Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 459
Filtrar
1.
Recent Pat Biotechnol ; 18(4): 344-357, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38566382

RESUMEN

BACKGROUND: There are patents available related to fermented food and beverages which enhance to human health. Citrus limetta (Mosambi) has a high content of flavonoids and exhibits antioxidant activity, which could stimulate the digestive system and be useful for gastroprotective activity. It supports digestion by neutralizing the acidic digestive juices and reducing gastric acidity. OBJECTIVE: This study explored the potential of using waste peel extract from Citrus limetta to prevent ulcers. The study specifically sought to assess the anti-ulcer properties of fermented and non-fermented extracts and compare them. Further, the study looked at the potential benefits of treating or preventing ulcers with Citrus limetta waste peels and whether fermentation affected the efficacy of the treatment. METHODS: Thirty female Wistar albino rats were equally distributed into five different groups. Group 1 received distilled water (20 ml/kg/b.w); Group 2 received indomethacin (mg/kg/b.w); Group 3 received omeprazole (20 mg/kg/b.w); Group 4 received aqueous extract of Mosambi peel (400 mg/kg/b.w) and Group 5 received fermented product of extract of Mosambi peel (400 mg/kg/b.w). RESULTS: Findings explored that, compared to non-fermented citrus fruit juice, biofermented exhibited less gastric volume (1.58 ± 0.10 ml vs. 1.8 ± 0.14 ml), reduced MDA levels (355.23 ± 100.70 µmol/mg protein vs. 454.49 ± 155.88 µmol/mg protein), and low ulcer index (0.49 ± 0.07 vs. 0.72 ± 0.14). CONCLUSION: The results suggest that the bio-fermented product of Citrus limetta peel has better anti-ulcer potential against peptic ulcer induced by indomethacin in Wistar albino rats compared to non-fermented.


Asunto(s)
Antiulcerosos , Citrus , Fermentación , Extractos Vegetales , Ratas Wistar , Úlcera Gástrica , Animales , Citrus/química , Femenino , Ratas , Extractos Vegetales/farmacología , Extractos Vegetales/química , Antiulcerosos/farmacología , Antiulcerosos/química , Úlcera Gástrica/tratamiento farmacológico , Úlcera Gástrica/metabolismo , Úlcera Gástrica/patología , Patentes como Asunto , Indometacina/metabolismo , Frutas/química , Antioxidantes/farmacología , Antioxidantes/química , Omeprazol/farmacología
2.
Chembiochem ; 25(2): e202300603, 2024 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-37934785

RESUMEN

Mitochondrion has appeared as one of the important targets for anti-cancer therapy. Subsequently, small molecule anti-cancer drugs are directed to the mitochondria for improved therapeutic efficacy. However, simultaneous imaging and impairing mitochondria by a single probe remained a major challenge. To address this, herein Chimeric Small Molecules (CSMs) encompassing drugs, fluorophore and mitochondria homing moiety were designed and synthesized through a concise strategy. Screening of the CSMs in a panel of cancer cell lines (HeLa, MCF7, A549, and HCT-116) revealed that one of the CSMs comprising Indomethacin V exhibited remarkable cervical cancer cell (HeLa) killing (IC50 =0.97 µM). This lead CSM homed into the mitochondria of HeLa cells within 1 h followed by mitochondrial damage and reactive oxygen species (ROS) generation. This novel Indomethacin V-based CSM-mediated mitochondrial damage induced programmed cell death (apoptosis). We anticipate these CSMs can be used as tools to understand the drug effects in organelle chemical biology in diseased states.


Asunto(s)
Antineoplásicos , Neoplasias , Humanos , Células HeLa , Antineoplásicos/química , Mitocondrias/metabolismo , Indometacina/metabolismo , Indometacina/farmacología , Especies Reactivas de Oxígeno/metabolismo , Apoptosis , Línea Celular Tumoral , Neoplasias/metabolismo
3.
Eur J Pharm Biopharm ; 191: 114-123, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37652137

RESUMEN

The potentiation of pharmacological effects can be achieved through several strategies, such as the association of substances and delivery in nanostructured systems. In practice, potentiation can be measured by the law of mass action and joint evaluation of the combination index (CI) and dose-response curves. In this context, this study aimed to evaluate the anti-inflammatory effect of the association of ß-caryophyllene and indomethacin in the free form and delivered in nanoemulsions using the in vitro model of LPS-stimulated murine macrophage. The results indicated potentiation of the anti-inflammatory effect of nanoemulsified substances compared to free substances, as well as synergistic action between the sesquiterpene and the selected NSAID. In comparison, the association of ß-caryophyllene and indomethacin in the free form inhibited the production of nitric oxide by 50% at 48.60 µg/mL (CI = 0.21), while the nanoemulsified association of these substances resulted in an IC50 of 1.45 µg/mL (CI = 0.14). In parallel, cytotoxicity assays on HaCaT and MRC-5 cell lines demonstrated the safety of IC50-equivalent concentrations of the anti-inflammatory action, and no irritating effects on the chorioallantoic membrane of embryonated eggs were observed (HET-CAM assay). The results suggest that ß-caryophyllene may be an alternative to replace an inert oily core in nanoemulsion systems when anti-inflammatory effects are desirable.


Asunto(s)
Indometacina , Lipopolisacáridos , Ratones , Animales , Indometacina/farmacología , Indometacina/metabolismo , Lipopolisacáridos/farmacología , Antiinflamatorios/farmacología , Antiinflamatorios/metabolismo , Macrófagos
4.
Alcohol Clin Exp Res (Hoboken) ; 47(3): 470-485, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36799290

RESUMEN

BACKGROUND: Adolescent intermittent ethanol (AIE) exposure causes long-term changes in the brain and behavior of adult male rodents, including persistent induction of innate immune pathways, reductions in hippocampal neurogenic and forebrain cholinergic neuronal markers, and reversal learning deficits. The current study tests the hypothesis that proinflammatory induction mediates AIE-induced (1) loss of adult neurogenesis (i.e., doublecortin (DCX) expressing immature neurons), (2) reductions in forebrain and hippocampal cholinergic markers, and (3) reversal learning deficits. METHODS: Male and female rats underwent AIE (5.0 g/kg/day ethanol or water, i.g., 2 day-on/2 day-off from postnatal day (PND) 25-54), followed by a 2-week regimen of the anti-inflammatory compound indomethacin (4.0 g/kg/day, PND 56-69) or vehicle, after which one cohort was euthanized for immunohistochemical markers (PND 70) and the second underwent the Morris water maze to assess reversal learning. RESULTS: AIE reduced adult (PND 70) DCX+ immunoreactivity (IR) and increased hippocampal expression of the innate immune signal's high-mobility group box protein 1 (HMGB1 + IR) and cyclooxygenase-2 (COX-2 + IR) in adult male and female rats. AIE also reduced choline acetyltransferase (ChAT+IR) in the basal forebrain and co-labeling of hippocampal vesicular acetylcholine transporter (VAChT+) cholinergic terminals on DCX + IR neurons. Indomethacin treatment after AIE restored molecular endpoints to control levels and rescued AIE-induced reversal learning deficits in the Morris water maze in both sexes. Of note, indomethacin produced several adverse effects selectively in control conditions, highlighting the uniquely beneficial effect of indomethacin in AIE rats. CONCLUSIONS: These data suggest that in males and females, (1) AIE persistent neuroimmune induction mediates both the loss of adult hippocampal DCX and loss of basal forebrain cholinergic neurons and their innervation to hippocampal targets, and (2) anti-inflammatory indomethacin treatment following AIE that restores these persistent molecular pathologies also restores spatial reversal learning deficits.


Asunto(s)
Etanol , Indometacina , Ratas , Animales , Masculino , Femenino , Etanol/farmacología , Indometacina/farmacología , Indometacina/metabolismo , Aprendizaje Inverso , Hipocampo , Prosencéfalo , Neuronas Colinérgicas/metabolismo , Neuronas Colinérgicas/patología , Neurogénesis , Colinérgicos/metabolismo , Colinérgicos/farmacología , Inmunidad Innata , Aprendizaje por Laberinto
5.
Redox Biol ; 59: 102590, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36603529

RESUMEN

Nonsteroidal anti-inflammatory drugs (NSAIDs) increase risks of severe small intestinal injuries. Development of effective therapeutic strategies to overcome this issue remains challenging. Nitric oxide (NO) as a gaseous mediator plays a protective role in small intestinal injuries. However, small intestine-specific delivery systems for NO have not been reported yet. In this study, we reported a small intestine-targeted polymeric NO donor (CS-NO) which was synthesized by covalent grafting of α-glucosidase-activated NO donor onto chitosan. In vitro and in vivo experiments demonstrated that CS-NO could be activated by intestinal α-glucosidase to release NO in the small intestine. Pre-treatment of mice with CS-NO significantly alleviated small intestinal damage induced by indomethacin, as demonstrated by down-regulation of the levels of pro-inflammatory cytokines and chemokines CXCL1/KC. Moreover, CS-NO also attenuated indomethacin-induced gut barrier dysfunction as evidenced by up-regulation of the levels of tight junction proteins and restoration of the levels of goblet cells and MUC2 production. Meanwhile, CS-NO effectively restored the defense function of Paneth cells against pathogens in small intestine. Our present study paves the way to develop NO-based therapeutic strategy for NSAIDs-induced small intestinal injuries.


Asunto(s)
Óxido Nítrico , alfa-Glucosidasas , Ratones , Animales , Óxido Nítrico/metabolismo , alfa-Glucosidasas/metabolismo , alfa-Glucosidasas/farmacología , Antiinflamatorios no Esteroideos/efectos adversos , Indometacina/efectos adversos , Indometacina/metabolismo , Intestino Delgado/lesiones , Intestino Delgado/metabolismo
6.
Reprod Sci ; 30(1): 203-220, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-35715551

RESUMEN

The intracellular signaling pathways that regulate myometrial contractions can be targeted by drugs for tocolysis. The agents, 2-APB, glycyl-H-1152, and HC-067047, have been identified as inhibitors of uterine contractility and may have tocolytic potential. However, the contraction-blocking potency of these novel tocolytics was yet to be comprehensively assessed and compared to agents that have seen greater scrutiny, such as the phosphodiesterase inhibitors, aminophylline and rolipram, or the clinically used tocolytics, nifedipine and indomethacin. We determined the IC50 concentrations (inhibit 50% of baseline contractility) for 2-APB, glycyl-H-1152, HC-067047, aminophylline, rolipram, nifedipine, and indomethacin against spontaneous ex vivo contractions in pregnant human myometrium, and then compared their tocolytic potency. Myometrial strips obtained from term, not-in-labor women, were treated with cumulative concentrations of the contraction-blocking agents. Comprehensive dose-response curves were generated. The IC50 concentrations were 53 µM for 2-APB, 18.2 µM for glycyl-H-1152, 48 µM for HC-067047, 318.5 µM for aminophylline, 4.3 µM for rolipram, 10 nM for nifedipine, and 59.5 µM for indomethacin. A single treatment with each drug at the determined IC50 concentration was confirmed to reduce contraction performance (AUC) by approximately 50%. Of the three novel tocolytics examined, glycyl-H-1152 was the most potent inhibitor. However, of all the drugs examined, the overall order of contraction-blocking potency in decreasing order was nifedipine > rolipram > glycyl-H-1152 > HC-067047 > 2-APB > indomethacin > aminophylline. These data provide greater insight into the contraction-blocking properties of some novel tocolytics, with glycyl-H-1152, in particular, emerging as a potential novel tocolytic for preventing preterm birth.


Asunto(s)
Nacimiento Prematuro , Tocolíticos , Recién Nacido , Embarazo , Humanos , Femenino , Tocolíticos/farmacología , Nifedipino/farmacología , Nifedipino/metabolismo , Miometrio/metabolismo , Rolipram/metabolismo , Rolipram/farmacología , Aminofilina/metabolismo , Aminofilina/farmacología , Nacimiento Prematuro/metabolismo , Contracción Uterina , Indometacina/metabolismo , Indometacina/farmacología
7.
Redox Biol ; 58: 102529, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36375380

RESUMEN

Antitumor immune polarization is a key predictor of clinical outcomes to cancer therapy. An emerging concept influencing clinical outcome involves the spatial location of CD8+ T cells, within the tumor. Our earlier work demonstrated immunosuppressive effects of NOS2 and COX2 tumor expression. Here, we show that NOS2/COX2 levels influence both the polarization and spatial location of lymphoid cells including CD8+ T cells. Importantly, elevated tumor NOS2/COX2 correlated with exclusion of CD8+ T cells from the tumor epithelium. In contrast, tumors expressing low NOS2/COX2 had increased CD8+ T cell penetration into the tumor epithelium. Consistent with a causative relationship between these observations, pharmacological inhibition of COX2 with indomethacin dramatically reduced tumor growth of the 4T1 model of TNBC in both WT and Nos2- mice. This regimen led to complete tumor regression in ∼20-25% of tumor-bearing Nos2- mice, and these animals were resistant to tumor rechallenge. Th1 cytokines were elevated in the blood of treated mice and intratumoral CD4+ and CD8+ T cells were higher in mice that received indomethacin when compared to control untreated mice. Multiplex immunofluorescence imaging confirmed our phenotyping results and demonstrated that targeted Nos2/Cox2 blockade improved CD8+ T cell penetration into the 4T1 tumor core. These findings are consistent with our observations in low NOS2/COX2 expressing breast tumors proving that COX2 activity is responsible for limiting the spatial distribution of effector T cells in TNBC. Together these results suggest that clinically available NSAID's may provide a cost-effective, novel immunotherapeutic approach for treatment of aggressive tumors including triple negative breast cancer.


Asunto(s)
Neoplasias de la Mama Triple Negativas , Humanos , Ratones , Animales , Óxido Nítrico Sintasa de Tipo II/genética , Óxido Nítrico Sintasa de Tipo II/metabolismo , Neoplasias de la Mama Triple Negativas/metabolismo , Ciclooxigenasa 2/genética , Ciclooxigenasa 2/metabolismo , Linfocitos T CD8-positivos/metabolismo , Orientación Espacial , Inmunoterapia , Progresión de la Enfermedad , Linfocitos/metabolismo , Indometacina/farmacología , Indometacina/metabolismo , Indometacina/uso terapéutico
8.
Drug Deliv ; 29(1): 1800-1810, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35656937

RESUMEN

Challenges associated with topical analgesics and anti-inflammatory drugs include poor drug penetration and retention at the desired lesion site. Therefore, improving these challenges would help to reduce the toxic and side effects caused by drug absorption into the systemic circulation and improve the therapeutic efficacy of topical therapeutic drugs. Pentapeptide (KTTKS) is a signal peptide in skin tissue, it can be recognized and bound by signal recognition particles. In the current study, we successfully prepared novel indomethacin (IMC) loaded KTTKS-modified ethosomes (IMC-KTTKS-Es), and the physicochemical properties and topical efficacy were investigated. Results showed that the prepared IMC-KTTKS-Es displayed a particle size of about 244 nm, a negative charge, good deformability, and encapsulation efficiency (EE) exceeding 80% for IMC, with a sustained release pattern. In vitro percutaneous permeation studies revealed that the skin retention was increased after the drug was loaded in the IMC-KTTKS-Es. Confocal laser scanning microscopy also showed improved skin retention of IMC-KTTKS-Es. In addition, IMC-KTTKS-Es showed improved topical analgesic and anti-inflammatory activity with no potentially hazardous skin irritation. This study suggested that the IMC-KTTKS-Es might be an effective drug carrier for topical skin therapy with a good safety profile.


Asunto(s)
Indometacina , Piel , Portadores de Fármacos/química , Indometacina/metabolismo , Indometacina/farmacología , Microscopía Confocal , Piel/metabolismo , Absorción Cutánea
9.
Platelets ; 33(8): 1293-1300, 2022 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-35535424

RESUMEN

Src tyrosine kinases and spleen tyrosine kinase (Syk) have recently been shown to contribute to sustained platelet aggregation on collagen under arterial shear. In the present study, we have investigated whether Src and Syk are required for aggregation under minimal shear following activation of glycoprotein VI (GPVI) and have extended this to C-type lectin-like receptor-2 (CLEC-2) which signals through the same pathway. Aggregation was induced by the GPVI ligand collagen-related peptide (CRP) and the CLEC-2 ligand rhodocytin and monitored by light transmission aggregometry (LTA). Aggregation and tyrosine phosphorylation by both receptors were sustained for up to 50 min. The addition of inhibitors of Src, Syk or Bruton's tyrosine kinase (Btk) at 150 sec, by which time aggregation was maximal, induced rapid loss of tyrosine phosphorylation of their downstream proteins, but only Src kinase inhibition caused a weak (~10%) reversal in light transmission. A similar effect was observed when the inhibitors were combined with apyrase and indomethacin or glycoprotein IIb-IIIa (GPIIb-IIIa) antagonist, eptifibatide. On the other hand, activation of GPIIb-IIIa by GPVI in a diluted platelet suspension, as measured by binding of fluorescein isothiocyanate-labeled antibody specific for the activated GPIIb-IIIa (FITC-PAC1), was reversed on the addition of Src and Syk inhibitors showing that integrin activation is rapidly reversible in the absence of outside-in signals. The results demonstrate that Src but not Syk and Btk contribute to sustained aggregation as monitored by LTA, possibly as a result of inhibition of outside-in signaling from GPIIb-IIIa to the cytoskeleton through a Syk-independent pathway. This is in contrast to the role of Syk in supporting sustained aggregation on collagen under arterial shear.


Asunto(s)
Agregación Plaquetaria , Glicoproteínas de Membrana Plaquetaria , Agammaglobulinemia Tirosina Quinasa/metabolismo , Apirasa/farmacología , Plaquetas/metabolismo , Colágeno/farmacología , Eptifibatida/farmacología , Fluoresceína-5-Isotiocianato/metabolismo , Fluoresceína-5-Isotiocianato/farmacología , Humanos , Indometacina/metabolismo , Indometacina/farmacología , Péptidos y Proteínas de Señalización Intracelular , Lectinas Tipo C/metabolismo , Ligandos , Inhibidores de Agregación Plaquetaria/farmacología , Complejo GPIIb-IIIa de Glicoproteína Plaquetaria/metabolismo , Glicoproteínas de Membrana Plaquetaria/metabolismo , Proteínas Tirosina Quinasas , Quinasa Syk/metabolismo , Tirosina/metabolismo , Tirosina/farmacología , Familia-src Quinasas/metabolismo
10.
Drug Deliv ; 29(1): 1232-1242, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35403516

RESUMEN

Hyaluronic acid (HA), as a hygroscopic and biocompatible molecule, has displayed unique permeation enhancement in transdermal delivery systems. Hence, indomethacin (IND) was encapsulated in HA-modified transfersomes (IND-HTs) to enhance transdermal IND delivery to reduce adverse effects in this study. The physiochemical properties of IND-HTs were characterized. Results showed that the prepared IND-HTs were spherical and revealed good entrapment efficiency (87.88 ± 2.03%), with a nanometric particle size (221.8 ± 93.34 nm). Then, IND-HTs were further incorporated into a carbopol 940 hydrogel (IND-HTs/Gel) to prolong retention capacity on the skin. The in vitro release and skin permeation experiments of IND-HTs/Gel were carried out with the Franz diffusion cells. It was found that IND-HTs/Gel exhibited sustained drug release, as well as superior drug permeation and flux across the skin. Confocal laser scanning microscopy showed improved penetration of HTs/Gel with a wider distribution and higher fluorescence intensity. The hematoxylin-eosin stained showed that HA improved the transdermal effect by changing the microstructure of skin layers and decreasing skin barrier function. In addition, IND-HTs/Gel showed significant analgesic activity in hot plate test and no potentially hazardous skin irritation. This study indicated that the developed IND-HTs/Gel could be a promising alternative to conventional oral delivery of IND by topical administration.


Asunto(s)
Ácido Hialurónico , Indometacina , Administración Cutánea , Portadores de Fármacos/química , Sistemas de Liberación de Medicamentos , Ácido Hialurónico/metabolismo , Hidrogeles/química , Indometacina/metabolismo , Indometacina/farmacología , Tamaño de la Partícula , Piel/metabolismo , Absorción Cutánea
11.
Bioorg Med Chem ; 64: 116759, 2022 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-35468536

RESUMEN

Mitochondrion emerged as an important therapeutic target for anti-cancer strategy due to its involvement in cancer progression and development. However, progress of novel small molecules for selective targeting of mitochondria in cancer cells remained a major challenge. To address this, herein, through a concise synthetic strategy, we have synthesized a small molecule library of indomethacin and ibuprofen (non-steroidal anti-inflammatory drugs, NSAIDs) derivatives having triarylphosphonium moiety for mitochondria localization. Two of the library members were identified to induce mitochondrial damage through outer membrane permeabilization (MOMP) followed by generation of reactive oxygen species (ROS) leading to the remarkable MCF7 breast cancer cell death through apoptosis. These novel mitochondria targeted NSAID derivatives could open a new direction in understanding mitochondrial biology towards anti-cancer therapeutics in future.


Asunto(s)
Antiinflamatorios no Esteroideos , Neoplasias , Antiinflamatorios no Esteroideos/farmacología , Apoptosis , Ibuprofeno/metabolismo , Ibuprofeno/farmacología , Indometacina/metabolismo , Mitocondrias/metabolismo , Neoplasias/metabolismo , Especies Reactivas de Oxígeno/metabolismo
12.
Toxicol Mech Methods ; 32(2): 114-122, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34431458

RESUMEN

Vanadium toxicity is a globally recognized threat to the reproductive health of man and animal. However the mechanism of vanadium-induced damage to the testicular and adrenocortical tissues is not fully characterized. It was hypothesized that prostaglandins may partially mediate the inflammatory response to vanadate damage. In this study prostaglandin (PG) mediated effects of vanadate on testicular and adrenocortical functions was substantiated by using indomethacin to block prostaglandin synthesis. Significant inhibition of spermatogenesis, decreased serum level of testosterone and gonadotropins in the vanadium-exposed group of rats indicated the damaging effects of vanadium-induced reactive oxygen species. This was also reflected in the appreciable increase in testicular lipid peroxidation (LPO) level and decline in the activities of steroidogenic and antioxidant enzymes. Histopathological studies revealed regressive and degenerative changes in testis. However, inhibition of cyclooxygenase activity by indomethacin increased steroid hormone production, gonadotropin level, elevated the specific activities of enzymes and decreased LPO level in rat testis exposed to vanadium. Vanadium also caused prostaglandin mediated adrenocortical hyperactivity, as inhibition of PG synthesis abolished these adrenal responses to vanadium. The studies showed that vanadium toxicity is directly linked to stimulation of prostaglandin synthesis. Therefore, indomethacin can be a good prospect to alleviate vanadium induced male infertility.


Asunto(s)
Testículo , Vanadio , Animales , Indometacina/metabolismo , Indometacina/toxicidad , Peroxidación de Lípido , Masculino , Ratas , Espermatogénesis , Testículo/metabolismo , Testosterona/metabolismo , Vanadio/metabolismo , Vanadio/toxicidad
13.
Sci Rep ; 11(1): 9142, 2021 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-33911150

RESUMEN

A new double-layer, pH-sensitive, composite hydrogel sustained-release system based on polysaccharides and synthetic polymers with combined functions of different inner/outer hydrogels was prepared. The polysaccharides inner core based on sodium alginate (SA) and carboxymethyl cellulose (CMC), was formed by physical crosslinking with pH-sensitive property. The synthetic polymer out-layer with enhanced stability was introduced by chemical crosslinking to eliminate the expansion of inner core and the diffusion of inner content. The physicochemical structure of the double-layer hydrogels was characterized. The drug-release results demonstrated that the sustained-release effect of the hydrogels for different model drugs could be regulated by changing the composition or thickness of the hydrogel layer. The significant sustained-release effect for BSA and indomethacin indicated that the bilayer hydrogel can be developed into a novel sustained delivery system for bioactive substance or drugs with potential applications in drugs and functional foods.


Asunto(s)
Alginatos/química , Carboximetilcelulosa de Sodio/química , Portadores de Fármacos/química , Hidrogeles/química , Animales , Bovinos , Liberación de Fármacos , Concentración de Iones de Hidrógeno , Indometacina/química , Indometacina/metabolismo , Polímeros/química , Reología , Albúmina Sérica Bovina/química , Albúmina Sérica Bovina/metabolismo , Espectroscopía Infrarroja por Transformada de Fourier
14.
Drug Metab Pharmacokinet ; 38: 100391, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33872946

RESUMEN

Carboxylesterase (CES) plays an important role in the hydrolysis metabolism of ester-type drugs and prodrugs. In this study, we investigated the change in the hydrolysis rate of hCE1 by focusing on the steric hindrance of the ester structure and the electron density. For 26 kinds of synthesized indomethacin prodrugs, the hydrolytic rate was measured in the presence of human liver microsomes (HLM), human small intestine microsomes (HIM), hCE1 and hCE2. The synthesized prodrugs were classified into three types: an alkyl ester type that is specifically metabolized by hCE1, a phenyl ester type that is more easily metabolized by hCE1 than by hCE2, and a carbonate ester type that is easily metabolized by both hCE1 and hCE2. The hydrolytic rate of 1-methylpentyl (hexan-2-yl) ester was 10-times lower than that of 4-methylpentyl ester in hCE1 solution. hCE2 was susceptible to electron density of the substrate, and there was a difference in the hydrolysis rate of up to 3.5-times between p-bromophenyl ester and p-acetylphenyl ester. By changing the steric hindrance and electron density of the alkoxy group, the factors that change the hydrolysis rate by CES were elucidated.


Asunto(s)
Activación Metabólica/efectos de los fármacos , Carboxilesterasa/metabolismo , Hidrolasas de Éster Carboxílico/metabolismo , Ésteres/metabolismo , Profármacos/metabolismo , Profármacos/uso terapéutico , Electrones , Humanos , Hidrólisis/efectos de los fármacos , Indometacina/metabolismo , Indometacina/uso terapéutico , Masculino , Microsomas Hepáticos/efectos de los fármacos , Microsomas Hepáticos/metabolismo , Persona de Mediana Edad , Especificidad por Sustrato
15.
Mol Pharm ; 17(11): 4212-4225, 2020 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-32986447

RESUMEN

Nanoparticles (NPs) produced from amphiphilic derivatives of poly-N-vinylpyrrolidone (Amph-PVP), composed of various molecular weight polymeric hydrophilic fragments linked into hydrophobic n-alkyl chains of varying lengths, were previously shown to exert excellent biocompatibility. Although routes of administration can be different, finally, most nanosystems enter the blood circulation or lymphatic vessels, and by this, they establish direct contact with endothelial cells. In this study, Amph-PVP NPs and fluorescently labeled Amph-PVP-based NPs, namely "PVP" NPs (Amph-PVP-NPs (6000 Da) unloaded) and "F"-NPs (Amph-PVP-NPs (6000 Da) loaded with fluorescent FITC), were synthesized to study Amph-PVP NPs interactions with HMEC-1 endothelial cells. PVP NPs were readily uptaken by HMEC-1 cells in a concentration-dependent manner, as demonstrated by immunofluorescence imaging. Upon uptake, the FITC dye was localized to the perinuclear region and cytoplasm of treated cells. The generation of lipopolysaccharide (LPS)-induced activated endothelium model revealed an increased uptake of PVPNPs, as shown by confocal microscopy. Both unloaded PVP NPs and F-NPs did not affect EC viability in the 0.01 to 0.066 mg/mL range. Furthermore, we focused on the potential immunological activation of HMEC-1 endothelial cells upon PVPNPs treatment by assessing the expression of their E-Selectin, ICAM-1, and VCAM-1 adhesion receptors. None of the adhesion molecules were affected by NP treatments of both activated by LPS and nonactivated HMEC-1 cells, at the utilized concentrations (p = NS). In this study, PVP (6000 Da) NPs were used to encapsulate indomethacin, a widely used anti-inflammatory drug. The synthesized drug carrier complex did not affect HMEC-1 cell growth and expression of E-selectin, ICAM-1, and VCAM-1 adhesion receptors. In summary, PVP-based NPs are safe for use on both basal and activated endothelium, which more accurately mimics pathological conditions. Amph-PVP NPs are a promising drug delivery system.


Asunto(s)
Antiinflamatorios/administración & dosificación , Materiales Biocompatibles/química , Portadores de Fármacos/química , Células Endoteliales/efectos de los fármacos , Indometacina/administración & dosificación , Nanopartículas/química , Polímeros/química , Pirrolidinonas/química , Antiinflamatorios/metabolismo , Línea Celular , Supervivencia Celular/efectos de los fármacos , Células Endoteliales/metabolismo , Fluoresceína-5-Isotiocianato/administración & dosificación , Colorantes Fluorescentes/administración & dosificación , Colorantes Fluorescentes/metabolismo , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Indometacina/metabolismo , Peso Molecular , Tamaño de la Partícula
16.
Eur J Pharmacol ; 888: 173585, 2020 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-32971092

RESUMEN

The contribution of metabotropic glutamate receptors (mGlu receptors) in depression is well known and tested worldwide. Our previous study showed the involvement of the cyclooxygenase-2 (COX-2) pathway in behavioral changes mediated by an antagonist of metabotropic glutamate receptor subtype 5 (mGlu5 receptor) 3-[(2-methyl-1,3-tiazol-4-yl)ethynyl]-pyridine (MTEP). Among others, we have found that chronic concomitant administration of a COX-2 inhibitor and sub-effective dose of MTEP accelerates antidepressant-like activity of MTEP. This paper seeks to explore whether the same effect would be observed with the use of a non-selective COX inhibitor 2-[1-(4-chlorobenzoyl)-5-methoxy-2-methylindol-3-yl]acetic acid (indomethacin). To that end, we have employed experimental procedure implemented in the earlier research. MTEP and indomethacin or MTEP + indomethacin were used chronically for 7 or 14 days. Then, the Porsolt test, tail suspension test and locomotor activity test were performed. Imipramine was used as a reference compound, as its action is connected with mGlu5 receptor. We found that, in contrast to COX-2 inhibition, indomethacin - acting both through COX-1 and COX-2 - did not release antidepressant-like potential of MTEP. The opposite effect was shown when imipramine was used.


Asunto(s)
Antidepresivos/metabolismo , Inhibidores de la Ciclooxigenasa/metabolismo , Depresión/metabolismo , Imipramina/metabolismo , Indometacina/metabolismo , Piridinas/metabolismo , Tiazoles/metabolismo , Animales , Antidepresivos/administración & dosificación , Inhibidores de la Ciclooxigenasa/administración & dosificación , Depresión/tratamiento farmacológico , Depresión/psicología , Interacciones Farmacológicas , Suspensión Trasera/efectos adversos , Suspensión Trasera/psicología , Imipramina/administración & dosificación , Indometacina/administración & dosificación , Ratones , Actividad Motora/efectos de los fármacos , Actividad Motora/fisiología , Piridinas/administración & dosificación , Receptor del Glutamato Metabotropico 5/antagonistas & inhibidores , Receptor del Glutamato Metabotropico 5/metabolismo , Natación/psicología , Tiazoles/administración & dosificación
17.
Mol Pharm ; 17(8): 3062-3074, 2020 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-32633973

RESUMEN

Incomplete drug release from mesoporous silica systems has been observed in several studies. This work aims to increase the understanding of this phenomenon by investigating the mechanism of drug-silica interactions and adsorption behavior from supersaturated aqueous solutions of two similar drug molecules with different hydrogen bonding capabilities. Drug-silica interactions between indomethacin or its methyl ester and SBA-15 were investigated using spectroscopic techniques (infrared, fluorescence and X-ray photoelectron) and adsorption experiments. The results demonstrate that the predominant mechanism of interaction of both drugs with silica is hydrogen bonding between drug acceptor carbonyl groups with donor groups on the silica surface. The presence of a drug hydrogen bond donor group did not enhance drug adsorption. No evidence was obtained for drug adsorption through nonspecific hydrophobic interactions. Drug adsorption onto the silica surface was investigated under supersaturating conditions through the generation of adsorption isotherms. Similar adsorption isotherms were observed for each compound when the concentration scale was normalized to the drug amorphous solubility. In other words, the equilibrium between the drug adsorbed on the silica surface and free drug in solution was related to the drug activity in solution. The high tendency of the drug to adsorb when the solution is supersaturated was, in turn, found to limit the extent of drug release during dissolution under nonsink conditions. Thus, adsorption provides an explanation for incomplete drug release.


Asunto(s)
Adsorción/fisiología , Liberación de Fármacos/fisiología , Ésteres/metabolismo , Indometacina/metabolismo , Dióxido de Silicio/metabolismo , Interacciones Hidrofóbicas e Hidrofílicas/efectos de los fármacos , Porosidad , Solubilidad/efectos de los fármacos , Agua/metabolismo
18.
Int J Mol Sci ; 21(11)2020 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-32471121

RESUMEN

(1) Background: Compounds with multitarget activity are of interest in basic research to explore molecular foundations of promiscuous binding and in drug discovery as agents eliciting polypharmacological effects. Our study has aimed to systematically identify compounds that form complexes with proteins from distinct classes and compare their bioactive conformations and molecular properties. (2) Methods: A large-scale computational investigation was carried out that combined the analysis of complex X-ray structures, ligand binding modes, compound activity data, and various molecular properties. (3) Results: A total of 515 ligands with multitarget activity were identified that included 70 organic compounds binding to proteins from different classes. These multiclass ligands (MCLs) were often flexible and surprisingly hydrophilic. Moreover, they displayed a wide spectrum of binding modes. In different target structure environments, binding shapes of MCLs were often similar, but also distinct. (4) Conclusions: Combined structural and activity data analysis identified compounds with activity against proteins with distinct structures and functions. MCLs were found to have greatly varying shape similarity when binding to different protein classes. Hence, there were no apparent canonical binding shapes indicating multitarget activity. Rather, conformational versatility characterized MCL binding.


Asunto(s)
Quimioinformática , Proteínas/química , Proteínas/metabolismo , Cristalografía por Rayos X , Enlace de Hidrógeno , Indometacina/química , Indometacina/metabolismo , Kanamicina/química , Kanamicina/metabolismo , Ligandos , Lípidos/química , Unión Proteica
19.
Eur J Pharm Biopharm ; 151: 108-115, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32298758

RESUMEN

The effect of the degree of supersaturation (DS) on absorption of the model drugs indomethacin and tadalafil was elucidated in a single-pass intestinal perfusion (SPIP) model in rats. In addition, the performance of the precipitation inhibitor (PI) hydroxypropylmethylcellulose (HPMC) was evaluated when added at a concentration of 0.1% (w/v) to fasted state simulated intestinal fluid (FaSSIF and FaSSIFHPMC) used as perfusion medium. A supersaturated state was created by a solvent shift method where indomethacin or tadalafil dissolved in dimethyl sulfoxide (DMSO) were administered to a segment of the small intestine, which subsequently was perfused with FaSSIF or FaSSIFHPMC. The perfusate was collected for 60 min, and for one group of rats dosed with 30 mg tadalafil, for 120 min. Blood samples were drawn every 15 min. The solubility of indomethacin and tadalafil in the perfusate was determined. The DS of each drug in the perfusate was calculated by dividing the concentration in the perfusate at selected time points with the solubility. The DS was above one for all timepoints for both drugs, thus showing supersaturation during the time of perfusion. For indomethacin, no improvement of the DS was seen when perfusing with FaSSIFHPMC, compared to FaSSIF. For tadalafil, a higher DS was achieved when perfusing with FaSSIFHPMC compared to FaSSIF. Perfusing the drugs with FaSSIFHPMC resulted in a significantly lower area under the curve (AUC0-60 min) for plasma concentrations of indomethacin, and no increase in the AUC0-60 min of plasma concentrations of tadalafil compared to perfusion with FaSSIF. The importance of simultaneously estimating the intraluminal DS and absorption of a drug was demonstrated by the SPIP model in the present study. Further, the study highlights the discrepancy between optimal in vitro supersaturation, intraluminal supersaturation and in vivo performance of two poorly soluble drugs, and further emphasizes the importance of optimization of in vitro methods in order to predict in vivo supersaturation and precipitation of drugs.


Asunto(s)
Indometacina/química , Indometacina/metabolismo , Absorción Intestinal/fisiología , Intestino Delgado/metabolismo , Tadalafilo/química , Tadalafilo/metabolismo , Administración Oral , Animales , Precipitación Química , Excipientes/química , Derivados de la Hipromelosa/química , Absorción Intestinal/genética , Masculino , Modelos Animales , Perfusión , Permeabilidad , Ratas , Ratas Sprague-Dawley , Solubilidad , Solventes/química
20.
Xenobiotica ; 50(8): 939-946, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32238050

RESUMEN

Osthol, a pharmacologically active ingredient in various traditional Chinese medicines, is predominantly metabolized by CYP2C9. It may be co-administered with other drugs which are metabolized by CYP2C9 in clinical medicine. However, CYP2C9*1/*2/*3 genotype on the pharmacokinetics of osthole and its metabolic diversity between rat and human are unclear.In this study, we investigated the effects of osthole on enzyme activity of CYP2C11/CYP2C9 in rat liver microsomes (RLMs) and human liver microsomes (HLMs), to distinguish metabolic manner of osthole in different species. Interestingly, we found that osthole inhibits the activity of CYP2C11 in a non-competitive manner in RLMs, while inhibits CYP2C9 activity in a competitive manner in pooled HLMs. Then, the effects of CYP2C9*1/*2/*3 allele on the pharmacokinetics of osthole were identified. In human CYP2C9 isoform, the Ki value of 21.93 µM (CYP2C9*1), 18.10 µM (CYP2C9*2), 13.12 µM (CYP2C9*3) indicate that there are individual differences in the inhibition of osthole on CYP2C9 activity.We investigated how the indomethacin pharmacokinetics was affected by osthole in SD rat. To estimate the area under the curve (AUC), maximum plasma concentration (Cmax) and apparent clearance (CL/F), indomethacin (10 mg/kg) was given orally combined with osthole (20 mg/kg) in adult SD rat. We found the value of PK on indomethacin, such as the AUC0-∞, was from 176.40 ± 17.29 to 173.74 ± 27.69 µg/ml h-1, Cmax from 9.02 ± 1.24 to 9.89 ± 0.82 µg/ml and CL/F from 0.11 ± 0.01 to 0.12 ± 0.04 mg/kg/h which were unsignificantly changed compared with the control groups. However, the Tmax was prolonged from 2.00 ± 0.00 h to 7.33 ± 1.15 h, and T1/2 increased from 8.38 ± 2.30 h to 11.37 ± 2.11 h. These results indicate that osthole could potentially affect the metabolism of indomethacin in vivo.


Asunto(s)
Cumarinas/farmacología , Inhibidores Enzimáticos/farmacología , Indometacina/farmacocinética , Animales , Citocromo P-450 CYP2C9/metabolismo , Humanos , Indometacina/metabolismo , Medicina Tradicional China , Microsomas Hepáticos/metabolismo , Ratas , Ratas Sprague-Dawley
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...