Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 9.915
Filtrar
1.
Scand Cardiovasc J ; 58(1): 2347290, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38733316

RESUMEN

Objectives. The aim of this study was to investigate the expression of long non-coding RNA (lncRNA) brain and reproductive organ-expressed protein (BRE) antisense RNA 1 (BRE-AS1) in patients with acute myocardial infarction (AMI) and its effect on ischemia/reperfusion (I/R)-induced oxidative stress and apoptosis of cardiomyocytes. Methods. Serum BRE-AS1 levels in patients with AMI was detected using quantitative real-time polymerase chain reaction (qRT-PCR). The diagnostic and prognostic values of BRE-AS1 were evaluated. H9c2 cells were treated with hypoxia/reoxygenation to establish an in vitro myocardial infarction cell model. The levels of inflammatory cytokines such as tumor necrosis factor-α (TNF-α), interleukin-1ß (IL-1ß), and IL-6 were detected by enzyme-linked immunosorbent assay (ELISA). Levels of lactate dehydrogenase (LDH), malondialdehyde (MDA), superoxide dismutase (SOD), and glutathione peroxidase (GSH-Px) were determined by commercial kits. Cell counting kit-8 (CCK-8) and flow cytometry were used to evaluate the cell viability and cell apoptosis. Results. The expression of BRE-AS1 in serum of patients with AMI is upregulated, which shows the clinical diagnostic value for AMI. In the I/R injury cell model, the knockout of BRE-AS1 can significantly alleviate the increase in TNF-α, IL-1ß, and IL-6 levels, inhibit the production of LDH and MDA, increase the activities of SOD and GSH-Px, promote the cell viability and suppress cell apoptosis. Conclusions. Abnormally elevated BRE-AS1 has a high diagnostic value for AMI as well as a prognostic value for major adverse cardiovascular events (MACEs). The elevation of BRE-AS1 promoted oxidative stress injury and cell apoptosis in vitro.


Asunto(s)
Apoptosis , Mediadores de Inflamación , Infarto del Miocardio , Miocitos Cardíacos , Estrés Oxidativo , ARN Largo no Codificante , ARN Largo no Codificante/sangre , ARN Largo no Codificante/metabolismo , ARN Largo no Codificante/genética , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Humanos , Infarto del Miocardio/metabolismo , Infarto del Miocardio/patología , Infarto del Miocardio/sangre , Infarto del Miocardio/genética , Infarto del Miocardio/diagnóstico , Masculino , Persona de Mediana Edad , Femenino , Mediadores de Inflamación/metabolismo , Mediadores de Inflamación/sangre , Línea Celular , Animales , Daño por Reperfusión Miocárdica/metabolismo , Daño por Reperfusión Miocárdica/patología , Daño por Reperfusión Miocárdica/sangre , Daño por Reperfusión Miocárdica/diagnóstico , Daño por Reperfusión Miocárdica/genética , Ratas , Citocinas/metabolismo , Citocinas/sangre , Transducción de Señal , Estudios de Casos y Controles , Anciano , Regulación hacia Arriba
2.
J Cardiothorac Surg ; 19(1): 283, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38730417

RESUMEN

OBJECTIVE: Myocardial infarction (MI) -induced cardiac dysfunction can be attenuated by aerobic exercises. This study explored the mechanism of interval training (IT) regulating cardiac function in MI rats, providing some theoretical basis for clarifying MI pathogenesis and new ideas for clinically treating MI. METHODS: Rats were subjected to MI modeling, IT intervention, and treatments of the Transforming growth factor-ß1 (TGF-ß1) pathway or the nod-like receptor protein 3 (NLRP3) activators. Cardiac function and hemodynamic indicator alterations were observed. Myocardial pathological damage and fibrosis, reactive oxygen species (ROS) level, superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GSH-Px) activities, MDA content, inflammasome-associated protein levels, and inflammatory factor levels were assessed. The binding between TGF-ß1 and receptor was detected. RESULTS: MI rats exhibited decreased left ventricle ejection fraction (LVEF), left ventricle fractional shortening  (LVFS), left ventricular systolic pressure  (LVSP), positive and negative derivates max/min (dP/dt max/min) and increased left ventricular end-systolic pressure (LVEDP), a large number of scar areas in myocardium, disordered cell arrangement and extensive fibrotic lesions, increased TGF-ß1 and receptor binding, elevated ROS level and MDA content and weakened SOD, CAT and GSH-Px activities, and up-regulated NLRP3, apoptosis-associated speck-like protein containing a CARD  (ASC) and cleaved-caspase-1 levels, while IT intervention caused ameliorated cardiac function. IT inactivated the TGF-ß1 pathway to decrease oxidative stress in myocardial tissues of MI rats and inhibit NLRP3 inflammasome activation. Activating NLRP3 partially reversed IT-mediated improvement on cardiac function in MI rats. CONCLUSION: IT diminished oxidative stress in myocardial tissues and suppressed NLRP3 inflammasome activation via inactivating the TGF-ß1 pathway, thus improving the cardiac function of MI rats.


Asunto(s)
Inflamasomas , Infarto del Miocardio , Proteína con Dominio Pirina 3 de la Familia NLR , Ratas Sprague-Dawley , Factor de Crecimiento Transformador beta1 , Animales , Infarto del Miocardio/metabolismo , Infarto del Miocardio/fisiopatología , Factor de Crecimiento Transformador beta1/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Ratas , Inflamasomas/metabolismo , Masculino , Modelos Animales de Enfermedad , Transducción de Señal/fisiología , Condicionamiento Físico Animal/fisiología , Especies Reactivas de Oxígeno/metabolismo , Función Ventricular Izquierda/fisiología , Miocardio/metabolismo , Miocardio/patología
3.
Cell Commun Signal ; 22(1): 252, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38698453

RESUMEN

BACKGROUND: Ischemic postconditioning (IPostC) has been reported as a promising method for protecting against myocardial ischemia-reperfusion (MI/R) injury. Our previous study found that the infarct-limiting effect of IPostC is abolished in the heart of diabetes whose cardiac expression of DJ-1 (also called PARK7, Parkinsonism associated deglycase) is reduced. However, the role and in particular the underlying mechanism of DJ-1 in the loss of sensitivity to IPostC-induced cardioprotection in diabetic hearts remains unclear. METHODS: Streptozotocin-induced type 1 diabetic rats were subjected to MI/R injury by occluding the left anterior descending artery (LAD) and followed by reperfusion. IPostC was induced by three cycles of 10s of reperfusion and ischemia at the onset of reperfusion. AAV9-CMV-DJ-1, AAV9-CMV-C106S-DJ-1 or AAV9-DJ-1 siRNA were injected via tail vein to either over-express or knock-down DJ-1 three weeks before inducing MI/R. RESULTS: Diabetic rats subjected to MI/R exhibited larger infarct area, more severe oxidative injury concomitant with significantly reduced cardiac DJ-1 expression and increased PTEN expression as compared to non-diabetic rats. AAV9-mediated cardiac DJ-1 overexpression, but not the cardiac overexpression of DJ-1 mutant C106S, restored IPostC-induced cardioprotection and this effect was accompanied by increased cytoplasmic DJ-1 translocation toward nuclear and mitochondrial, reduced PTEN expression, and increased Nrf-2/HO-1 transcription. Our further study showed that AAV9-mediated targeted DJ-1 gene knockdown aggravated MI/R injury in diabetic hearts, and this exacerbation of MI/R injury was partially reversed by IPostC in the presence of PTEN inhibition or Nrf-2 activation. CONCLUSIONS: These findings suggest that DJ-1 preserves the cardioprotective effect of IPostC against MI/R injury in diabetic rats through nuclear and mitochondrial DJ-1 translocation and that inhibition of cardiac PTEN and activation of Nrf-2/HO-1 may represent the major downstream mechanisms whereby DJ-1 preserves the cardioprotective effect of IPostC in diabetes.


Asunto(s)
Diabetes Mellitus Experimental , Poscondicionamiento Isquémico , Daño por Reperfusión Miocárdica , Fosfohidrolasa PTEN , Proteína Desglicasa DJ-1 , Ratas Sprague-Dawley , Animales , Proteína Desglicasa DJ-1/metabolismo , Proteína Desglicasa DJ-1/genética , Fosfohidrolasa PTEN/metabolismo , Fosfohidrolasa PTEN/genética , Diabetes Mellitus Experimental/metabolismo , Masculino , Ratas , Daño por Reperfusión Miocárdica/metabolismo , Daño por Reperfusión Miocárdica/patología , Daño por Reperfusión Miocárdica/genética , Factor 2 Relacionado con NF-E2/metabolismo , Factor 2 Relacionado con NF-E2/genética , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 1/complicaciones , Transporte de Proteínas , Estreptozocina , Infarto del Miocardio/metabolismo , Infarto del Miocardio/patología
4.
J Pineal Res ; 76(4): e12958, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38747060

RESUMEN

Endothelial-to-mesenchymal transition (EndMT) is a complex biological process of cellular transdifferentiation by which endothelial cells (ECs) lose their characteristics and acquire mesenchymal properties, leading to cardiovascular remodeling and complications in the adult cardiovascular diseases environment. Melatonin is involved in numerous physiological and pathological processes, including aging, and has anti-inflammatory and antioxidant activities. This molecule is an effective therapeutic candidate for preventing oxidative stress, regulating endothelial function, and maintaining the EndMT balance to provide cardiovascular protection. Although recent studies have documented improved cardiac function by melatonin, the mechanism of action of melatonin on EndMT remains unclear. The present study investigated the effects of melatonin on induced EndMT by transforming growth factor-ß2/interleukin-1ß in both in vivo and in vitro models. The results revealed that melatonin reduced the migratory ability and reactive oxygen species levels of the cells and ameliorated mitochondrial dysfunction in vitro. Our findings indicate that melatonin prevents endothelial dysfunction and inhibits EndMT by activating related pathways, including nuclear factor kappa B and Smad. We also demonstrated that this molecule plays a crucial role in restoring cardiac function by regulating the EndMT process in the ischemic myocardial condition, both in vessel organoids and myocardial infarction (MI) animal models. In conclusion, melatonin is a promising agent that attenuates EC dysfunction and ameliorates cardiac damage compromising the EndMT process after MI.


Asunto(s)
Melatonina , FN-kappa B , Melatonina/farmacología , Animales , FN-kappa B/metabolismo , Transición Epitelial-Mesenquimal/efectos de los fármacos , Humanos , Transducción de Señal/efectos de los fármacos , Ratones , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Masculino , Infarto del Miocardio/metabolismo , Infarto del Miocardio/tratamiento farmacológico , Infarto del Miocardio/patología , Especies Reactivas de Oxígeno/metabolismo
5.
Sci Rep ; 14(1): 10959, 2024 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-38745034

RESUMEN

Molecular hydrogen is an emerging broad-spectrum antioxidant molecule that can be used to treat myocardial infarction (MI). However, with hydrogen inhalation, the concentration that can be reached within target organs is low and the duration of action is short, which makes it difficult to achieve high dose targeted delivery of hydrogen to the heart, seriously limiting the therapeutic potential of hydrogen for MI. As a result of reactions with the internal environment of the body, subcutaneous implantation of magnesium slices leads to continuous endogenous hydrogen production, leading to a higher hydrogen concentration and a longer duration of action in target organs. In this study, we propose magnesium implant-based hydrogen therapy for MI. After subcutaneous implantation of magnesium slices in the dorsum of rats, we measured hydrogen production and efficiency, and evaluated the safety of this approach. Compared with hydrogen inhalation, it significantly improved cardiac function in rats with MI. Magnesium implantation also cleared free radicals that were released as a result of mitochondrial dysfunction, as well as suppressing cardiomyocyte apoptosis.


Asunto(s)
Hidrógeno , Magnesio , Infarto del Miocardio , Animales , Infarto del Miocardio/tratamiento farmacológico , Infarto del Miocardio/metabolismo , Magnesio/metabolismo , Ratas , Masculino , Ratas Sprague-Dawley , Apoptosis/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/efectos de los fármacos , Modelos Animales de Enfermedad
6.
J Extracell Vesicles ; 13(5): e12445, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38711334

RESUMEN

Small extracellular vesicles (sEV) derived from various cell sources have been demonstrated to enhance cardiac function in preclinical models of myocardial infarction (MI). The aim of this study was to compare different sources of sEV for cardiac repair and determine the most effective one, which nowadays remains limited. We comprehensively assessed the efficacy of sEV obtained from human primary bone marrow mesenchymal stromal cells (BM-MSC), human immortalized MSC (hTERT-MSC), human embryonic stem cells (ESC), ESC-derived cardiac progenitor cells (CPC), human ESC-derived cardiomyocytes (CM), and human primary ventricular cardiac fibroblasts (VCF), in in vitro models of cardiac repair. ESC-derived sEV (ESC-sEV) exhibited the best pro-angiogenic and anti-fibrotic effects in vitro. Then, we evaluated the functionality of the sEV with the most promising performances in vitro, in a murine model of MI-reperfusion injury (IRI) and analysed their RNA and protein compositions. In vivo, ESC-sEV provided the most favourable outcome after MI by reducing adverse cardiac remodelling through down-regulating fibrosis and increasing angiogenesis. Furthermore, transcriptomic, and proteomic characterizations of sEV derived from hTERT-MSC, ESC, and CPC revealed factors in ESC-sEV that potentially drove the observed functions. In conclusion, ESC-sEV holds great promise as a cell-free treatment for promoting cardiac repair following MI.


Asunto(s)
Vesículas Extracelulares , Células Madre Mesenquimatosas , Infarto del Miocardio , Miocitos Cardíacos , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/trasplante , Humanos , Animales , Ratones , Infarto del Miocardio/terapia , Infarto del Miocardio/metabolismo , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/citología , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/citología , Células Madre Embrionarias/metabolismo , Células Madre Embrionarias/citología , Células Madre Embrionarias Humanas/citología , Células Madre Embrionarias Humanas/metabolismo , Fibroblastos/metabolismo , Masculino , Daño por Reperfusión Miocárdica/terapia , Daño por Reperfusión Miocárdica/metabolismo , Modelos Animales de Enfermedad , Neovascularización Fisiológica , Células Cultivadas
7.
Sci Rep ; 14(1): 10175, 2024 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-38702356

RESUMEN

Acute myocardial infarction (AMI) commonly precedes ventricular remodeling, heart failure. Few dynamic molecular signatures have gained widespread acceptance in mainstream clinical testing despite the discovery of many potential candidates. These unmet needs with respect to biomarker and drug discovery of AMI necessitate a prioritization. We enrolled patients with AMI aged between 30 and 70. RNA-seq analysis was performed on the peripheral blood mononuclear cells collected from the patients at three time points: 1 day, 7 days, and 3 months after AMI. PLC/LC-MS analysis was conducted on the peripheral blood plasma collected from these patients at the same three time points. Differential genes and metabolites between groups were screened by bio-informatics methods to understand the dynamic changes of AMI in different periods. We obtained 15 transcriptional and 95 metabolite expression profiles at three time points after AMI through high-throughput sequencing. AMI-1d: enrichment analysis revealed the biological features of 1 day after AMI primarily included acute inflammatory response, elevated glycerophospholipid metabolism, and decreased protein synthesis capacity. Phosphatidylcholine (PC) and phosphatidylethanolamine (PE) might stand promising biomarkers to differentiate post-AMI stage. Anti-inflammatory therapy during the acute phase is an important direction for preventing related pathology. AMI-7d: the biological features of this stage primarily involved the initiation of cardiac fibrosis response and activation of platelet adhesion pathways. Accompanied by upregulated TGF-beta signaling pathway and ECM receptor interaction, GP5 help assess platelet activation, a potential therapeutic target to improve haemostasis. AMI-3m: the biological features of 3 months after AMI primarily showed a vascular regeneration response with VEGF signaling pathway, NOS3 and SHC2 widely activated, which holds promise for providing new therapeutic approaches for AMI. Our analysis highlights transcriptional and metabolomics signatures at different time points after MI, which deepens our understanding of the dynamic biological responses and associated molecular mechanisms that occur during cardiac repair.


Asunto(s)
Metabolómica , Infarto del Miocardio , Humanos , Infarto del Miocardio/metabolismo , Infarto del Miocardio/genética , Infarto del Miocardio/sangre , Persona de Mediana Edad , Masculino , Femenino , Metabolómica/métodos , Anciano , Adulto , Transcriptoma , Biomarcadores/metabolismo , Biomarcadores/sangre , Leucocitos Mononucleares/metabolismo , Perfilación de la Expresión Génica
8.
Nan Fang Yi Ke Da Xue Xue Bao ; 44(4): 666-674, 2024 Apr 20.
Artículo en Chino | MEDLINE | ID: mdl-38708499

RESUMEN

OBJECTIVE: To investigate the changes of mitochondrial respiratory function during myocardial fibrosis in mice with myocardial infarction (MI) and its correlation with the increase of glycolytic flux. METHODS: Forty C57BL/6N mice were randomized into two equal groups to receive sham operation or ligation of the left anterior descending coronary artery to induce acute MI. At 28 days after the operation, 5 mice from each group were euthanized and left ventricular tissue samples were collected for transcriptomic sequencing. FPKM method was used to calculate gene expression levels to identify the differentially expressed genes (DEGs) in MI mice, which were analyzed using GO and KEGG databases to determine the pathways affecting the disease process. Heat maps were drawn to show the differential expressions of the pathways and the related genes in the enrichment analysis. In primary cultures of neonatal mouse cardiac fibroblasts (CFs), the changes in mitochondrial respiration and glycolysis levels in response to treatment with the pro-fibrotic agonist TGF-ß1 were analyzed using Seahorse experiment. RESULTS: The mouse models of MI showed significantly increased diastolic and systolic left ventricular diameter (P < 0.05) and decreased left ventricular ejection fraction (P < 0.0001). A total of 124 up-regulated and 106 down-regulated DEGs were identified in the myocardial tissues of MI mice, and GO and KEGG enrichment analysis showed that these DEGs were significantly enriched in fatty acid metabolism, organelles and other metabolic pathways and in the mitochondria. Heat maps revealed fatty acid beta oxidation, mitochondrial dysfunction and increased glycolysis levels in MI mice. In the primary culture of CFs, treatment with TGF-ß1 significantly reduced the basal and maximum respiratory levels and increased the basal and maximum glycolysis levels (P < 0.0001). CONCLUSION: During myocardial fibrosis, energy metabolism remodeling occurs in the CFs, manifested by lowered mitochondrial function and increased energy generation through glycolysis.


Asunto(s)
Metabolismo Energético , Fibrosis , Ratones Endogámicos C57BL , Infarto del Miocardio , Animales , Ratones , Infarto del Miocardio/metabolismo , Infarto del Miocardio/genética , Miocardio/metabolismo , Miocardio/patología , Modelos Animales de Enfermedad , Mitocondrias/metabolismo , Glucólisis , Perfilación de la Expresión Génica , Transcriptoma , Fibroblastos/metabolismo , Masculino , Factor de Crecimiento Transformador beta1/metabolismo
9.
Cell Death Dis ; 15(5): 308, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38693114

RESUMEN

Heart disease involves irreversible myocardial injury that leads to high morbidity and mortality rates. Numerous cell-based cardiac in vitro models have been proposed as complementary approaches to non-clinical animal research. However, most of these approaches struggle to accurately replicate adult human heart conditions, such as myocardial infarction and ventricular remodeling pathology. The intricate interplay between various cell types within the adult heart, including cardiomyocytes, fibroblasts, and endothelial cells, contributes to the complexity of most heart diseases. Consequently, the mechanisms behind heart disease induction cannot be attributed to a single-cell type. Thus, the use of multi-cellular models becomes essential for creating clinically relevant in vitro cell models. This study focuses on generating self-organizing heart organoids (HOs) using human-induced pluripotent stem cells (hiPSCs). These organoids consist of cardiomyocytes, fibroblasts, and endothelial cells, mimicking the cellular composition of the human heart. The multi-cellular composition of HOs was confirmed through various techniques, including immunohistochemistry, flow cytometry, q-PCR, and single-cell RNA sequencing. Subsequently, HOs were subjected to hypoxia-induced ischemia and ischemia-reperfusion (IR) injuries within controlled culture conditions. The resulting phenotypes resembled those of acute myocardial infarction (AMI), characterized by cardiac cell death, biomarker secretion, functional deficits, alterations in calcium ion handling, and changes in beating properties. Additionally, the HOs subjected to IR efficiently exhibited cardiac fibrosis, displaying collagen deposition, disrupted calcium ion handling, and electrophysiological anomalies that emulate heart disease. These findings hold significant implications for the advancement of in vivo-like 3D heart and disease modeling. These disease models present a promising alternative to animal experimentation for studying cardiac diseases, and they also serve as a platform for drug screening to identify potential therapeutic targets.


Asunto(s)
Fibrosis , Células Madre Pluripotentes Inducidas , Infarto del Miocardio , Miocitos Cardíacos , Organoides , Humanos , Infarto del Miocardio/patología , Infarto del Miocardio/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Organoides/metabolismo , Organoides/patología , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Miocardio/patología , Miocardio/metabolismo , Fibroblastos/metabolismo , Fibroblastos/patología , Células Endoteliales/metabolismo , Células Endoteliales/patología
10.
BMC Cardiovasc Disord ; 24(1): 236, 2024 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-38705985

RESUMEN

BACKGROUND: This study was designed to investigate the mechanism by which miR-30a-5p mediates cardiomyocyte apoptosis after acute myocardial infarction (AMI) induced by hypoxia/reoxygenation (H/R). METHODS: Differentially expressed miRNAs were analyzed by RNA high-throughput sequencing in acute myocardial infarction (ST-elevation myocardial infarction) patients versus healthy individuals (controls). The H/R model was used to assess the regulatory mechanism of miRNAs in AMI. Lentivirus-associated vectors were used to overexpress or knock down miR-30a-5p in cellular models. The pathological mechanisms of miR-30a-5p regulating the development of acute myocardial infarction were serially explored by qPCR, bioinformatics, target gene prediction, dual luciferase, enzyme-linked immunosorbent assays (ELISAs) and Western blotting. RESULTS: The results showed that the expression of miR-30a-5p was significantly increased in AMI patients and H9C2 cells. Hypoxia decreased cardiomyocyte survival over time, and reoxygenation further reduced cell survival. Bax and Phosphatase and tensin homolog (PTEN)were suppressed, while Bcl-2 was upregulated. Additionally, miR-30a-5p specifically targeted the PTEN gene. According to the GO and KEGG analyses, miR-30a-5p may participate in apoptosis by interacting with PTEN. The miR-30a-5p mimic decreased the expression of apoptosis-related proteins and the levels of the proinflammatory markers IL-1ß, IL-6, and TNF-α by activating the PTEN/PI3K/Akt signaling pathway. Conversely, anti-miR-30a-5p treatment attenuated these effects. Additionally, silencing PTEN and anti-miR-30a-5p had opposite effects on H/R-induced cell apoptosis. CONCLUSIONS: miR-30a-5p plays a crucial role in cardiomyocyte apoptosis after hypoxia-induced acute myocardial infarction. Our findings provide translational evidence that miR-30a-5p is a novel potential therapeutic target for AMI.


Asunto(s)
Apoptosis , Hipoxia de la Célula , MicroARNs , Miocitos Cardíacos , Fosfohidrolasa PTEN , Fosfatidilinositol 3-Quinasa , Proteínas Proto-Oncogénicas c-akt , Transducción de Señal , Miocitos Cardíacos/patología , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/enzimología , MicroARNs/genética , MicroARNs/metabolismo , Fosfohidrolasa PTEN/metabolismo , Fosfohidrolasa PTEN/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Humanos , Línea Celular , Animales , Estudios de Casos y Controles , Fosfatidilinositol 3-Quinasa/metabolismo , Infarto del Miocardio/genética , Infarto del Miocardio/patología , Infarto del Miocardio/metabolismo , Ratas , Masculino , Daño por Reperfusión Miocárdica/genética , Daño por Reperfusión Miocárdica/patología , Daño por Reperfusión Miocárdica/metabolismo , Daño por Reperfusión Miocárdica/enzimología , Regulación de la Expresión Génica , Persona de Mediana Edad , Femenino
11.
Mol Biol Rep ; 51(1): 604, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38700644

RESUMEN

BACKGROUND: The healing process after a myocardial infarction (MI) in humans involves complex events that replace damaged tissue with a fibrotic scar. The affected cardiac tissue may lose its function permanently. In contrast, zebrafish display a remarkable capacity for scar-free heart regeneration. Previous studies have revealed that syndecan-4 (SDC4) regulates inflammatory response and fibroblast activity following cardiac injury in higher vertebrates. However, whether and how Sdc4 regulates heart regeneration in highly regenerative zebrafish remains unknown. METHODS AND RESULTS: This study showed that sdc4 expression was differentially regulated during zebrafish heart regeneration by transcriptional analysis. Specifically, sdc4 expression increased rapidly and transiently in the early regeneration phase upon ventricular cryoinjury. Moreover, the knockdown of sdc4 led to a significant reduction in extracellular matrix protein deposition, immune cell accumulation, and cell proliferation at the lesion site. The expression of tgfb1a and col1a1a, as well as the protein expression of Fibronectin, were all down-regulated under sdc4 knockdown. In addition, we verified that sdc4 expression was required for cardiac repair in zebrafish via in vivo electrocardiogram analysis. Loss of sdc4 expression caused an apparent pathological Q wave and ST elevation, which are signs of human MI patients. CONCLUSIONS: Our findings support that Sdc4 is required to mediate pleiotropic repair responses in the early stage of zebrafish heart regeneration.


Asunto(s)
Corazón , Regeneración , Sindecano-4 , Pez Cebra , Animales , Pez Cebra/genética , Pez Cebra/metabolismo , Sindecano-4/genética , Sindecano-4/metabolismo , Regeneración/genética , Corazón/fisiología , Corazón/fisiopatología , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo , Infarto del Miocardio/genética , Infarto del Miocardio/metabolismo , Infarto del Miocardio/patología , Proliferación Celular/genética , Miocardio/metabolismo , Miocardio/patología , Técnicas de Silenciamiento del Gen
12.
Sci Rep ; 14(1): 9991, 2024 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-38693202

RESUMEN

Endothelial cells (ECs) have essential roles in cardiac tissue repair after myocardial infarction (MI). To establish stage-specific and long-term effects of the ischemic injury on cardiac ECs, we analyzed their transcriptome at landmark time points after MI in mice. We found that early EC response at Day 2 post-MI centered on metabolic changes, acquisition of proinflammatory phenotypes, initiation of the S phase of cell cycle, and activation of stress-response pathways, followed by progression to mitosis (M/G2 phase) and acquisition of proangiogenic and mesenchymal properties during scar formation at Day 7. In contrast, genes involved in vascular physiology and maintenance of vascular tone were suppressed. Importantly, ECs did not return to pre-injury phenotypes after repair has been completed but maintained inflammatory, fibrotic and thrombotic characteristics and lost circadian rhythmicity. We discovered that the highest induced transcript is the mammalian-specific Sh2d5 gene that promoted migration and invasion of ECs through Rac1 GTPase. Our results revealed a synchronized, temporal activation of disease phenotypes, metabolic pathways, and proliferation in quiescent ECs after MI, indicating that precisely-timed interventions are necessary to optimize cardiac tissue repair and improve outcomes. Furthermore, long-term effects of acute ischemic injury on ECs may contribute to vascular dysfunction and development of heart failure.


Asunto(s)
Células Endoteliales , Perfilación de la Expresión Génica , Infarto del Miocardio , Animales , Infarto del Miocardio/genética , Infarto del Miocardio/metabolismo , Infarto del Miocardio/patología , Ratones , Células Endoteliales/metabolismo , Células Endoteliales/patología , Transcriptoma , Masculino , Ratones Endogámicos C57BL , Miocardio/metabolismo , Miocardio/patología , Proteína de Unión al GTP rac1/metabolismo , Proteína de Unión al GTP rac1/genética , Modelos Animales de Enfermedad , Proliferación Celular , Movimiento Celular/genética
13.
J Physiol Pharmacol ; 75(2): 123-136, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38736260

RESUMEN

Myocardial infarction (MI) is a significant global health issue and the leading cause of death. Myocardial infarction (MI) is characterized by events such as damage to heart cells and stress generated by inflammation. Punicalagin (PCN), a naturally occurring bioactive compound found in pomegranates, exhibits a diverse array of pharmacological effects against many disorders. This study aimed to assess the preventive impact of PCN, with its potential anti-inflammatory and antioxidant properties, on myocardial injury caused by isoproterenol (ISO) in rats and elucidate the possible underlying mechanisms. Experimental rats were randomly categorized into four groups: control group (fed a regular diet for 15 days), PCN group (orally administered PCN at 50 mg/kg body weight (b.w.) for 15 days), ISO group (subcutaneously administered ISO (85 mg/kg b.w.) on days 14 and 15 to induce MI), and PCN+ISO group (orally preadministered PCN (50 mg/kg b.w.) for 15 days and administered ISO (85 mg/kg b.w.) on days 14 and 15). The rat cardiac tissue was then investigated for cardiac marker, oxidative stress marker, and inflammatory marker expression levels. PCN prevented ISO-induced myocardial injury, suppressing the levels of creatine kinase-myocardial band, C-reactive protein, homocysteine, cardiac troponin T, and cardiac troponin I in the rats. Moreover, PCN treatment reversed (P<0.01) the ISO-induced increase in blood pressure, attenuated lipid peroxidation markers, and depleted both enzymatic and nonenzymatic markers in the rats. Additionally, PCN inhibited (P<0.01) ISO-induced overexpression of oxidative stress markers (p-38, p-c-Jun N-terminal kinase, and p-extracellular signal-regulated kinase 1), inflammatory markers (nuclear factor-kappa B, tumor necrosis factor-alpha, and interleukin-6), and matrix metalloproteinases and decreased the levels (P<0.01) of apoptosis proteins in the rats. Nuclear factor erythroid 2-related factor 2/silent information regulator transcript-1 (Nrf2/Sirt1) is a major cellular defense protein that regulates and scavenges oxidative toxic substances through apoptosis. Therefore, overexpression of Nrf2/Sirt1 to inhibit inflammation and oxidative stress is considered a novel target for preventing MI. PCN also significantly enhanced the expression of Nrf2/Sirt1 in ISO-induced rats. Histopathological analyses of cardiac tissue revealed that PCN treatment exhibited a protective effect on the heart tissue, mitigating damage. These findings show that by activating the Nrf2/Sirt1 pathway, PCN regulates oxidative stress, inflammation, and apoptosis, hence providing protection against ISO-induced myocardial ischemia.


Asunto(s)
Taninos Hidrolizables , Inflamación , Isoproterenol , Infarto del Miocardio , Factor 2 Relacionado con NF-E2 , Estrés Oxidativo , Sirtuina 1 , Animales , Isoproterenol/toxicidad , Infarto del Miocardio/inducido químicamente , Infarto del Miocardio/prevención & control , Infarto del Miocardio/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Masculino , Taninos Hidrolizables/farmacología , Sirtuina 1/metabolismo , Inflamación/metabolismo , Inflamación/tratamiento farmacológico , Inflamación/prevención & control , Inflamación/inducido químicamente , Ratas , Estrés Oxidativo/efectos de los fármacos , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Ratas Wistar , Biomarcadores/metabolismo , Modelos Animales de Enfermedad , Antioxidantes/farmacología , Miocardio/metabolismo , Miocardio/patología
14.
Front Immunol ; 15: 1360700, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38736886

RESUMEN

Introduction: Myocardial infarction (MI) is a significant contributor to morbidity and mortality worldwide. Many individuals who survive the acute event continue to experience heart failure (HF), with inflammatory and healing processes post-MI playing a pivotal role. Polymorphonuclear neutrophils (PMN) and monocytes infiltrate the infarcted area, where PMN release high amounts of the heme enzyme myeloperoxidase (MPO). MPO has numerous inflammatory properties and MPO plasma levels are correlated with prognosis and severity of MI. While studies have focused on MPO inhibition and controlling PMN infiltration into the infarcted tissue, less is known on MPO's role in monocyte function. Methods and results: Here, we combined human data with mouse and cell studies to examine the role of MPO on monocyte activation and migration. We revealed a correlation between plasma MPO levels and monocyte activation in a patient study. Using a mouse model of MI, we demonstrated that MPO deficiency led to an increase in splenic monocytes and a decrease in cardiac monocytes compared to wildtype mice (WT). In vitro studies further showed that MPO induces monocyte migration, with upregulation of the chemokine receptor CCR2 and upregulation of inflammatory pathways identified as underlying mechanisms. Conclusion: Taken together, we identify MPO as a pro-inflammatory mediator of splenic monocyte recruitment and activation post-MI and provide mechanistic insight for novel therapeutic strategies after ischemic injury.


Asunto(s)
Monocitos , Infarto del Miocardio , Peroxidasa , Animales , Infarto del Miocardio/inmunología , Infarto del Miocardio/patología , Infarto del Miocardio/metabolismo , Peroxidasa/metabolismo , Monocitos/inmunología , Monocitos/metabolismo , Humanos , Ratones , Masculino , Movimiento Celular , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL , Femenino , Neutrófilos/inmunología , Neutrófilos/metabolismo , Ratones Noqueados , Receptores CCR2/metabolismo , Persona de Mediana Edad
15.
Exp Cell Res ; 438(2): 114061, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38692345

RESUMEN

Acute myocardial infarction (AMI) is a prevalent cardiovascular disease with high morbidity and mortality rates worldwide. Pyroptosis is an inflammatory form of programmed cell death that has been linked to various pathological conditions. However, its exact contribution to the onset and progression of heart injury in AMI has not yet fully elucidated. Herein, we established mouse AMI model by ligating the left anterior descending artery and performed transcriptome analysis during the early phase of AMI. Mouse HL-1 and human AC-16 cardiomyocytes were subjected to hypoxia to simulate ischemic injury in vitro. Our results revealed a significant activation of the inflammatory response at 3 h post-ligation, as confirmed by RNA sequencing. We identified the occurrence of NLRP3 inflammasome-mediated pyroptosis in the cardiac tissues of human cases with AMI, as well as in mouse models of AMI and hypoxia-induced cardiomyocytes, using immunohistochemistry staining and Western blotting assays. Concurrently, pharmacological inhibition of NLRP3 inflammasome-mediated pyroptosis with MCC950 and VX-765 effectively decreased hypoxia-induced cardiomyocytes injury, while mitigating myocardial oxidative stress, apoptosis and inflammation caused by hypoxia. Moreover, the circulating levels of gasdermin D (GSDMD), the pyroptosis executor, were remarkably elevated in the plasma of mice with early AMI and in the supernatant of hypoxia-exposed cardiomyocytes in a time-dependent manner using ELISA and Western blotting. Furthermore, the change in circulating GSDMD positively correlated with Creatine Kinase-MB (CK-MB) in the plasma of early-stage AMI mouse. In summary, these findings indicated a critical role for NLRP3 inflammasome-mediated pyroptosis in the progression of AMI, the administration of MCC950 and VX-765 may be attractive candidate therapeutic approaches for cardiac injury caused by acute hypoxia or even AMI. Additionally, the circulating GSDMD exhibits potential as a newly diagnostic biomarker for AMI.


Asunto(s)
Apoptosis , Furanos , Inflamación , Ratones Endogámicos C57BL , Infarto del Miocardio , Miocitos Cardíacos , Estrés Oxidativo , Piroptosis , Sulfonamidas , Piroptosis/efectos de los fármacos , Animales , Ratones , Apoptosis/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Sulfonamidas/farmacología , Humanos , Inflamación/metabolismo , Inflamación/patología , Inflamación/tratamiento farmacológico , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/patología , Masculino , Furanos/farmacología , Infarto del Miocardio/metabolismo , Infarto del Miocardio/patología , Infarto del Miocardio/tratamiento farmacológico , Indenos/farmacología , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , para-Aminobenzoatos/farmacología , Inflamasomas/metabolismo , Inflamasomas/efectos de los fármacos , Modelos Animales de Enfermedad , Miocardio/metabolismo , Miocardio/patología , Hipoxia/metabolismo , Hipoxia/complicaciones , Dipéptidos
16.
Int J Mol Sci ; 25(9)2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38732142

RESUMEN

The high mortality rate among patients with acute myocardial infarction (AMI) is one of the main problems of modern cardiology. It is quite obvious that there is an urgent need to create more effective drugs for the treatment of AMI than those currently used in the clinic. Such drugs could be enzyme-resistant peptide analogs of glucagon-like peptide-1 (GLP-1). GLP-1 receptor (GLP1R) agonists can prevent ischemia/reperfusion (I/R) cardiac injury. In addition, chronic administration of GLP1R agonists can alleviate the development of adverse cardiac remodeling in myocardial infarction, hypertension, and diabetes mellitus. GLP1R agonists can protect the heart against oxidative stress and reduce proinflammatory cytokine (IL-1ß, TNF-α, IL-6, and MCP-1) expression in the myocardium. GLP1R stimulation inhibits apoptosis, necroptosis, pyroptosis, and ferroptosis of cardiomyocytes. The activation of the GLP1R augments autophagy and mitophagy in the myocardium. GLP1R agonists downregulate reactive species generation through the activation of Epac and the GLP1R/PI3K/Akt/survivin pathway. The GLP1R, kinases (PKCε, PKA, Akt, AMPK, PI3K, ERK1/2, mTOR, GSK-3ß, PKG, MEK1/2, and MKK3), enzymes (HO-1 and eNOS), transcription factors (STAT3, CREB, Nrf2, and FoxO3), KATP channel opening, and MPT pore closing are involved in the cardioprotective effect of GLP1R agonists.


Asunto(s)
Cardiotónicos , Receptor del Péptido 1 Similar al Glucagón , Transducción de Señal , Humanos , Receptor del Péptido 1 Similar al Glucagón/agonistas , Receptor del Péptido 1 Similar al Glucagón/metabolismo , Cardiotónicos/farmacología , Cardiotónicos/uso terapéutico , Transducción de Señal/efectos de los fármacos , Animales , Péptidos/farmacología , Péptidos/uso terapéutico , Daño por Reperfusión Miocárdica/metabolismo , Daño por Reperfusión Miocárdica/tratamiento farmacológico , Daño por Reperfusión Miocárdica/prevención & control , Daño por Reperfusión Miocárdica/patología , Infarto del Miocardio/metabolismo , Infarto del Miocardio/tratamiento farmacológico , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/efectos de los fármacos , Agonistas Receptor de Péptidos Similares al Glucagón
17.
Int Immunopharmacol ; 133: 112080, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38613882

RESUMEN

Myocardial infarction leads to myocardial inflammation and apoptosis, which are crucial factors leading to heart failure and cardiovascular dysfunction, eventually resulting in death. While the inhibition of AMPA receptors mitigates inflammation and tissue apoptosis, the effectiveness of this inhibition in the pathophysiological processes of myocardial infarction remains unclear. This study investigated the role of AMPA receptor inhibition in myocardial infarction and elucidated the underlying mechanisms. This study established a myocardial infarction model by ligating the left anterior descending branch of the coronary artery in Sprague-Dawley rats. The findings suggested that injecting the AMPA receptor antagonist NBQX into myocardial infarction rats effectively alleviated cardiac inflammation, myocardial necrosis, and apoptosis and improved their cardiac contractile function. Conversely, injecting the AMPA receptor agonist CX546 into infarcted rats exacerbated the symptoms and tissue damage, as reflected by histopathology. This agonist also stimulated the TLR4/NF-κB pathway, further deteriorating cardiac function. Furthermore, the investigations revealed that AMPA receptor inhibition hindered the nuclear translocation of P65, blocking its downstream signaling pathway and attenuating tissue inflammation. In summary, this study affirmed the potential of AMPA receptor inhibition in countering inflammation and tissue apoptosis after myocardial infarction, making it a promising therapeutic target for mitigating myocardial infarction.


Asunto(s)
Apoptosis , Infarto del Miocardio , FN-kappa B , Ratas Sprague-Dawley , Receptores AMPA , Transducción de Señal , Receptor Toll-Like 4 , Animales , Receptor Toll-Like 4/metabolismo , Receptor Toll-Like 4/antagonistas & inhibidores , Receptores AMPA/antagonistas & inhibidores , Receptores AMPA/metabolismo , Infarto del Miocardio/tratamiento farmacológico , Infarto del Miocardio/patología , Infarto del Miocardio/metabolismo , Apoptosis/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , FN-kappa B/metabolismo , Masculino , Ratas , Miocardio/patología , Miocardio/metabolismo , Modelos Animales de Enfermedad , Inflamación/tratamiento farmacológico , Humanos
18.
Eur J Pharmacol ; 973: 176585, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38636799

RESUMEN

This study aimed to explore the effects and mechanism of action of stachydrine hydrochloride (Sta) against myocardial infarction (MI) through sarcoplasmic/endoplasmic reticulum stress-related injury. The targets of Sta against MI were screened using network pharmacology. C57BL/6 J mice after MI were treated with saline, Sta (6 or 12 mg kg-1) for 2 weeks, and adult mouse and neonatal rat cardiomyocytes (AMCMs and NRCMs) were incubated with Sta (10-4-10-6 M) under normoxia or hypoxia for 2 or 12 h, respectively. Echocardiography, Evans blue, and 2,3,5-triphenyltetrazolium chloride (TTC) staining were used for morphological and functional analyses. Endoplasmic reticulum stress (ERS), unfolded protein reaction (UPR), apoptosis signals, cardiomyocyte contraction, and Ca2+ flux were detected using transmission electron microscopy (TEM), western blotting, immunofluorescence, and sarcomere and Fluo-4 tracing. The ingredient-disease-pathway-target network revealed targets of Sta against MI were related to apoptosis, Ca2+ homeostasis and ERS. Both dosages of Sta improved heart function, decreased infarction size, and potentially increased the survival rate. Sta directly alleviated ERS and UPR and elicited less apoptosis in the border myocardium and hypoxic NRCMs. Furthermore, Sta upregulated sarcoplasmic reticulum Ca2+-ATPase 2a (SERCA2a) in both ischaemic hearts and hypoxic NRCMs, accompanied by restored sarcomere shortening, resting intracellular Ca2+, and Ca2+ reuptake time constants (Tau) in Sta-treated hypoxic ARCMs. However, 2,5-di-t-butyl-1,4-benzohydroquinone (BHQ) (25 µM), a specific SERCA inhibitor, totally abolished the beneficial effect of Sta in hypoxic cardiomyocytes. Sta protects the heart from MI by upregulating SERCA2a to maintain intracellular Ca2+ homeostasis, thus alleviating ERS-induced apoptosis.


Asunto(s)
Apoptosis , Calcio , Estrés del Retículo Endoplásmico , Homeostasis , Ratones Endogámicos C57BL , Miocitos Cardíacos , Prolina/análogos & derivados , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico , Animales , Estrés del Retículo Endoplásmico/efectos de los fármacos , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo , Calcio/metabolismo , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Homeostasis/efectos de los fármacos , Apoptosis/efectos de los fármacos , Ratones , Masculino , Cardiotónicos/farmacología , Cardiotónicos/uso terapéutico , Ratas , Infarto del Miocardio/patología , Infarto del Miocardio/metabolismo , Infarto del Miocardio/tratamiento farmacológico , Infarto del Miocardio/prevención & control , Bencilisoquinolinas/farmacología , Bencilisoquinolinas/uso terapéutico , Respuesta de Proteína Desplegada/efectos de los fármacos
19.
J Am Heart Assoc ; 13(9): e032577, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38639350

RESUMEN

BACKGROUND: The goal was to determine the feasibility of mapping the injured-but-not-infarcted myocardium using 99mTc-duramycin in the postischemic heart, with spatial information for its characterization as a pathophysiologically intermediate tissue, which is neither normal nor infarcted. METHODS AND RESULTS: Coronary occlusion was conducted in Sprague Dawley rats with preconditioning and 30-minute ligation. In vivo single-photon emission computed tomography was acquired after 3 hours (n=6) using 99mTc-duramycin, a phosphatidylethanolamine-specific radiopharmaceutical. The 99mTc-duramycin+ areas were compared with infarct and area-at-risk (n=8). Cardiomyocytes and endothelial cells were isolated for gene expression profiling. Cardiac function was measured with echocardiography (n=6) at 4 weeks. In vivo imaging with 99mTc-duramycin identified the infarct (3.9±2.4% of the left ventricle and an extensive area 23.7±2.2% of the left ventricle) with diffuse signal outside the infarct, which is pathologically between normal and infarcted (apoptosis 1.8±1.6, 8.9±4.2, 13.6±3.8%; VCAM-1 [vascular cell adhesion molecule 1] 3.2±0.8, 9.8±4.1, 15.9±4.2/mm2; tyrosine hydroxylase 14.9±2.8, 8.6±4.4, 5.6±2.2/mm2), with heterogeneous changes including scattered micronecrosis, wavy myofibrils, hydropic change, and glycogen accumulation. The 99mTc-duramycin+ tissue is quantitatively smaller than the area-at-risk (26.7% versus 34.4% of the left ventricle, P=0.008). Compared with infarct, gene expression in the 99mTc-duramycin+-noninfarct tissue indicated a greater prosurvival ratio (BCL2/BAX [B-cell lymphoma 2/BCL2-associated X] 7.8 versus 5.7 [cardiomyocytes], 3.7 versus 3.2 [endothelial]), and an upregulation of ion channels in electrophysiology. There was decreased contractility at 4 weeks (regional fractional shortening -8.6%, P<0.05; circumferential strain -52.9%, P<0.05). CONCLUSIONS: The injured-but-not-infarcted tissue, being an intermediate zone between normal and infarct, is mapped in vivo using phosphatidylethanolamine-based imaging. The intermediate zone contributes significantly to cardiac dysfunction.


Asunto(s)
Modelos Animales de Enfermedad , Infarto del Miocardio , Péptidos , Radiofármacos , Ratas Sprague-Dawley , Tomografía Computarizada de Emisión de Fotón Único , Animales , Infarto del Miocardio/patología , Infarto del Miocardio/metabolismo , Infarto del Miocardio/diagnóstico por imagen , Masculino , Miocardio/patología , Miocardio/metabolismo , Miocitos Cardíacos/patología , Miocitos Cardíacos/metabolismo , Bacteriocinas/metabolismo , Estudios de Factibilidad , Ratas , Perfilación de la Expresión Génica/métodos , Función Ventricular Izquierda , Células Endoteliales/metabolismo , Células Endoteliales/patología , Compuestos de Organotecnecio
20.
Int J Mol Sci ; 25(8)2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38674000

RESUMEN

Stimulation of the alpha 7 nicotinic acetylcholine receptor (α7nAChR) has shown beneficial effects in several acute inflammatory disease models. This study aims to examine whether treatment with the selective α7nAChR agonist PHA 568487 can dampen inflammation and thereby improve cardiac function after myocardial infarction in mice. The possible anti-inflammatory properties of α7nAChR agonist PHA 568487 were tested in vivo using the air pouch model and in a permanent occlusion model of acute myocardial infarction in mice. Hematologic parameters and cytokine levels were determined. Infarct size and cardiac function were assessed via echocardiography 24 h and one week after the infarction. Treatment with α7nAChR agonist PHA 568487 decreased 12 (CCL27, CXCL5, IL6, CXCL10, CXCL11, CXCL1, CCL2, MIP1a, MIP2, CXCL16, CXCL12 and CCL25) out of 33 cytokines in the air pouch model of acute inflammation. However, α7nAChR agonist PHA 568487 did not alter infarct size, ejection fraction, cardiac output or stroke volume at 24 h or at 7 days after the myocardial infarction compared with control mice. In conclusion, despite promising immunomodulatory effects in the acute inflammatory air pouch model, α7nAChR agonist PHA 568487 did not affect infarct size or cardiac function after a permanent occlusion model of acute myocardial infarction in mice. Consequently, this study does not strengthen the hypothesis that stimulation of the α7nAChR is a future treatment strategy for acute myocardial infarction when reperfusion is lacking. However, whether other agonists of the α7nAChR can have different effects remains to be investigated.


Asunto(s)
Modelos Animales de Enfermedad , Inflamación , Infarto del Miocardio , Receptor Nicotínico de Acetilcolina alfa 7 , Animales , Infarto del Miocardio/tratamiento farmacológico , Infarto del Miocardio/metabolismo , Infarto del Miocardio/patología , Receptor Nicotínico de Acetilcolina alfa 7/agonistas , Receptor Nicotínico de Acetilcolina alfa 7/metabolismo , Ratones , Inflamación/tratamiento farmacológico , Inflamación/patología , Inflamación/metabolismo , Masculino , Citocinas/metabolismo , Agonistas Nicotínicos/farmacología , Agonistas Nicotínicos/uso terapéutico , Piridinas/farmacología , Piridinas/uso terapéutico , Ratones Endogámicos C57BL , Quinuclidinas/farmacología , Quinuclidinas/uso terapéutico , Bencilaminas/farmacología , Bencilaminas/uso terapéutico , Compuestos de Bencilideno/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA