Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 178
Filtrar
1.
Commun Biol ; 5(1): 24, 2022 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-35017623

RESUMEN

The morphology of primitive cells has been the subject of extensive research. A spherical form was commonly presumed in prebiotic studies but lacked experimental evidence in living cells. Whether and how the shape of living cells changed are unclear. Here we exposed the rod-shaped bacterium Escherichia coli to a resource utilization regime mimicking a primordial environment. Oleate was given as an easy-to-use model prebiotic nutrient, as fatty acid vesicles were likely present on the prebiotic Earth and might have been used as an energy resource. Six evolutionary lineages were generated under glucose-free but oleic acid vesicle (OAV)-rich conditions. Intriguingly, fitness increase was commonly associated with the morphological change from rod to sphere and the decreases in both the size and the area-to-volume ratio of the cell. The changed cell shape was conserved in either OAVs or glucose, regardless of the trade-offs in carbon utilization and protein abundance. Highly differentiated mutations present in the genome revealed two distinct strategies of adaption to OAV-rich conditions, i.e., either directly targeting the cell wall or not. The change in cell morphology of Escherichia coli for adapting to fatty acid availability supports the assumption of the primitive spherical form.


Asunto(s)
Evolución Biológica , Escherichia coli , Imitación Molecular , Forma de la Célula/genética , Forma de la Célula/fisiología , Escherichia coli/genética , Escherichia coli/fisiología , Ácidos Grasos/metabolismo , Imitación Molecular/genética , Imitación Molecular/fisiología , Ácido Oléico/metabolismo
2.
Nat Commun ; 12(1): 6928, 2021 11 26.
Artículo en Inglés | MEDLINE | ID: mdl-34836945

RESUMEN

The success of many viruses depends upon cooperative interactions between viral genomes. However, whenever cooperation occurs, there is the potential for 'cheats' to exploit that cooperation. We suggest that: (1) the biology of viruses makes viral cooperation particularly susceptible to cheating; (2) cheats are common across a wide range of viruses, including viral entities that are already well studied, such as defective interfering genomes, and satellite viruses. Consequently, the evolutionary theory of cheating could help us understand and manipulate viral dynamics, while viruses also offer new opportunities to study the evolution of cheating.


Asunto(s)
Evolución Molecular , Genoma Viral , Interacciones Microbiota-Huesped/genética , Virus/genética , Imitación Molecular/genética
3.
Theranostics ; 11(18): 8771-8796, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34522211

RESUMEN

The approval of the first small interfering RNA (siRNA) drug Patisiran by FDA in 2018 marks a new era of RNA interference (RNAi) therapeutics. MicroRNAs (miRNA), an important post-transcriptional gene regulator, are also the subject of both basic research and clinical trials. Both siRNA and miRNA mimics are ~21 nucleotides RNA duplexes inducing mRNA silencing. Given the well performance of siRNA, researchers ask whether miRNA mimics are unnecessary or developed siRNA technology can pave the way for the emergence of miRNA mimic drugs. Through comprehensive comparison of siRNA and miRNA, we focus on (1) the common features and lessons learnt from the success of siRNAs; (2) the unique characteristics of miRNA that potentially offer additional therapeutic advantages and opportunities; (3) key areas of ongoing research that will contribute to clinical application of miRNA mimics. In conclusion, miRNA mimics have unique properties and advantages which cannot be fully matched by siRNA in clinical applications. MiRNAs are endogenous molecules and the gene silencing effects of miRNA mimics can be regulated or buffered to ameliorate or eliminate off-target effects. An in-depth understanding of the differences between siRNA and miRNA mimics will facilitate the development of miRNA mimic drugs.


Asunto(s)
MicroARNs/uso terapéutico , Imitación Molecular/genética , ARN Interferente Pequeño/uso terapéutico , Animales , Materiales Biomiméticos , Biomimética/métodos , Regulación de la Expresión Génica/genética , Silenciador del Gen/fisiología , Humanos , MicroARNs/genética , Imitación Molecular/fisiología , Interferencia de ARN/fisiología , ARN Interferente Pequeño/genética
4.
Cells ; 10(7)2021 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-34359928

RESUMEN

In solid tumors, vasculogenic mimicry (VM) is the formation of vascular structures by cancer cells, allowing to generate a channel-network able to transport blood and tumor cells. While angiogenesis is undertaken by endothelial cells, VM is assumed by cancer cells. Besides the participation of VM in tumor neovascularization, the clinical relevance of this process resides in its ability to favor metastasis and to drive resistance to antiangiogenic therapy. VM occurs in many tumor types, including breast cancer, where it has been associated with a more malignant phenotype, such as triple-negative and HER2-positive tumors. The latter may be explained by known drivers of VM, like hypoxia, TGFB, TWIST1, EPHA2, VEGF, matrix metalloproteinases, and other tumor microenvironment-derived factors, which altogether induce the transformation of tumor cells to a mesenchymal phenotype with a high expression rate of stemness markers. This review analyzes the current literature in the field, including the participation of some microRNAs and long noncoding RNAs in VM-regulation and tumorigenesis of breast cancer. Considering the clinical relevance of VM and its association with the tumor phenotype and clinicopathological parameters, further studies are granted to target VM in the clinic.


Asunto(s)
Neoplasias de la Mama/irrigación sanguínea , Neoplasias de la Mama/patología , Imitación Molecular , Neovascularización Patológica/patología , Animales , Neoplasias de la Mama/genética , Femenino , Humanos , Imitación Molecular/genética , Fenotipo , ARN no Traducido/genética , ARN no Traducido/metabolismo , Microambiente Tumoral/genética
5.
mBio ; 12(1)2021 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-33468699

RESUMEN

Surface expression of the common vertebrate sialic acid (Sia) N-acetylneuraminic acid (Neu5Ac) by commensal and pathogenic microbes appears structurally to represent "molecular mimicry" of host sialoglycans, facilitating multiple mechanisms of host immune evasion. In contrast, ketodeoxynonulosonic acid (Kdn) is a more ancestral Sia also present in prokaryotic glycoconjugates that are structurally quite distinct from vertebrate sialoglycans. We detected human antibodies against Kdn-terminated glycans, and sialoglycan microarray studies found these anti-Kdn antibodies to be directed against Kdn-sialoglycans structurally similar to those on human cell surface Neu5Ac-sialoglycans. Anti-Kdn-glycan antibodies appear during infancy in a pattern similar to those generated following incorporation of the nonhuman Sia N-glycolylneuraminic acid (Neu5Gc) onto the surface of nontypeable Haemophilus influenzae (NTHi), a human commensal and opportunistic pathogen. NTHi grown in the presence of free Kdn took up and incorporated the Sia into its lipooligosaccharide (LOS). Surface display of the Kdn within NTHi LOS blunted several virulence attributes of the pathogen, including Neu5Ac-mediated resistance to complement and whole blood killing, complement C3 deposition, IgM binding, and engagement of Siglec-9. Upper airway administration of Kdn reduced NTHi infection in human-like Cmah null (Neu5Gc-deficient) mice that express a Neu5Ac-rich sialome. We propose a mechanism for the induction of anti-Kdn antibodies in humans, suggesting that Kdn could be a natural and/or therapeutic "Trojan horse" that impairs colonization and virulence phenotypes of free Neu5Ac-assimilating human pathogens.IMPORTANCE All cells in vertebrates are coated with a dense array of glycans often capped with sugars called sialic acids. Sialic acids have many functions, including serving as a signal for recognition of "self" cells by the immune system, thereby guiding an appropriate immune response against foreign "nonself" and/or damaged cells. Several pathogenic bacteria have evolved mechanisms to cloak themselves with sialic acids and evade immune responses. Here we explore a type of sialic acid called "Kdn" (ketodeoxynonulosonic acid) that has not received much attention in the past and compare and contrast how it interacts with the immune system. Our results show potential for the use of Kdn as a natural intervention against pathogenic bacteria that take up and coat themselves with external sialic acid from the environment.


Asunto(s)
Antígenos CD/inmunología , Infecciones por Haemophilus/inmunología , Haemophilus influenzae/inmunología , Interacciones Huésped-Patógeno/inmunología , Ácido N-Acetilneuramínico/química , Lectinas Similares a la Inmunoglobulina de Unión a Ácido Siálico/inmunología , Ácidos Siálicos/inmunología , Animales , Anticuerpos/química , Anticuerpos/metabolismo , Antígenos CD/metabolismo , Transporte Biológico , Complemento C3/inmunología , Complemento C3/metabolismo , Femenino , Glicoconjugados/química , Glicoconjugados/inmunología , Infecciones por Haemophilus/genética , Infecciones por Haemophilus/microbiología , Haemophilus influenzae/química , Interacciones Huésped-Patógeno/genética , Humanos , Inmunoglobulina M/inmunología , Inmunoglobulina M/metabolismo , Ratones , Ratones Endogámicos C57BL , Imitación Molecular/genética , Imitación Molecular/inmunología , Ácido N-Acetilneuramínico/inmunología , Unión Proteica , Lectinas Similares a la Inmunoglobulina de Unión a Ácido Siálico/metabolismo , Ácidos Siálicos/química , Azúcares Ácidos/química , Azúcares Ácidos/inmunología
6.
Cell Syst ; 12(1): 82-91.e3, 2021 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-33053371

RESUMEN

Viruses deploy genetically encoded strategies to coopt host machinery and support viral replicative cycles. Here, we use protein structure similarity to scan for molecular mimicry, manifested by structural similarity between viral and endogenous host proteins, across thousands of cataloged viruses and hosts spanning broad ecological niches and taxonomic range, including bacteria, plants and fungi, invertebrates, and vertebrates. This survey identified over 6,000,000 instances of structural mimicry; more than 70% of viral mimics cannot be discerned through protein sequence alone. We demonstrate that the manner and degree to which viruses exploit molecular mimicry varies by genome size and nucleic acid type and identify 158 human proteins that are mimicked by coronaviruses, providing clues about cellular processes driving pathogenesis. Our observations point to molecular mimicry as a pervasive strategy employed by viruses and indicate that the protein structure space used by a given virus is dictated by the host proteome. A record of this paper's transparent peer review process is included in the Supplemental Information.


Asunto(s)
Coronavirus/genética , Interacciones Huésped-Patógeno/genética , Imitación Molecular/genética , Proteínas Virales/genética , Viroma/genética , Virosis/genética , Animales , Coronavirus/química , Culicidae , Bases de Datos Genéticas , Humanos , Estructura Secundaria de Proteína , Proteínas Virales/química , Virosis/epidemiología , Virus/química , Virus/genética
7.
Biochemistry ; 59(49): 4681-4693, 2020 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-33256402

RESUMEN

Huntington's disease (HD) is a neurodegenerative disorder caused by the abnormal expansion of a polyglutamine (polyQ) tract in the first exon of the htt protein (htt). PolyQ expansion triggers the aggregation of htt into a variety of structures, including oligomers and fibrils. This aggregation is impacted by the first 17 N-terminal amino acids (Nt17) of htt that directly precedes the polyQ domain. Beyond impacting aggregation, Nt17 associates with lipid membranes by forming an amphipathic α-helix. Post-translational modifications within Nt17 are known to modify HD pathology, and in particular, phosphorylation at T3, S13, and/or S16 retards fibrillization and ameliorates the phenotype in HD models. Due to Nt17's propensity to interact with lipid membranes, the impact of introducing phosphomimetic mutations (T3D, S13D, and S16D) into htt-exon1 on aggregation in the presence of a variety of model lipid membranes (total brain lipid extract, 1-palmitoyl-2-oleoyl-glycero-3-phosphatidylcholine, and 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-1'-rac-glycerol) was investigated. Phosphomimetic mutations altered htt's interaction with and aggregation in the presence of lipids; however, this was dependent on the lipid system.


Asunto(s)
Proteína Huntingtina/química , Proteína Huntingtina/genética , Mutación , Agregación Patológica de Proteínas/genética , Agregación Patológica de Proteínas/metabolismo , Materiales Biomiméticos/química , Fenómenos Biofísicos , Exones , Humanos , Enfermedad de Huntington/genética , Enfermedad de Huntington/metabolismo , Técnicas In Vitro , Lípidos/química , Microscopía de Fuerza Atómica , Imitación Molecular/genética , Péptidos/química , Fosforilación , Agregado de Proteínas/genética , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética
8.
Brain Dev ; 42(10): 756-761, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32747156

RESUMEN

BACKGROUND: Genetic defects in the NFU1, an iron-sulfur cluster scaffold protein coding gene, which is vital in the final stage of assembly for iron sulfur proteins, have been defined as multiple mitochondrial dysfunctions syndrome I. This disorder is a severe autosomal recessive disease with onset in early infancy. It is characterized by disruption of the energy metabolism, resulting in weakness, neurological regression, hyperglycinemia, lactic acidosis, and early death. PATIENT DESCRIPTION: This report documents the case of a 27-month-old girl, who showed clinical signs and symptoms of spastic paraparesis with a relapsing-remitting course. The patient had a sister with a severe phenotype who died at the age of 16 months. RESULTS: Magnetic resonance imaging revealed hyperintensity of the cerebral white matter that was more prominent in the frontal regions, with milder involvement in the posterior periventricular regions. There was also evidence of partial cystic degeneration and cavitation in the frontal regions. In addition, she had hyperglycinemia. Homozygous NM_001002755.4:c.565G>A (p.Gly189Arg) mutation was identified in the NFU1 gene; this had not previously been reported as homozygous. CONCLUSION: Hyperglycinemia and cavitating leukodystrophy are suggestive of an NFU1 mutation diagnosis. An intrafamilial phenotypic variation has not been published in NFU1-associated disorders before. Presenting with spasticity as a rare phenotype, NFU1 mutations could be considered a genetic mimic of cerebral palsy.


Asunto(s)
Proteínas Portadoras/genética , Parálisis Cerebral/genética , Variación Biológica Poblacional/genética , Proteínas Portadoras/metabolismo , Parálisis Cerebral/metabolismo , Preescolar , Femenino , Homocigoto , Humanos , Proteínas Hierro-Azufre/genética , Proteínas Hierro-Azufre/metabolismo , Mitocondrias/metabolismo , Enfermedades Mitocondriales/genética , Proteínas Mitocondriales/genética , Imitación Molecular/genética , Mutación/genética , Fenotipo
9.
Cell Oncol (Dordr) ; 43(5): 863-876, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32729021

RESUMEN

PURPOSE: Vasculogenic mimicry (VM), a vessel-like network formed by highly aggressive tumor cells, plays an important role in accelerating cancer progression. This special vascularization pattern is closely associated with a poor prognosis in various cancers. As yet, however, the regulatory mechanism of VM formation is largely unknown. In this study, we assess whether the long noncoding RNA PVT1 is involved in VM generation in gastric cancer. METHODS: VM formation was determined by immunohistochemistry using PAS/CD31 double staining in gastric cancers and Matrigel tube formation in vitro. qRT-PCR and Western blotting were used to assess mRNA and protein expression. Interaction between PVT1 and STAT3 was determined using a RNA pull-down assay. Luciferase reporter and chromatin immunoprecipitation assays were performed to evaluate transcriptional activity of STAT3 on the Slug gene promoter. RESULTS: We found that PVT1 can induce VM generation both in vitro and in vivo. Mechanistically, we found that PVT1 interacted with and activated STAT3 through a 850-1770 nt fragment. PVT1 facilitated STAT3 recruitment to the Slug promoter and transcriptionally enhanced Slug expression, thereby triggering epithelial-to-mesenchymal transition (EMT) and VM capillary formation. STAT3 inhibition effectively blocked PVT1-mediated VM. In primary gastric cancer samples, a positive correlation was found between PVT1 and Slug upregulation, and patients with a high PVT1 and Slug expression exhibited markedly shorter survival times. CONCLUSION: Our results shed light on the role of PVT1 in gastric cancer cell-dependent VM formation. Our findings provide valuable clues for the design of new anti-angiogenic therapeutic strategies. The PVT1/STAT3 axis may serve as a potential target in gastric cancer treatment.


Asunto(s)
Transición Epitelial-Mesenquimal/genética , Imitación Molecular , ARN Largo no Codificante/metabolismo , Factor de Transcripción STAT3/metabolismo , Factores de Transcripción de la Familia Snail/metabolismo , Neoplasias Gástricas/genética , Neoplasias Gástricas/patología , Animales , Secuencia de Bases , Línea Celular Tumoral , Proliferación Celular/genética , Regulación Neoplásica de la Expresión Génica , Humanos , Ratones Endogámicos NOD , Ratones SCID , Modelos Biológicos , Imitación Molecular/genética , Invasividad Neoplásica , Regiones Promotoras Genéticas/genética , ARN Largo no Codificante/genética , Factores de Transcripción de la Familia Snail/genética
10.
Biochem Biophys Res Commun ; 528(3): 580-585, 2020 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-32505352

RESUMEN

Mammalian cells contain genetic information in two compartments, the nucleus and the mitochondria. Mitochondrial gene expression must be coordinated with nuclear gene expression to respond to cellular energetic needs. To gain insight into the coordination between the nucleus and mitochondria, there is a need to understand the regulation of transcription of mitochondrial DNA (mtDNA). Reversible protein post-translational modifications of the mtDNA transcriptional machinery may be one way to control mtDNA transcription. Here we focus on a member of the mtDNA transcription initiation complex, mitochondrial transcription factor B2 (TFB2M). TFB2M melts mtDNA at the promoter to allow the RNA polymerase (POLRMT) to access the DNA template and initiate transcription. Three phosphorylation sites have been previously identified on TFB2M by mass spectrometry: threonine 184, serine 197, and threonine 313. Phosphomimetics were established at these positions. Proteins were purified and analyzed for their ability to bind mtDNA and initiate transcription in vitro. Our results indicate phosphorylation at threonine 184 and threonine 313 impairs promoter binding and prevents transcription. These findings provide a potential regulatory mechanism of mtDNA transcription and help clarify the importance of protein post-translational modifications in mitochondrial function.


Asunto(s)
ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo , Metiltransferasas/genética , Metiltransferasas/metabolismo , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Secuencia de Bases , Sitios de Unión/genética , ARN Polimerasas Dirigidas por ADN/química , ARN Polimerasas Dirigidas por ADN/metabolismo , Humanos , Técnicas In Vitro , Cinética , Metiltransferasas/química , Mitocondrias/genética , Mitocondrias/metabolismo , Proteínas Mitocondriales/química , Modelos Moleculares , Imitación Molecular/genética , Fosforilación , Regiones Promotoras Genéticas , Dominios y Motivos de Interacción de Proteínas , Procesamiento Proteico-Postraduccional , Factores de Transcripción/química , Sitio de Iniciación de la Transcripción , Transcripción Genética
11.
Cancer Discov ; 10(9): 1312-1329, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32546577

RESUMEN

Tumor progression upon treatment arises from preexisting resistant cancer cells and/or adaptation of persister cancer cells committing to an expansion phase. Here, we show that evasion from viral mimicry response allows the growth of taxane-resistant triple-negative breast cancer (TNBC). This is enabled by an epigenetic state adapted to taxane-induced metabolic stress, where DNA hypomethylation over loci enriched in transposable elements (TE) is compensated by large chromatin domains of H3K27me3 to warrant TE repression. This epigenetic state creates a vulnerability to epigenetic therapy against EZH2, the H3K27me3 methyltransferase, which alleviates TE repression in taxane-resistant TNBC, leading to double-stranded RNA production and growth inhibition through viral mimicry response. Collectively, our results illustrate how epigenetic states over TEs promote cancer progression under treatment and can inform about vulnerabilities to epigenetic therapy. SIGNIFICANCE: Drug-resistant cancer cells represent a major barrier to remission for patients with cancer. Here we show that drug-induced metabolic perturbation and epigenetic states enable evasion from the viral mimicry response induced by chemotherapy in TNBC. These epigenetic states define a vulnerability to epigenetic therapy using EZH2 inhibitors in taxane-resistant TNBC.See related commentary by Janin and Esteller, p. 1258.This article is highlighted in the In This Issue feature, p. 1241.


Asunto(s)
Antineoplásicos/farmacología , Epigénesis Genética/inmunología , Imitación Molecular/inmunología , Neoplasias de la Mama Triple Negativas/inmunología , Escape del Tumor/genética , Animales , Antineoplásicos/uso terapéutico , Línea Celular Tumoral , Secuenciación de Inmunoprecipitación de Cromatina , Metilación de ADN/efectos de los fármacos , Metilación de ADN/inmunología , Elementos Transponibles de ADN/genética , Progresión de la Enfermedad , Resistencia a Antineoplásicos/genética , Resistencia a Antineoplásicos/inmunología , Proteína Potenciadora del Homólogo Zeste 2/antagonistas & inhibidores , Proteína Potenciadora del Homólogo Zeste 2/metabolismo , Epigénesis Genética/efectos de los fármacos , Femenino , Humanos , Ratones , Imitación Molecular/genética , Paclitaxel/farmacología , Paclitaxel/uso terapéutico , ARN Bicatenario/inmunología , ARN Bicatenario/metabolismo , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/patología , Ensayos Antitumor por Modelo de Xenoinjerto
12.
RNA ; 26(9): 1198-1215, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32424019

RESUMEN

In Escherichia coli, endoribonuclease RNase E initiates degradation of many RNAs and represents a hub for post-transcriptional regulation. The tetrameric adaptor protein RapZ targets the small regulatory RNA GlmZ to degradation by RNase E. RapZ binds GlmZ through a domain located at the carboxyl terminus and interacts with RNase E, promoting GlmZ cleavage in the base-pairing region. When necessary, cleavage of GlmZ is counteracted by the homologous small RNA GlmY, which sequesters RapZ through molecular mimicry. In the current study, we addressed the molecular mechanism employed by RapZ. We show that RapZ mutants impaired in RNA-binding but proficient in binding RNase E are able to stimulate GlmZ cleavage in vivo and in vitro when provided at increased concentrations. In contrast, a truncated RapZ variant retaining RNA-binding activity but incapable of contacting RNase E lacks this activity. In agreement, we find that tetrameric RapZ binds the likewise tetrameric RNase E through direct interaction with its large globular domain within the catalytic amino terminus, independent of RNA. Although RapZ stimulates cleavage of at least one non-cognate RNA by RNase E in vitro, its activity is restricted to GlmZ in vivo as revealed by RNA sequencing, suggesting that certain features within the RNA substrate are also required for cleavage. In conclusion, RapZ boosts RNase E activity through interaction with its catalytic domain, which represents a novel mechanism of RNase E activation. In contrast, RNA-binding has a recruiting role, increasing the likelihood that productive RapZ/GlmZ/RNase E complexes form.


Asunto(s)
Endorribonucleasas/genética , Proteínas de Escherichia coli/genética , Mapas de Interacción de Proteínas/genética , ARN Pequeño no Traducido/genética , Proteínas de Unión al ARN/genética , Proteínas Adaptadoras Transductoras de Señales/genética , Emparejamiento Base/genética , Catálisis , Escherichia coli/genética , Regulación Bacteriana de la Expresión Génica/genética , Imitación Molecular/genética , Estabilidad del ARN/genética
13.
Mol Phylogenet Evol ; 149: 106847, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32380285

RESUMEN

The family Epicopeiidae is a small group of day-flying moths, known for mimicking many different groups of butterflies and moths. So far, there still lacks a reliable phylogenetic framework of Epicopeiidae that is necessary to our understanding of the evolutionary process of their mimicry. In this study, we sequenced 94 nuclear protein-coding markers for 56 epicopeiid samples and 11 outgroups, covering all ten genera of Epicopeiidae. We used homemade PCR-generated baits to capture target sequences, which allowed us to utilize old and dried specimens that were difficult to handle by conventional PCR + Sanger sequencing. Maximum likelihood and Bayesian analyses of the newly obtained dataset (86,388 bp) at both DNA and protein levels produced identical phylogenies with strong support. The non-mimicry genus Deuveia is the sister group of other epicopeiid genera. Epicopeia and Nossa are not monophyletic, and these two genera nest together to form a clade. We also estimated divergence times of Epicopeiidae and found that their initial diversification happened in Eocene about 41 million years ago. The ancestral state reconstruction of mimicry type for this family suggested that thelast common ancestor of epicopeiid moths is non-mimetic, and the Riodinidae-mimicry type evolved first. In summary, our work provides a comprehensive and robust time-calibrated phylogeny of Epicopeiidae that provides a sound framework for revising their classification and interpreting character evolution.


Asunto(s)
Evolución Biológica , Mariposas Diurnas/genética , Sitios Genéticos , Imitación Molecular/genética , Mariposas Nocturnas/genética , Animales , Secuencia de Bases , Teorema de Bayes , Mariposas Diurnas/clasificación , Filogenia , Factores de Tiempo
14.
J Clin Invest ; 130(5): 2673-2688, 2020 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-32310221

RESUMEN

Tumor-associated peptide-human leukocyte antigen complexes (pHLAs) represent the largest pool of cell surface-expressed cancer-specific epitopes, making them attractive targets for cancer therapies. Soluble bispecific molecules that incorporate an anti-CD3 effector function are being developed to redirect T cells against these targets using 2 different approaches. The first achieves pHLA recognition via affinity-enhanced versions of natural TCRs (e.g., immune-mobilizing monoclonal T cell receptors against cancer [ImmTAC] molecules), whereas the second harnesses an antibody-based format (TCR-mimic antibodies). For both classes of reagent, target specificity is vital, considering the vast universe of potential pHLA molecules that can be presented on healthy cells. Here, we made use of structural, biochemical, and computational approaches to investigate the molecular rules underpinning the reactivity patterns of pHLA-targeting bispecifics. We demonstrate that affinity-enhanced TCRs engage pHLA using a comparatively broad and balanced energetic footprint, with interactions distributed over several HLA and peptide side chains. As ImmTAC molecules, these TCRs also retained a greater degree of pHLA selectivity, with less off-target activity in cellular assays. Conversely, TCR-mimic antibodies tended to exhibit binding modes focused more toward hot spots on the HLA surface and exhibited a greater degree of crossreactivity. Our findings extend our understanding of the basic principles that underpin pHLA selectivity and exemplify a number of molecular approaches that can be used to probe the specificity of pHLA-targeting molecules, aiding the development of future reagents.


Asunto(s)
Antígenos HLA/inmunología , Péptidos/inmunología , Receptores de Antígenos de Linfocitos T/inmunología , Secuencia de Aminoácidos , Anticuerpos Biespecíficos/química , Anticuerpos Biespecíficos/genética , Anticuerpos Biespecíficos/inmunología , Anticuerpos Antineoplásicos/química , Anticuerpos Antineoplásicos/genética , Anticuerpos Antineoplásicos/inmunología , Especificidad de Anticuerpos , Antígenos de Neoplasias/química , Antígenos de Neoplasias/genética , Antígenos de Neoplasias/inmunología , Línea Celular , Línea Celular Tumoral , Cristalografía por Rayos X , Antígenos HLA/química , Antígenos HLA/genética , Humanos , Indicadores y Reactivos , Modelos Moleculares , Simulación de Dinámica Molecular , Imitación Molecular/genética , Imitación Molecular/inmunología , Péptidos/química , Péptidos/genética , Receptores de Antígenos de Linfocitos T/química , Receptores de Antígenos de Linfocitos T/genética , Linfocitos T/inmunología
15.
Elife ; 92020 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-32039758

RESUMEN

Bacteriophage T7 infects Escherichia coli and evades the host restriction/modification system. The Ocr protein of T7 was shown to exist as a dimer mimicking DNA and to bind to host restriction enzymes, thus preventing the degradation of the viral genome by the host. Here we report that Ocr can also inhibit host transcription by directly binding to bacterial RNA polymerase (RNAP) and competing with the recruitment of RNAP by sigma factors. Using cryo electron microscopy, we determined the structures of Ocr bound to RNAP. The structures show that an Ocr dimer binds to RNAP in the cleft, where key regions of sigma bind and where DNA resides during transcription synthesis, thus providing a structural basis for the transcription inhibition. Our results reveal the versatility of Ocr in interfering with host systems and suggest possible strategies that could be exploited in adopting DNA mimicry as a basis for forming novel antibiotics.


Bacteria and viruses have long been fighting amongst themselves. Bacteriophages are a type of virus that invade bacteria; their name literally means 'bacteria eater'. The bacteriophage T7, for example, infects the common bacteria known as Escherichia coli. Once inside, the virus hijacks the bacterium's cellular machinery, using it to replicate its own genetic material and make more copies of the virus so it can spread. At the same time, the bacteria have found ways to try and defend themselves, which in turn has led some bacteriophages to develop countermeasures to overcome those defences. Many bacteria, for example, have restriction enzymes which recognise certain sections of the bacteriophage DNA and cut it into fragments. However, the T7 bacteriophage has one well-known protein called Ocr which inhibits restriction enzymes. Ocr does this by mimicking DNA, which led Ye et al. to wonder if it could also interrupt other vital processes in a bacterial cell that involve DNA. Transcription is the first step in a coordinated process that turns the genetic information stored in a cell's DNA into useful proteins. An enzyme called RNA polymerase decodes the DNA sequence into a go-between molecule called messenger RNA, and it was here that Ye et al. thought Ocr might jump in to interfere. To begin, Ye et al. examined the structure of Ocr when it binds to RNA polymerase using an imaging technique called cryo-electron microscopy. Ocr has been well-studied before, its structure previously described, but not when attached to RNA polymerase. The analysis showed that Ocr gets in the way of specific molecules, called sigma factors, that show RNA polymerase where to start transcription. Ocr binds to RNA polymerase in exactly the same pocket as part of sigma factors do, which is also the place where DNA must be to be decoded to make messenger RNA. Ye et al. then performed experiments to show Ocr interfering with binding to RNA polymerase did indeed disrupt transcription. This means Ocr is quite versatile as it interferes with the RNA polymerase of the bacterial host and its restriction enzymes. Ocr's strategy of mimicking DNA to interrupt transcription could be adopted as an approach to develop new antibiotics to stop bacterial infections. DNA transcription is an essential cellular process ­ without it, no cell can replicate and survive ­ and RNA polymerase is already a validated target for drugs. Following Ocr's lead could provide a new way to stop infections, if the right drug can be designed to fit.


Asunto(s)
Transcripción Genética/genética , Proteínas Virales , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Bacteriófago T7/genética , Bacteriófago T7/metabolismo , ARN Polimerasas Dirigidas por ADN/química , ARN Polimerasas Dirigidas por ADN/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Modelos Moleculares , Imitación Molecular/genética , Unión Proteica , Factor sigma/química , Factor sigma/metabolismo , Proteínas Virales/química , Proteínas Virales/genética , Proteínas Virales/metabolismo
16.
Acta Biochim Biophys Sin (Shanghai) ; 52(1): 49-57, 2020 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-31828293

RESUMEN

Gastric cancer (GC) is one of malignant tumors with high mortality and morbidity in the world. MicroRNA-122 (miR-122) acts as a tumor suppressor in a variety of cancers and has been found to be dominant in gastric adenocarcinoma. However, the specific biological function of miR-122-5p in GC is not completely clear. In this study, we found that miR-122-5p was low-expressed in GC tissues and cell lines by using qRT-PCR. Overexpression of miR-122-5p inhibited the proliferation, migration, and invasion of GC cells by using CCK-8 and transwell assays. On the contrary, downregulation of miR-122-5p promoted the proliferation, migration, and invasion of GC cells. In addition, we found that the expression of LYN, an Src family tyrosine kinase, was inversely correlated with miR-122-5p expression in GC tissues by using western blot analysis, immunohistochemistry, and qRT-PCR assays. Meanwhile, luciferase assay results indicated that LYN is a direct target of miR-122-5p in GC cells. Moreover, silencing LYN expression by its siRNA inhibited the proliferation, migration, and invasion of GC cells. Importantly, overexpression of LYN restored miR-122-5p-mediated inhibition of the proliferation, migration, and invasion of GC cells. Taken together, our results indicated miR-122-5p inhibited the proliferation, migration, and invasion by targeting LYN in GC.


Asunto(s)
Movimiento Celular/genética , Proliferación Celular/genética , MicroARNs/genética , MicroARNs/metabolismo , Invasividad Neoplásica/genética , Neoplasias Gástricas/metabolismo , Familia-src Quinasas/genética , Familia-src Quinasas/metabolismo , Regiones no Traducidas 3'/genética , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Técnicas de Silenciamiento del Gen , Humanos , Imitación Molecular/genética , Mutación , ARN Interferente Pequeño/genética , Neoplasias Gástricas/patología , Transfección
17.
Artif Cells Nanomed Biotechnol ; 47(1): 3976-3984, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31591913

RESUMEN

MicroRNAs (miRNAs) play a key role in various pathological processes like atrial fibrillation (AF), which is a common cardiac arrhythmia. Exosomes are essential information carrier in the intercellular communication. Therefore, this study aimed to investigate the effects of exosomal miR-320d on cardiomyocytes with AF and related mechanisms. To do this, AMSCs were transfected with miR-320d mimics, AMSCs-derived exosomes were co-cultured with cardiomyocytes with AF. MTT, TUNEL staining, flow cytometry, real-time PCR, western blots, and luciferase reporter assays were performed. The results revealed that miR-320d expression was decreased in AF cardiomyocytes. AF increased apoptosis and reduced cell viability in cardiomyocytes. By transfection with miR-320d mimics, the miR-320d level was increased in AMSCs, exosomes and cardiomyocytes, which reversed the effect of AF on cardiomyocytes. STAT3 was down-regulated in AF cardiomyocytes and was a direct target gene of miR-320d. Inhibition of STAT3 abolished the effect of modified exosomes in cardiomyocytes, causing decreased apoptosis and increased cell viability. Taken together, the results suggested that exosomal miR-320d was associated with AF cardiomyocytes apoptosis and cell viability and that the effect of miR-320d on cardiomyocytes is STAT3-dependent. Therefore, this study provides a novel understanding of the molecular basis of AF and provides insight into therapeutic strategies for AF.


Asunto(s)
Apoptosis , Fibrilación Atrial/patología , Exosomas/metabolismo , Células Madre Mesenquimatosas/metabolismo , MicroARNs/metabolismo , Miocitos Cardíacos/patología , Animales , Apoptosis/genética , Fibrilación Atrial/genética , Fibrilación Atrial/metabolismo , Supervivencia Celular , Células Cultivadas , Técnicas de Cocultivo , Exosomas/genética , Expresión Génica , Regulación de la Expresión Génica , Masculino , Ratones , Ratones Endogámicos C57BL , MicroARNs/genética , Imitación Molecular/genética , Miocitos Cardíacos/metabolismo , Factor de Transcripción STAT3/genética , Factor de Transcripción STAT3/metabolismo
18.
Arch Biochem Biophys ; 666: 73-82, 2019 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-30951682

RESUMEN

Double-strand breaks (DSBs), the most serious lesions of DNA, often induce chromosomal aberrations and are intimately associated with oncogenesis. A normal DNA damage response (DDR) network contains two major repair pathways: homologous recombination (HR) and non-homologous end-joining (NHEJ). Studies of DSB repair-associated molecules have focused mainly on DNA repair proteins. However, non-coding RNAs also play important roles in the process of DSB repair. Over the past two decades, microRNAs (miRNAs) have been extensively investigated. Our previous work showed that miR-34c-5p overexpression results in suppression of RAD51 and upregulation of γH2AX. In accordance with this, we confirmed that miR-34s family overexpression increased endogenous DSB levels to different extents, an effect that was further confirmed to be associated with the decreased efficiency of HR repair. In addition, miR-34s overexpression also induced G1 arrest, inhibited proliferation and promoted apoptosis. As a central molecule in the process of HR pathway, RAD51 expression was strongly repressed in cells transfected with the miR-34a/b/c-5p mimic. Finally, we demonstrated that miR-34a/b/c-5p directly targets the RAD51 mRNA 3'-UTR or indirectly inhibits RAD51 expression via the p53 signaling pathway. Taken together, our results indicate that miR-34s overexpression depresses the efficiency of HR repair and induces DSBs by downregulating RAD51 expression. Our findings highlight a novel mechanism of HR pathway regulation via the miR-34s/p53/RAD51 axis.


Asunto(s)
Recombinación Homóloga , MicroARNs/genética , Recombinasa Rad51/antagonistas & inhibidores , Regiones no Traducidas 3' , Apoptosis/genética , Línea Celular Tumoral , Proliferación Celular/genética , Roturas del ADN de Doble Cadena , Regulación hacia Abajo , Células HCT116 , Células HT29 , Histonas/metabolismo , Humanos , MicroARNs/metabolismo , Imitación Molecular/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Recombinasa Rad51/genética , Proteína p53 Supresora de Tumor/metabolismo , Regulación hacia Arriba
19.
J Cell Biochem ; 120(1): 126-134, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30218446

RESUMEN

Clear cell renal cell carcinoma (ccRCC) is the most popular kidney cancer in adults. Metabolic shift toward aerobic glycolysis is a fundamental factor for ccRCC therapy. MicroRNAs (miRNAs) are thought to be important regulators in ccRCC development and progression. Phosphoinositide-dependent kinase 1 (PDK1) is required for metabolic activation; however, the role of PDK1-induced glycolytic metabolism regulated by miRNAs is unclear in ccRCC. So, the purpose of the current study is to elucidate the underlying mechanism in ccRCC cell metabolism mediated by PDK1. Our results revealed that miR-409-3p inhibited glycolysis by regulating PDK1 expression in ccRCC cells. We also found that miR-409-3p was regulated by hypoxia. Our results indicated that PDK1 facilitated ccRCC cell glycolysis, regulated by miR-409-3p in hypoxia.


Asunto(s)
Proteínas Quinasas Dependientes de 3-Fosfoinosítido/metabolismo , Carcinoma de Células Renales/metabolismo , Glucólisis , Neoplasias Renales/metabolismo , MicroARNs/metabolismo , Proteínas Quinasas Dependientes de 3-Fosfoinosítido/genética , Carcinoma de Células Renales/patología , Carcinoma de Células Renales/cirugía , Hipoxia de la Célula , Línea Celular Tumoral , Proliferación Celular , Regulación Neoplásica de la Expresión Génica , Técnicas de Silenciamiento del Gen , Glucosa/metabolismo , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Neoplasias Renales/patología , Neoplasias Renales/cirugía , MicroARNs/química , Imitación Molecular/genética , Consumo de Oxígeno , Transfección
20.
J Cell Biochem ; 120(2): 1894-1902, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30187954

RESUMEN

Renal cell carcinoma (RCC) is one of the most common cancers in urology. MicroRNA-125a (miR-125a) has been demonstrated to be implicated in various cancers. However, the functional role of miR-125a in RCC remains largely unclear. This study was aimed to investigate the functional role of miR-125a and the expression relevance of signal transducers and activators of transcription 3 (STAT3) with hyaluronic acid synthase 1 (HAS1) in RCC. We revealed that miR-125a was downexpressed in 786-O cells, and examined transfected efficiency. According to functional assay, overexpression of miR-125a inhibited cell migration and cell invasion, but no obvious effect was observed on cell proliferation. The luciferase activity assay showed that miR-125a could directly target STAT3 3'-untranslated regions. Meanwhile, quantitative polymerase chain reaction (qPCR) assay and Western blot analysis demonstrated that miR-125a could inhibit STAT3 expression at both messenger RNA and protein levels. Furthermore, the combination sites between STAT3 and HAS1 were predicted by prediction of transcription factor binding sites database analysis. The expression of STAT3 was correlated with HAS1 expression, exemplified by the same tendency detected by qPCR assay. Taken together, our results preliminarily demonstrate that miR-125a could constrain cell migration, invasion, and regulate HAS1 expression in RCC cells by targeting STAT3. It is likely to facilitate a better understanding of the regulation mechanisms of miR-125a in RCC.


Asunto(s)
Carcinoma de Células Renales/metabolismo , Movimiento Celular/genética , Hialuronano Sintasas/genética , Neoplasias Renales/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Invasividad Neoplásica/genética , Factor de Transcripción STAT3/metabolismo , Regiones no Traducidas 3'/genética , Sitios de Unión/genética , Carcinoma de Células Renales/patología , Línea Celular Tumoral , Proliferación Celular/genética , Regulación Neoplásica de la Expresión Génica/genética , Humanos , Neoplasias Renales/patología , Imitación Molecular/genética , Regiones Promotoras Genéticas/genética , Factor de Transcripción STAT3/genética , Transducción de Señal/genética , Transfección
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA