/metabolismo , Compuestos de Espiro/síntesis química , Compuestos de Espiro/química , Compuestos de Espiro/farmacología , Relación Estructura-Actividad , Antineoplásicos/síntesis química , Antineoplásicos/química , Antineoplásicos/farmacología
14.
Nat Commun ; 14(1): 5348, 2023 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-37660126

RESUMEN

The manipulation of internal interactions at the molecular level within biological fibers is of particular importance but challenging, severely limiting their tunability in macroscopic performances and applications. It thus becomes imperative to explore new approaches to enhance biological fibers' stability and environmental tolerance and to impart them with diverse functionalities, such as mechanical recoverability and stimulus-triggered responses. Herein, we develop a dynamic imine fiber chemistry (DIFC) approach to engineer molecular interactions to fabricate strong and tough protein fibers with recoverability and actuating behaviors. The resulting DIF fibers exhibit extraordinary mechanical performances, outperforming many recombinant silks and synthetic polymer fibers. Remarkably, impaired DIF fibers caused by fatigue or strong acid treatment are quickly recovered in water directed by the DIFC strategy. Reproducible mechanical performance is thus observed. The DIF fibers also exhibit exotic mechanical stability at extreme temperatures (e.g., -196 °C and 150 °C). When triggered by humidity, the DIFC endows the protein fibers with diverse actuation behaviors, such as self-folding, self-stretching, and self-contracting. Therefore, the established DIFC represents an alternative strategy to strengthen biological fibers and may pave the way for their high-tech applications.


Asunto(s)
Ingeniería Química , Iminas , Iminas/química , Seda
15.
J Org Chem ; 88(13): 8874-8881, 2023 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-37294553

RESUMEN

This article describes the development of a mild method for the N-dealkylation of tertiary amines via photoredox catalysis and its application in late-stage functionalization. Using the developed method, more than 30 diverse aliphatic, aniline-type, and complex substrates are shown to undergo N-dealkylation, providing a method with broader functional group tolerance compared to methods found in the literature. The scope also includes tertiary and secondary amine molecules with complex substructures and drug substrates. Interestingly, α-oxidation to imines was observed in several cyclic substructures instead of N-dealkylation, suggesting that imines are relevant reaction intermediates.


Asunto(s)
Aminas , Iminas , Aminas/química , Oxidación-Reducción , Catálisis , Iminas/química , Remoción de Radical Alquila
16.
Comput Biol Chem ; 104: 107880, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37196604

RESUMEN

Molecular modeling strategy was adopted to check the biological potential of the imine based molecules against free radical, acetylcholine esterase and butyrylcholine esterase. Three Schiff based compounds as (E)-2-(((4-bromophenyl)imino)methyl)-4-methylphenol (1), (E)-2-(((3-fluorophenyl)imino)methyl)-4-methylphenol (2) and (2E,2E)-2-(2-(2-hydroxy-5-methylbenzylidene)hydrazono)-1,2-diphenylethanone (3) were synthesized with high yield. The synthesized compounds were characterized with the help of modern techniques such as UV, FTIR and NMR while exact structure was depicted with Single Crystal X-Ray diffraction technique which disclosed that compound 1 is orthorhombic, while 2 and 3 are monoclinic. A hybrid functional (B3LYP) method with general basis set of 6-31 G(d,p) were applied to optimize synthesized Schiff bases. The contribution of in-between molecular contacts within a crystalline assembly of compounds were studied using Hirshfeld surface analysis (HS). In order to check the ability of the synthesized compounds toward free radical and enzyme inhibition, in vitro models were used to assess the radical scavenging and enzyme inhibition potential which depicted that compound 3 showed highest potential (57.43 ± 1.0%; DPPH, 75.09 ± 1.0%; AChE and 64.47 ± 1.0%; BChE). The ADMET assessments suggested the drug like properties of the synthesized compounds. It was concluded from results (in vitro and in silico) that synthesized compound have ability to cure the disorder related to free radical and enzyme inhibition. Compound 3 was shown to be the most active compared to other compounds.


Asunto(s)
Antioxidantes , Iminas , Iminas/farmacología , Iminas/química , Antioxidantes/farmacología , Antioxidantes/química , Esterasas , Bases de Schiff/farmacología , Bases de Schiff/química , Simulación por Computador , Simulación del Acoplamiento Molecular
17.
Angew Chem Int Ed Engl ; 62(25): e202303069, 2023 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-37068049

RESUMEN

Aziridines are highly valued synthetic targets in organic and medicinal chemistry. The organocatalytic synthesis of such structures with broad substrate scope and good diastereoselectivity, however, is rare. Herein, we report a broadly applicable and diastereoselective synthetic method for the synthesis of trans-aziridines from imines and benzylic or alkyl halides utilizing sulfenate anions (PhSO- ) as the catalyst. Substrates bearing heterocyclic aromatic groups, alkyl, and electron-rich and electron-poor aryl groups were shown to be compatible with this method (33 examples), giving good yields and high diastereoselectivities (trans : cis >20 : 1). Further functionalization of aziridines containing cyclopropyl or cyclobutyl groups was achieved through ring-opening reactions, with a cyclobutyl-substituted norephedrine derivative obtained through a four-step synthesis. We offer a mechanistic proposal involving reversible addition of the deprotonated benzyl sulfoxide to the imine to explain the high trans-diastereoselectivity.


Asunto(s)
Aziridinas , Aziridinas/química , Aniones/química , Iminas/química , Catálisis , Estereoisomerismo
18.
Molecules ; 28(4)2023 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-36838659

RESUMEN

This paper thoroughly explores the formation of Schiff bases derived from salicylaldehydes and a conformationally restricted amino alcohol (1-amino-2-indanol), as well as the generation of 1,3-oxazolidines, a key heterocyclic core present in numerous bioactive compounds. We provide enough evidences, both experimental-including crystallographic analyses and DFT-based calculations on imine/enamine tautomerism in the solid state and solution. In the course of imine formation, a pentacyclic oxazolidine-oxazine structure could be isolated with complete stereocontrol, whose configuration has been determined by merging theory and experiment. Mechanistic studies reveal that, although oxazolidines can be obtained under kinetic conditions, the prevalence of imines obeys to thermodynamic control as they are the most stable structures. The stereochemical outcome of imine cyclization under acylating conditions leads to formation of 2,4-trans-oxazolidines.


Asunto(s)
Iminas , Bases de Schiff , Bases de Schiff/química , Iminas/química , Oxazoles
19.
Org Biomol Chem ; 21(6): 1222-1234, 2023 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-36633001

RESUMEN

13-Desmethyl spirolide C is a marine natural product of the cyclic imine class that demonstrates remarkable bioactivity against several biomarkers of Alzheimer's Disease, which renders its [7,6]-spirocyclic imine pharmacophore of significant synthetic interest. This work describes a facile and efficient synthesis of the [7,6]-spirocyclic core of 13-desmethyl spirolide C from inexpensive starting materials, featuring an aza-Claisen rearrangement to simultaneously set both stereocentres of the dimethyl moiety with complete atom economy, and a highly exo-selective Diels-Alder cycloaddition to construct the challenging contiguous tertiary and quaternary stereocentres of the spirocyclic core of 13-desmethyl spirolide C. A comprehensive study of the key Diels-Alder reaction was also performed to evaluate the stereoselectivity and reactivity of various functionalised dienes and protected lactam dienophiles, wherein the first successful exo-selective Diels-Alder cycloaddition to construct spirocyclic structures using a bromodiene and α-exo-methylene dienophiles is reported. This strategy not only establishes a more efficient stereoselective access to the spirocyclic core that can be used for the total synthesis of 13-desmethyl spirolide C, but also serves as a sound platform for convenient preparations of a range of spirocyclic analogues required for a comprehensive biological evaluation of this desirable pharmacophore.


Asunto(s)
Compuestos de Espiro , Reacción de Cicloadición , Compuestos de Espiro/química , Polienos , Iminas/química
20.
Int J Mol Sci ; 24(2)2023 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-36674803

RESUMEN

Nitrile imine cycloaddition to hydantoins containing an exocyclic C=C double bond has been previously described in a very limited number of examples. In this work, regioselective synthesis of spiro-pyrazoline-imidazolidine-2,4-diones based on a 1,3-dipolar cycloaddition reaction of nitrile imines to 5-methylidene-3-phenyl-hydantoin have been proposed. It was found that, regardless of the nature of the aryl substituents at the terminal C and N atoms of the C-N-N fragment of nitrile imine (electron donor or electron acceptor), cycloaddition to the 5-methylidenhydantoin exocyclic C=C bond proceeds regioselectively, and the terminal nitrogen atom of the nitrile imine connects to the more sterically hindered carbon atom of the double bond, which leads to the formation of a 5-disubstituted pyrazoline ring. The observed cycloaddition regioselectivity was rationalized using DFT calculations of frontier molecular orbital interactions, global CDFT reactivity indices, and minimum energy paths.


Asunto(s)
Hidantoínas , Reacción de Cicloadición , Teoría Funcional de la Densidad , Iminas/química , Nitrilos/química , Anticonvulsivantes
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA