Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 489
Filtrar
1.
Avian Dis ; 68(3): 225-230, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39400217

RESUMEN

Avian influenza virus (AIV) causes frequent outbreaks in poultry with high morbidity and mortality. The virus can survive on different fomites, resulting in indirect transmission to susceptible hosts. We investigated the inactivation by ozonated water (O3W) of three different subtypes of AIV (H4N8, H4N6, and H9N9) on seven different fomites. All subtypes were sensitive on all fomites, but there was a slight variation in the sensitivity of different subtypes. For example, AIV H9N9 showed more than 99% reduction on denim fabric, polypropylene, and Styrofoam after 3 min of exposure. More than 97% of H4N8 was eliminated from cardboard, denim fabric, and stainless steel after 3 min of exposure. Subtype H4N6 was the least sensitive; highest inactivation (98%) was seen on cardboard and polypropylene after 3 min of exposure. In conclusion, O3W can inactivate a large percentage of AIV applied to fomites within 3 min in all tested subtypes. Interestingly, an increase in contact time to 10 min did not result in an increase in the virus inactivation rate, probably because of the low half-life of ozone. Further studies are needed to determine how the residual virus can be inactivated so that it does not pose a problem to naïve birds.


Inactivación comparativa de tres subtipos diferentes del virus de la influenza aviar mediante agua ozonizada. El virus de la influenza aviar causa frecuentes brotes en aves la avicultura con alta morbilidad y mortalidad. El virus puede sobrevivir en diferentes fómites, lo que resulta en transmisión indirecta a huéspedes susceptibles. Se investigó la inactivación mediante agua ozonizada de tres subtipos diferentes del virus de la influenza aviar (H4N8, H4N6 y H9N9) en siete fómites diferentes. Todos los subtipos fueron sensibles al agua ozonizada (O3W) en todos los fómites, pero hubo una ligera variación en la sensibilidad de los diferentes subtipos. Por ejemplo, el virus subtipo H9N9 mostró una reducción de más del 99 % en tela de mezclilla, polipropileno y espuma de poliestireno después de tres minutos de exposición. Más del 97% del subtipo H4N8 se eliminó del cartón, la mezclilla y el acero inoxidable después de tres minutos de exposición. El subtipo H4N6 fue el menos sensible; La inactivación más alta (98%) se observó en cartón y polipropileno después de tres minutos de exposición. En conclusión, el agua ozonizada puede inactivar un gran porcentaje del virus de influenza aviar aplicado a fómites en tres minutos en todos los subtipos estudiados. Curiosamente, un aumento en el tiempo de contacto a 10 minutos no resultó en un aumento en la tasa de inactivación del virus, probablemente debido a la baja vida media del ozono. Se necesitan más estudios para determinar cómo se puede inactivar el virus residual para que no represente un problema para las aves susceptibles.


Asunto(s)
Virus de la Influenza A , Ozono , Agua , Ozono/farmacología , Animales , Virus de la Influenza A/efectos de los fármacos , Virus de la Influenza A/fisiología , Agua/química , Gripe Aviar/virología , Inactivación de Virus/efectos de los fármacos , Fómites/virología
2.
BMC Microbiol ; 24(1): 413, 2024 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-39420248

RESUMEN

BACKGROUND: Non-enveloped viruses, which lack a lipid envelope, display higher resistance to disinfectants, soaps and sanitizers compared to enveloped viruses. The capsids of these viruses are highly stable and symmetric protein shells that resist inactivation by commonly employed virucidal agents. This group of viruses include highly transmissible human pathogens such as Rotavirus, Poliovirus, Foot and Mouth Disease Virus, Norovirus and Adenovirus; thus, devising appropriate strategies for chemical disinfection is essential. RESULTS: In this study, we tested a mild, hypoallergenic combination of a denaturant, alcohol, and organic acid (3.2% citric acid, 1% urea and 70% ethanol, pH4) on two representative non-enveloped viruses - Human Adenovirus 5 (HAdV5) and Feline Calicivirus (FCV)- and evaluated the pathways of capsid neutralization using biophysical methods. The conformational shifts in the capsid upon chemical treatment were studied using Differential Scanning Calorimetry (DSC), while the morphological alterations were visualized concurrently using Transmission Electron Microscopy (TEM). We found that while treatment of purified HAdV5 particles with a formulation resulted in thermal instability and, large scale aggregation; similar treatment of FCV particles resulted in complete collapse of the capsids. Further, while individual components of the formulation caused significant damage to the capsids, a synergistic action of the whole formulation was evident against both non-enveloped viruses tested. CONCLUSIONS: The distinct effects of the chemical treatment on the morphology of HAdV5 and FCV suggests that non-enveloped viruses with icosahedral geometry can follow different morphological pathways to inactivation. Synergistic effect of whole formulation is more effective compared to individual components. Molecular level understanding of inactivation pathways may result in the design and development of effective mass-market formulations for rapid neutralization of non-enveloped viruses.


Asunto(s)
Adenovirus Humanos , Calicivirus Felino , Cápside , Inactivación de Virus , Inactivación de Virus/efectos de los fármacos , Calicivirus Felino/efectos de los fármacos , Calicivirus Felino/fisiología , Adenovirus Humanos/efectos de los fármacos , Adenovirus Humanos/fisiología , Adenovirus Humanos/química , Adenovirus Humanos/ultraestructura , Cápside/efectos de los fármacos , Cápside/química , Cápside/ultraestructura , Proteínas de la Cápside/metabolismo , Proteínas de la Cápside/química , Desinfectantes/farmacología , Humanos , Microscopía Electrónica de Transmisión , Urea/farmacología , Urea/química , Urea/análogos & derivados , Ácido Cítrico/farmacología , Ácido Cítrico/química , Etanol/farmacología , Animales , Rastreo Diferencial de Calorimetría
3.
ACS Appl Mater Interfaces ; 16(37): 49176-49185, 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39240691

RESUMEN

Ultraviolet-C (UV-C) radiation and ozone gas are potential mechanisms employed to inactivate the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), each exhibiting distinct molecular-level modalities of action. To elucidate these disparities and deepen our understanding, we delve into the intricacies of SARS-CoV-2 inactivation via UV-C and ozone gas treatments, exploring their distinct molecular-level impacts utilizing a suite of advanced techniques, including biological atomic force microscopy (Bio-AFM) and single virus force spectroscopy (SVFS). Whereas UV-C exhibited no perceivable alterations in virus size or surface topography, ozone gas treatment elucidated pronounced changes in both parameters, intensifying with prolonged exposure. Furthermore, a nuanced difference was observed in virus-host cell binding post-treatment: ozone gas distinctly reduced SARS-CoV-2 binding to host cells, while UV-C maintained the status quo. The results derived from these methodical explorations underscore the pivotal role of advanced Bio-AFM techniques and SVFS in enhancing our understanding of virus inactivation mechanisms, offering invaluable insights for future research and applications in viral contamination mitigation.


Asunto(s)
COVID-19 , Microscopía de Fuerza Atómica , Ozono , SARS-CoV-2 , Rayos Ultravioleta , Inactivación de Virus , Ozono/química , Ozono/farmacología , SARS-CoV-2/efectos de los fármacos , Humanos , Inactivación de Virus/efectos de los fármacos , Inactivación de Virus/efectos de la radiación , Células Vero , Esterilización/métodos , Chlorocebus aethiops , Animales , Gases em Plasma/química , Gases em Plasma/farmacología
4.
Viruses ; 16(9)2024 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-39339831

RESUMEN

High-consequence pathogens such as the Ebola, Marburg, and Lassa viruses are handled in maximum-containment biosafety level 4 (BSL-4) laboratories. Genetic material is often isolated from such viruses and subsequently removed from BSL-4 laboratories for a multitude of downstream analyses using readily accessible technologies and equipment available at lower-biosafety level laboratories. However, it is essential to ensure that these materials are free of viable viruses before removal from BSL-4 laboratories to guarantee sample safety. This study details the in-house procedure used for validating the inactivation of Ebola, Marburg, and Lassa virus cultures after incubation with AVL lysis buffer (Qiagen) and ethanol. This study's findings show that no viable virus was detectable when high-titer cultures of Ebola, Marburg, and Lassa viruses were incubated with AVL lysis buffer for 10 min, followed by an equal volume of 95% ethanol for 3 min, using a method with a sensitivity of ≤0.8 log10 TCID50 as the limit of detection.


Asunto(s)
Ebolavirus , Etanol , Virus Lassa , Marburgvirus , Inactivación de Virus , Virus Lassa/efectos de los fármacos , Marburgvirus/efectos de los fármacos , Ebolavirus/efectos de los fármacos , Ebolavirus/fisiología , Etanol/farmacología , Inactivación de Virus/efectos de los fármacos , Animales , Humanos , Contención de Riesgos Biológicos/métodos , Fiebre de Lassa/virología , Cultivo de Virus/métodos , Chlorocebus aethiops , Células Vero
5.
Food Res Int ; 194: 114877, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39232515

RESUMEN

Human norovirus (HuNoV), the leading cause of foodborne acute gastroenteritis, poses a serious threat to public health. Traditional disinfection methods lead to destructions of food properties and functions, and/or environmental contaminations. Green and efficient approaches are urgently needed to disinfect HuNoV. Plasma-activated water (PAW) containing amounts of reactive species is an emerging nonthermal and eco-friendly disinfectant towards the pathogenic microorganisms. However, the disinfection efficacy and mechanism of PAW on HuNoV has not yet been studied. Murine norovirus 1 (MNV-1) is one of the most commonly used HuNoV surrogates to evaluate the efficacy of disinfectants. In the current study, the inactivation efficacy of MNV-1 by PAW was investigated. The results demonstrated that PAW significantly inactivated MNV-1, reducing the viral titer from approximately 6 log10 TCID50/mL to non-detectable level. The decreased pH, increased oxidation-reduction potential (ORP) and conductivity of PAW were observed compared with that of deionized water. Compositional analysis revealed that hydrogen peroxide (H2O2), nitrate (NO3-) and hydroxyl radical (OH) were the functional reactive species in MNV-1 inactivation. L-histidine could scavenge most of the inactivation effect in a concentration-dependent manner. Moreover, PAW could induce damage to viral proteins. Part of MNV-1 particles was destroyed, while others were structurally intact without infectiousness. After 45 days of storage at 4 °C, PAW generated with 80 % O2 and 100 % O2 could still reduce over 4 log10 TCID50/mL of the viral titer. In addition, PAW prepared using hard water induced approximately 6 log10 TCID50/mL reduction of MNV-1. PAW treatment of MNV-1-inoculated blueberries reduced the viral titer from 3.79 log10 TCID50/mL to non-detectable level. Together, findings of the current study uncovered the crucial reactive species in PAW inactivate MNV-1 and provided a potential disinfection strategy to combat HuNoV in foods, water, and environment.


Asunto(s)
Desinfectantes , Desinfección , Peróxido de Hidrógeno , Norovirus , Inactivación de Virus , Agua , Norovirus/efectos de los fármacos , Norovirus/fisiología , Inactivación de Virus/efectos de los fármacos , Animales , Ratones , Agua/química , Desinfectantes/farmacología , Desinfección/métodos , Gases em Plasma/farmacología , Radical Hidroxilo/metabolismo , Nitratos/farmacología , Concentración de Iones de Hidrógeno
6.
Int J Biol Macromol ; 278(Pt 3): 134865, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39163951

RESUMEN

The COVID-19 pandemic has revealed weaknesses in healthcare systems and underscored the need for advanced antimicrobial materials. This study investigates the quaternization of agar, a seaweed-derived polysaccharide, and the development of electrospun membranes for air filtration in facemasks and biomedical applications. Using the betacoronavirus MHV-3 as a model, quaternized agar and membranes achieved a 90-99.99 % reduction in viral load, without associated cytotoxicity. The quaternization process reduced the viscosity of the solution from 1.19 ± 0.005 to 0.64 ± 0.005 Pa.s and consequently the electrospun fiber diameter ranged from 360 to 185 nm. Membranes synthesized based on polyvinyl alcohol and thermally cross-linked with citric acid exhibited lower water permeability. Avoiding organic solvents in the electrospinning technique ensured eco-friendly production. This approach offers a promising way to develop biocompatible and functional materials for healthcare and environmental applications.


Asunto(s)
Agar , SARS-CoV-2 , Agar/química , SARS-CoV-2/efectos de los fármacos , COVID-19/virología , COVID-19/prevención & control , Humanos , Inactivación de Virus/efectos de los fármacos , Viscosidad , Membranas Artificiales , Animales , Alcohol Polivinílico/química , Alcohol Polivinílico/farmacología , Pandemias/prevención & control , Chlorocebus aethiops , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología
7.
Sci Rep ; 14(1): 15181, 2024 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-38956295

RESUMEN

Human norovirus (HuNoV) is an enteric infectious pathogen belonging to the Caliciviridae family that causes occasional epidemics. Circulating alcohol-tolerant viral particles that are readily transmitted via food-borne routes significantly contribute to the global burden of HuNoV-induced gastroenteritis. Moreover, contact with enzymes secreted by other microorganisms in the environment can impact the infectivity of viruses. Hence, understanding the circulation dynamics of Caliciviridae is critical to mitigating epidemics. Accordingly, in this study, we screened whether environmentally abundant secretase components, particularly proteases, affect Caliciviridae infectivity. Results showed that combining Bacillaceae serine proteases with epsilon-poly-L-lysine (EPL) produced by Streptomyces-a natural antimicrobial-elicited anti-Caliciviridae properties, including against the epidemic HuNoV GII.4_Sydney_2012 strain. In vitro and in vivo biochemical and virological analyses revealed that EPL has two unique synergistic viral inactivation functions. First, it maintains an optimal pH to promote viral surface conformational changes to the protease-sensitive structure. Subsequently, it inhibits viral RNA genome release via partial protease digestion at the P2 and S domains in the VP1 capsid. This study provides new insights regarding the high-dimensional environmental interactions between bacteria and Caliciviridae, while promoting the development of protease-based anti-viral disinfectants.


Asunto(s)
Bacillaceae , Polilisina , Serina Proteasas , Streptomyces , Streptomyces/enzimología , Polilisina/farmacología , Polilisina/química , Polilisina/metabolismo , Serina Proteasas/metabolismo , Bacillaceae/enzimología , ARN Viral/genética , ARN Viral/metabolismo , Humanos , Genoma Viral , Animales , Norovirus/efectos de los fármacos , Norovirus/genética , Inactivación de Virus/efectos de los fármacos , Caliciviridae/genética , Antivirales/farmacología
8.
ACS Appl Mater Interfaces ; 16(28): 37275-37287, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-38959130

RESUMEN

Titanium dioxide (TiO2) shows significant potential as a self-cleaning material to inactivate severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and prevent virus transmission. This study provides insights into the impact of UV-A light on the photocatalytic inactivation of adsorbed SARS-CoV-2 virus-like particles (VLPs) on a TiO2 surface at the molecular and atomic levels. X-ray photoelectron spectroscopy, combined with density functional theory calculations, reveals that spike proteins can adsorb on TiO2 predominantly via their amine and amide functional groups in their amino acids blocks. We employ atomic force microscopy and grazing-incidence small-angle X-ray scattering (GISAXS) to investigate the molecular-scale morphological changes during the inactivation of VLPs on TiO2 under light irradiation. Notably, in situ measurements reveal photoinduced morphological changes of VLPs, resulting in increased particle diameters. These results suggest that the denaturation of structural proteins induced by UV irradiation and oxidation of the virus structure through photocatalytic reactions can take place on the TiO2 surface. The in situ GISAXS measurements under an N2 atmosphere reveal that the virus morphology remains intact under UV light. This provides evidence that the presence of both oxygen and UV light is necessary to initiate photocatalytic reactions on the surface and subsequently inactivate the adsorbed viruses. The chemical insights into the virus inactivation process obtained in this study contribute significantly to the development of solid materials for the inactivation of enveloped viruses.


Asunto(s)
SARS-CoV-2 , Titanio , Rayos Ultravioleta , Titanio/química , Titanio/efectos de la radiación , SARS-CoV-2/efectos de la radiación , SARS-CoV-2/química , Inactivación de Virus/efectos de la radiación , Inactivación de Virus/efectos de los fármacos , Humanos , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/metabolismo , COVID-19/virología , COVID-19/prevención & control , Adsorción , Propiedades de Superficie
9.
Viruses ; 16(7)2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-39066189

RESUMEN

Viruses impose a significant public health burden globally, and one of the key elements in controlling their transmission is the ability to inactivate them using disinfectants. However, numerous challenges to inactivating foodborne viruses exist due to inherent viral characteristics (such as recalcitrance to commonly used inactivation agents) and external factors (such as improper cleaning before application of inactivation agent, improper contact time, etc.). Given the potential for improper application of disinfectants (such as shorter than recommended contact time, improper disinfectant concentration, etc.), understanding the performance of a disinfectant in the presence of an organic load is important. To accomplish this, the introduction of simulated organic loads is often used when studying the efficacy of a disinfectant against different viruses. However, the different types of simulated organic loads used in foodborne virus inactivation studies or their relative effects on inactivation have not been reviewed. The purpose of this review is to survey different simulated organic load formulations used in studying foodborne virus inactivation, as well as present and compare the influence of these different formulations on viral inactivation. The findings included in this review suggest that many simulated organic load formulations can reduce disinfectants' efficacy against viruses. Based on the findings in this review, blood, particularly serum or feces, are among the most commonly used and efficacious forms of simulated organic load in many tests.


Asunto(s)
Desinfectantes , Inactivación de Virus , Virus , Inactivación de Virus/efectos de los fármacos , Desinfectantes/farmacología , Virus/efectos de los fármacos , Humanos , Microbiología de Alimentos , Desinfección/métodos , Enfermedades Transmitidas por los Alimentos/prevención & control , Enfermedades Transmitidas por los Alimentos/virología , Compuestos Orgánicos/farmacología , Compuestos Orgánicos/química
10.
Viruses ; 16(7)2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-39066225

RESUMEN

Infectious diseases are a leading cause of losses in the aquaculture industry and conservation programs globally. Simultaneously, infectious diseases pose a substantial risk to fish being hatchery-reared and released into natural habitats for conservation purposes, including the Great Lakes lake sturgeon (Acipenser fulvescens, i.e., GL-LST). Recently, an alloherpesvirus (lake sturgeon herpesvirus 2, i.e., LSHV-2) capable of inducing disease and/or mortality in adult and juvenile GL-LSTs was detected in two adult GL-LST populations. To begin developing disease prevention and/or control methods, in vitro experiments were designed to determine the susceptibility of LSHV-2 to disinfectants commonly used in hatchery and aquaculture facilities (Virkon®-Aquatic: potassium peroxymonosulfate; Ovadine®: polyvinylpyrrolidone iodine complex; and Perox-Aid®: hydrogen peroxide). Cultured LSHV-2 was exposed to each disinfectant at two concentrations (Virkon®-Aquatic: 0.5% and 1%; Ovadine®: 50 and 100 ppm; and Perox-Aid®: 500 and 1000 ppm) in duplicate for durations of 1, 10, and 30 min. Following exposure, the disinfectant was neutralized, and after a 14-day incubation period on a white sturgeon × lake sturgeon hybrid cell line (WSxLS), percent reduction was calculated by comparing the 50% tissue culture infectious doses (TCID50/mL) of the virus with and without disinfectant exposure. When exposed to Perox-Aid®, LSHV-2 percent reduction ranged from 58.7% to 99.5%. When exposed to Ovadine®, the percent reduction ranged from 99.4% to 100%. Lastly, the percent reduction when exposed to Virkon®-Aquatic was 100% for both concentrations and all timepoints. The results herein provide evidence that both Virkon®-Aquatic and Ovadine® are virucidal to LSHV-2 and may represent a means to reduce virus transmission risk under field settings.


Asunto(s)
Desinfectantes , Enfermedades de los Peces , Peces , Herpesviridae , Animales , Desinfectantes/farmacología , Peces/virología , Enfermedades de los Peces/virología , Enfermedades de los Peces/prevención & control , Herpesviridae/efectos de los fármacos , Acuicultura , Inactivación de Virus/efectos de los fármacos , Lagos/virología , Infecciones por Herpesviridae/veterinaria , Infecciones por Herpesviridae/virología , Infecciones por Herpesviridae/prevención & control , Infecciones por Herpesviridae/transmisión , Povidona Yodada/farmacología , Peróxido de Hidrógeno/farmacología , Línea Celular , Peróxidos , Ácidos Sulfúricos
11.
Eur J Pharm Biopharm ; 201: 114387, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38944210

RESUMEN

Monoclonal antibodies (mAbs) are an essential class of therapeutic proteins for the treatment of cancer, autoimmune and rare diseases. During their production, storage, and administration processes, these proteins encounter various stressors such as temperature fluctuations, vibrations, and light exposure, able to induce chemico-physical modifications to their structure. Viral inactivation is a key step in downstream processes, and it is achieved by titration of the mAb at low pH, followed by neutralization. The changes of the pH pose a significant risk of unfolding and subsequent aggregation to proteins, thereby affecting their manufacturing. This study aims to investigate whether a combined exposure to light during the viral inactivation process can further affect the structural integrity of Ipilimumab, a mAb primarily used in the treatment of metastatic melanoma. The biophysical and biochemical characterization of Ipilimumab revealed that pH variation is a considerable risk for its stability with irreversible unfolding at pH 2. The threshold for Ipilimumab denaturation lies between pH 2 and 3 and is correlated with the loss of the protein structural cooperativity, which is the most critical factor determining the protein refolding. Light has demonstrated to exacerbate some local and global effects making pH-induced exposed regions more vulnerable to structural and chemical changes. Therefore, specific precautions to real-life exposure to ambient light during the sterilization process of mAbs should be considered to avoid loss of the therapeutic activity and to increase the yield of production. Our findings underscore the critical role of pH optimization in preserving the structural integrity and therapeutic efficacy of mAbs. Moreover, a detailed conformational study on the structural modifications of Ipilimumab may improve the chemico-physical knowledge of this effective drug and suggest new production strategies for more stable products under some kind of stress conditions.


Asunto(s)
Ipilimumab , Luz , Concentración de Iones de Hidrógeno , Ipilimumab/administración & dosificación , Ipilimumab/farmacología , Desplegamiento Proteico , Inactivación de Virus/efectos de los fármacos , Inactivación de Virus/efectos de la radiación , Estabilidad Proteica , Estabilidad de Medicamentos , Desnaturalización Proteica , Temperatura , Humanos , Antineoplásicos Inmunológicos/química , Antineoplásicos Inmunológicos/farmacología , Antineoplásicos Inmunológicos/administración & dosificación , Melanoma/tratamiento farmacológico
12.
PLoS Negl Trop Dis ; 18(6): e0012264, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38900788

RESUMEN

Despite continued outbreaks of yellow fever virus (YFV) in endemic regions, data on its environmental stability or guidelines for its effective inactivation is limited. Here, we evaluated the susceptibility of the YFV 17D vaccine strain to inactivation by ethanol, 2-propanol, World Health Organization (WHO)-recommended hand rub formulations I and II, as well as surface disinfectants. In addition, two pathogenic strains were tested to compare inactivation kinetics by WHO-recommended hand rub formulations I and II. Furthermore, environmental stability of the vaccine strain was assessed. YFV 17D particles displayed infectivity half-life decay profiles of ~13 days at room temperature. Despite this extended environmental stability, YFV was efficiently inactivated by alcohols, WHO-recommended hand formulations, and four out of five tested surface disinfectants. These results are useful in defining disinfection protocols to prevent non-vector borne YFV transmission.


Asunto(s)
Desinfectantes , Inactivación de Virus , Organización Mundial de la Salud , Virus de la Fiebre Amarilla , Virus de la Fiebre Amarilla/efectos de los fármacos , Desinfectantes/farmacología , Inactivación de Virus/efectos de los fármacos , Humanos , Fiebre Amarilla/prevención & control , Fiebre Amarilla/transmisión , Fiebre Amarilla/virología , Desinfección de las Manos/métodos , Animales , Chlorocebus aethiops
13.
Environ Sci Technol ; 58(27): 12260-12271, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38923944

RESUMEN

Despite the critical importance of virus disinfection by chlorine, our fundamental understanding of the relative susceptibility of different viruses to chlorine and robust quantitative relationships between virus disinfection rate constants and environmental parameters remains limited. We conducted a systematic review of virus inactivation by free chlorine and used the resulting data set to develop a linear mixed model that estimates chlorine inactivation rate constants for viruses based on experimental conditions. 570 data points were collected in our systematic review, representing 82 viruses over a broad range of environmental conditions. The harmonized inactivation rate constants under reference conditions (pH = 7.53, T = 20 °C, [Cl-] < 50 mM) spanned 5 orders of magnitude, ranging from 0.0196 to 1150 L mg-1 min-1, and uncovered important trends between viruses. Whereas common surrogate bacteriophage MS2 does not serve as a conservative chlorine disinfection surrogate for many human viruses, CVB5 was one of the most resistant viruses in the data set. The model quantifies the role of pH, temperature, and chloride levels across viruses, and an online tool allows users to estimate rate constants for viruses and conditions of interest. Results from the model identified potential shortcomings in current U.S. EPA drinking water disinfection requirements.


Asunto(s)
Cloro , Desinfección , Cloro/farmacología , Inactivación de Virus/efectos de los fármacos , Virus/efectos de los fármacos , Desinfectantes/farmacología
14.
Biochem Biophys Res Commun ; 715: 149994, 2024 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-38692139

RESUMEN

Many virus lysis/transport buffers used in molecular diagnostics, including the detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA, contain guanidine-based chaotropic salts, primarily guanidine hydrochloride (GuHCl) or guanidine isothiocyanate (GITC). Although the virucidal effects of GuHCl and GITC alone against some enveloped viruses have been established, standardized data on their optimum virucidal concentrations against SARS-CoV-2 and effects on viral RNA stability are scarce. Thus, we aimed to determine the optimum virucidal concentrations of GuHCl and GITC against SARS-CoV-2 compared to influenza A virus (IAV), another enveloped respiratory virus. We also evaluated the effectiveness of viral RNA stabilization at the determined optimum virucidal concentrations under high-temperature conditions (35°C) using virus-specific real-time reverse transcription polymerase chain reaction. Both viruses were potently inactivated by 1.0 M GITC and 2.5 M GuHCl, but the GuHCl concentration for efficient SARS-CoV-2 inactivation was slightly higher than that for IAV inactivation. GITC showed better viral RNA stability than GuHCl at the optimum virucidal concentrations. An increased concentration of GuHCl or GITC increased viral RNA degradation at 35°C. Our findings highlight the need to standardize GuHCl and GITC concentrations in virus lysis/transport buffers and the potential application of these guanidine-based salts alone as virus inactivation solutions in SARS-CoV-2 and IAV molecular diagnostics.


Asunto(s)
Guanidina , Virus de la Influenza A , ARN Viral , SARS-CoV-2 , Manejo de Especímenes , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/genética , Virus de la Influenza A/efectos de los fármacos , Virus de la Influenza A/genética , Guanidina/farmacología , Guanidina/química , ARN Viral/genética , Humanos , Manejo de Especímenes/métodos , Genoma Viral , COVID-19/virología , COVID-19/diagnóstico , Chlorocebus aethiops , Células Vero , Inactivación de Virus/efectos de los fármacos , Animales , Estabilidad del ARN/efectos de los fármacos , Contención de Riesgos Biológicos , Guanidinas/farmacología , Guanidinas/química , Sales (Química)/farmacología , Sales (Química)/química
15.
Sci Total Environ ; 939: 173447, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-38788942

RESUMEN

Transmission of airborne infectious diseases poses great risk for public health and socio-economic stability, thus, there is a need for an effective control method targeting the spread and transmission of pathogenic aerosols. The existence of chemically-reductive trace air contaminants in animal agriculture may affect the oxidation inactivation process of pathogens. In this study, we report how the presence of such gasses impacts the effectiveness of using non-thermal plasma (NTP) within a packed-bed dielectric barrier discharge reactor to inactivate MS2 bacteriophage. Inactivation of the aerosolized bacteriophage is determined by the combination of viability and polymerase chain reaction assays. Using a plasma power source with a voltage of 20 kV and frequency of 350 Hz, after differentiating and excluding the physical removal effects of viral aerosols potentially caused by plasma, the baseline inactivation of MS2 aerosol in air has been determined based on an overall air flow rate of 200 Liters per minute and plasma discharge power of 1.8 W. When either ammonia or hydrogen sulfide gas is introduced into the airstream at a concentration of 1 part per million, the NTP virus inactivation efficiency is reduced to around 0.5-log from the 1-log baseline inactivation in air alone. Higher concentrations of those gasses will not further inhibit the effectiveness of plasma inactivation.


Asunto(s)
Microbiología del Aire , Gases em Plasma , Inactivación de Virus , Inactivación de Virus/efectos de los fármacos , Aerosoles , Levivirus/efectos de los fármacos , Contaminantes Atmosféricos
16.
Anal Chem ; 96(23): 9332-9342, 2024 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-38810147

RESUMEN

Virus inactivation is a prerequisite for safe handling of high-risk infectious samples. ß-Propiolactone (BPL) is an established reagent with proven virucidal efficacy. BPL primarily reacts with DNA, RNA, and amino acids. The latter may modify antigenic protein epitopes interfering with binding properties of affinity reagents such as antibodies and aptamers used in affinity proteomic screens. We investigated (i) the impact of BPL treatment on the analysis of protein levels in plasma samples using the aptamer-based affinity proteomic platform SomaScan and (ii) effects on protein detection in conditioned medium samples using the proximity extension assay-based Olink Target platform. In the former setup, BPL-treated and native plasma samples from patients with ovarian cancer (n = 12) and benign diseases (n = 12) were analyzed using the SomaScan platform. In the latter, conditioned media samples collected from cultured T cells with (n = 3) or without (n = 3) anti-CD3 antibody stimulation were analyzed using the Olink Target platform. BPL-related changes in protein detection were evaluated comparing native and BPL-treated states, simulating virus inactivation, and impact on measurable group differences was assessed. While approximately one-third of SomaScan measurements were significantly changed by the BPL treatment, a majority of antigen/aptamer interactions remained unaffected. Interaction effects of BPL treatment and disease state, potentially altering detectability of group differences, were observable for less than one percent of targets (0.6%). BPL effects on protein detection with Olink Target were also limited, affecting 3.6% of detected proteins with no observable interaction effects. Thus, effects of BPL treatment only moderately interfere with affinity proteomic detectability of differential protein expression between different experimental groups. Overall, the results prove high-throughput affinity proteomics well suited for the analysis of high-risk samples inactivated using BPL.


Asunto(s)
Propiolactona , Proteómica , Humanos , Propiolactona/farmacología , Propiolactona/metabolismo , Propiolactona/química , Femenino , Biomarcadores/sangre , Biomarcadores/metabolismo , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/metabolismo , Inactivación de Virus/efectos de los fármacos , Aptámeros de Nucleótidos/química , Aptámeros de Nucleótidos/metabolismo , Aptámeros de Nucleótidos/farmacología
17.
Water Res ; 257: 121685, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38728774

RESUMEN

Water disinfection is undoubtedly regarded as a critical step in ensuring the water safety for human consumption, and ozone is widely used as a highly effective disinfectant for the control of pathogenic microorganisms in water. Although the diminished ozone efficiencies in complex water matrices have been widely reported, the specific extent to which individual components of matrix act on the virus inactivation by ozone remains unclear, and effective methodologies to predict the comprehensive effects of various factors are needed. In this study, the decoupled impact of the intricate water matrix on the ozone inactivation of viruses was systematically investigated and assessed from a simulative perspective. The concept of "equivalent ozone depletion rate constant" (k') was introduced to quantify the influence of different species, and a kinetic model was developed based on the k' values for simulating the ozone inactivation processes in complex matrix. The mechanisms through which diverse species influenced the ozone inactivation effectiveness were identified: 1) competition effects (k' = 105∼107 M-1s-1), including organic matters and reductive ions (SO32-, NO2-, and I-), which were the most influential species inhibiting the virus inactivation; 2) shielding effects (k' = 103∼104 M-1s-1), including Ca2+, Mg2+, and kaolin; 3) insignificant effects (k' = 0∼1 M-1s-1), including Cl-, SO42-, NO3-, NH4+, and Br-; 4) promotion effects (k' = ∼-103 M-1s-1), including CO32- and HCO3-. Prediction of ozone disinfection efficiency and evaluation of species contribution under complex aquatic matrices were successfully realized utilizing the model. The systematic understanding and methodologies developed in this research provide a reliable framework for predicting ozone inactivation efficiency under complex matrix, and a potential tool for accurate disinfectant dosage determination and interfering factors control in actual wastewater treatment processes.


Asunto(s)
Desinfección , Ozono , Inactivación de Virus , Aguas Residuales , Ozono/farmacología , Aguas Residuales/virología , Inactivación de Virus/efectos de los fármacos , Desinfección/métodos , Purificación del Agua , Desinfectantes/farmacología , Modelos Teóricos , Cinética
18.
J Med Virol ; 96(5): e29655, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38727091

RESUMEN

Viruses can spread through contaminated aerosols and contaminated surface materials, and effective disinfection techniques are essential for virus inactivation. Nonthermal plasma-generated reactive oxygen and nitrogen species can effectively inactivate the coronavirus. We aim to interpret the coronavirus inactivation level and mechanism of surface interaction with materials with and without dielectric barrier discharge (DBD) plasma treatment. Nonthermal plasma, particularly surface-type DBD plasma, can inactivate human coronavirus 229E (HCoV-229E) on porous (paper, wood, mask) and nonporous (plastic, stainless steel, glass, Cu) materials. Virus inactivation was analyzed using a 50% tissue culture infectivity dose (TCID50) using cell line, flow cytometry, and immunofluorescence. Surfaces contaminated with HCoV-229E were treated at different time intervals (0-5 h) with and without plasma exposure (natural decay in ambient air conditions). HCoV-229E persistence conformed to the following order: plastic > cover glass > stainless steel > mask > wood > paper > Cu with and without plasma exposure. HCoV-229E was more stable in plastic, cover glass, and stainless steel in 5 h, and the viable virus titer gradually decreased from its initial log10 order of 6.892 to 1.72, 1.53, and 1.32 TCID50/mL, respectively, under plasma exposure. No virus was observed in Cu after treatment for 5 h. The use of airflow, ambient nitrogen, and argon did not promote virus inactivation. Flow cytometry and immunofluorescence analysis demonstrated a low expression level of spike protein (fluorescence intensity) during plasma treatment and in E and M genes expression compared with the virus control.


Asunto(s)
Coronavirus Humano 229E , Gases em Plasma , Inactivación de Virus , Humanos , Coronavirus Humano 229E/efectos de los fármacos , Coronavirus Humano 229E/fisiología , Inactivación de Virus/efectos de los fármacos , Gases em Plasma/farmacología , Línea Celular , Porosidad , Desinfección/métodos , Acero Inoxidable
19.
ACS Appl Mater Interfaces ; 16(23): 29621-29633, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38806169

RESUMEN

The ongoing challenge of viral transmission, exemplified by the Covid pandemic and recurrent viral outbreaks, necessitates the exploration of sustainable antiviral solutions. This study investigates the underexplored antiviral potential of wooden surfaces. We evaluated the antiviral efficacy of various wood types, including coniferous and deciduous trees, against enveloped coronaviruses and nonenveloped enteroviruses like coxsackie virus A9. Our findings revealed excellent antiviral activity manifesting already within 10 to 15 min in Scots pine and Norway spruce, particularly against enveloped viruses. In contrast, other hardwoods displayed varied efficacy, with oak showing effectiveness against the enterovirus. This antiviral activity was consistently observed across a spectrum of humidity levels (20 to 90 RH%), while the antiviral efficacy manifested itself more rapidly at 37 °C vs 21 °C. Key to our findings is the chemical composition of these woods. Resin acids and terpenes were prevalent in pine and spruce, correlating with their antiviral performance, while oak's high phenolic content mirrored its efficacy against enterovirus. The pine surface absorbed a higher fraction of the coronavirus in contrast to oak, whereas enteroviruses were not absorbed on those surfaces. Thermal treatment of wood or mixing wood with plastic, such as in wood-plastic composites, strongly compromised the antiviral functionality of wood materials. This study highlights the role of bioactive chemicals in the antiviral action of wood and opens new avenues for employing wood surfaces as a natural and sustainable barrier against viral transmissions.


Asunto(s)
Antivirales , Enterovirus , Madera , Madera/química , Antivirales/química , Antivirales/farmacología , Enterovirus/efectos de los fármacos , Coronavirus/efectos de los fármacos , Inactivación de Virus/efectos de los fármacos , Propiedades de Superficie , Quercus/química , Humanos , Pinus/química , Picea/química , Árboles/virología
20.
Water Res ; 256: 121536, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38631238

RESUMEN

In drinking water applications, an ozone exposure (Ct) based framework has been historically used to validate ozone disinfection. However, significant viral inactivation can be achieved with little to no measurable ozone exposure. Additionally, ozone exposure depends on multiple water quality variables as well as the calculation/ozone measurement method used. In this study, we evaluated alternative ozone monitoring frameworks as well as the impact of water quality variables on ozone decay kinetics and virus/coliform inactivation. Here we show that both change in UV254 absorbance and applied O3:TOC were well correlated with viral inactivation and these frameworks were resilient to changes in water quality. Both increasing temperature (12-30 °C) and pH (5.5-8.4) was shown to significantly increase the ozone decay rate and decreased the resulting ozone exposure by as much as ∼90% in the case of pH. However, due to the increased reaction rate of ozone with viruses at elevated temperature and pH, there was only a minor impact (∼20% in the case of pH) in overall disinfection performance for a given O3:TOC. These frameworks were also considered for variable source water with TOC (5-11 mg/L) and TSS (1.2-5.8 mg/L). Change in UV254 absorbance or applied ozone dose (mg/L) were the strongest indicators of disinfection performance for source waters of variable TOC, however site-specific testing may be needed to apply this framework. Challenge testing with influent nitrite indicated that ozone disinfection performance is significantly impacted (>50% reduction in inactivation) in the presence of nitrite thus enforcing the importance of accounting for this value in the applied ozone dose. Multi-point ozone dissolution was investigated as an alternative ozone application method that may present a benefit with respect to overall disinfection performance especially if nitrite was present. Developing and validating these alternative monitoring frameworks and ozone application methods is imperative in water reuse applications where unnecessary elevated ozone exposure may lead to harmful byproduct formation.


Asunto(s)
Desinfección , Ozono , Inactivación de Virus , Purificación del Agua , Ozono/farmacología , Inactivación de Virus/efectos de los fármacos , Purificación del Agua/métodos , Desinfección/métodos , Agua Potable/virología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...