RESUMEN
BACKGROUND: Human parainfluenza virus-1 (HPIV-1) is a notable pathogen instigating acute respiratory tract infections in children. The article is to elucidate the epidemiological and genetic characteristics of HPIV-1 circulating in Hangzhou during the period of 2021-2022. METHODS: A cohort of 2360 nasopharyngeal swabs were amassed and subsequently examined via RT-PCR, with HPIV-1 positive samples undergoing P gene sequencing. RESULTS: The highest HPIV-1 infection rates were found in children aged between 3 and 6 years. A pronounced positive rate persisted through the latter half of 2021, with a notable decline observed in the initial half of 2022. All HPIV-1 strains could be clustered into 2 groups: Cluster 1, with strains similar to those found in Japan (LC764865, LC764864), and Cluster 2, with strains similar to the Beijing strain (MW575643). CONCLUSION: In conclusion, our study contributes to the comprehensive data on the epidemiological and genetic characteristics of HPIV-1 in pediatric patients from Hangzhou, post the COVID-19 peak.
Asunto(s)
Virus de la Parainfluenza 1 Humana , Filogenia , Humanos , China/epidemiología , Preescolar , Niño , Virus de la Parainfluenza 1 Humana/genética , Virus de la Parainfluenza 1 Humana/aislamiento & purificación , Masculino , Femenino , Lactante , Adolescente , Infecciones del Sistema Respiratorio/epidemiología , Infecciones del Sistema Respiratorio/virología , Nasofaringe/virología , Infecciones por Respirovirus/epidemiología , Infecciones por Respirovirus/virología , Recién NacidoRESUMEN
Human parainfluenza virus type 3 (HPIV-3) can cause severe respiratory tract infections. There are no convenient small-animal infection models. Here, we show viral replication in the upper and lower airways of AG129 mice (double IFNα/ß and IFNγ receptor knockout mice) upon intranasal inoculation. By multiplex fluorescence RNAscope and immunohistochemistry followed by confocal microscopy, we demonstrate viral tropism to ciliated cells and club cells of the bronchiolar epithelium. HPIV-3 causes a marked lung pathology. No virus transmission of the virus was observed by cohousing HPIV-3-infected AG129 mice with other mice. Oral treatment with GS-441524, the parent nucleoside of remdesivir, reduced infectious virus titers in the lung, with a relatively normal histology. Intranasal treatment also affords an antiviral effect. Thus, AG129 mice serve as a robust preclinical model for developing therapeutic and prophylactic strategies against HPIV-3. We suggest further investigation of GS-441524 and its prodrug forms to treat HPIV-3 infection in humans.
Asunto(s)
Antivirales , Modelos Animales de Enfermedad , Pulmón , Ratones Noqueados , Virus de la Parainfluenza 3 Humana , Infecciones por Respirovirus , Animales , Pulmón/virología , Pulmón/patología , Pulmón/efectos de los fármacos , Ratones , Virus de la Parainfluenza 3 Humana/efectos de los fármacos , Virus de la Parainfluenza 3 Humana/fisiología , Antivirales/farmacología , Infecciones por Respirovirus/tratamiento farmacológico , Infecciones por Respirovirus/virología , Humanos , Replicación Viral/efectos de los fármacos , Femenino , Receptor de Interferón alfa y beta/genética , Receptor de Interferón alfa y beta/metabolismo , Receptor de Interferón alfa y beta/deficiencia , Adenosina/análogos & derivados , Adenosina/farmacología , Tropismo Viral , Benzamidas , FtalimidasRESUMEN
Human parainfluenza viruses (HPIVs) are a significant cause of acute lower respiratory tract infections (ALRTIs) among young children and elderly individuals worldwide. The four types of HPIVs (HPIV1-4) can cause recurrent infections and pose a significant economic burden on health care systems globally. However, owing to the limited availability of complete genome sequences, the genetic evolution of these viruses and the development of vaccines and antiviral treatments are hampered. To address this issue, this study utilized next-generation sequencing to obtain 156 complete genome sequences of HPIV1-4, which were isolated from hospitalized children with ALRTIs in six regions of China between 2015 and 2021. This study revealed multiple clades, lineages, or sublineages of HPIVs circulating in mainland China, with a novel clade D of HPIV1 identified as geographically restricted to China. Moreover, this study identified the endemic dominant genotype of HPIV3, lineage C3, which has widely spread and continuously circulated in China. Bioinformatic analysis of the genome sequences revealed that the proteins of HPIV3 possessed the most variable sites, with the P protein showing more diversity than the other proteins among all types of HPIVs. The HN proteins of HPIV1-3 are all under negative/purifying selection, and two amino acid substitutions in the HN proteins correspond to known mAb neutralizing sites in the two HPIV3 strains. These findings provide crucial insights into the genetic diversity and evolutionary dynamics of HPIVs circulating among children in China and may facilitate research on the molecular diagnosis, vaccine development, and surveillance of HPIVs.IMPORTANCEPhylogenetic analysis revealed the prevalence of multiple clades, lineages, or sublineages of human parainfluenza viruses (HPIVs) circulating in mainland China. Notably, a unique evolutionary branch of HPIV1 containing only Chinese strains was identified and designated clade D. Furthermore, in 2023, HPIV3 strains from Pakistan and Russia formed a new lineage within clade C, named C6. The first HPIV4b sequence obtained in this study from China belongs to lineage C2. Evolutionary rate assessments revealed that both the HN and whole-genome sequences of HPIV3 presented the lowest evolutionary rates compared with those of the other HPIV types, with rates of 6.98E-04 substitutions/site/year (95% HPD: 5.87E-04 to 8.25E-03) and 5.85E-04 substitutions/site/year (95% HPD: 5.12E-04 to 6.62E-04), respectively. Recombination analysis revealed a potential recombination event in the F gene of an HPIV1 strain in this study. Additionally, all the newly obtained HPIV1-3 strains exhibited negative selection pressure, and two mutations were identified in the HN protein of two HPIV3 strains at monoclonal antibody-binding sites.
Asunto(s)
Genoma Viral , Genotipo , Filogenia , Infecciones del Sistema Respiratorio , Humanos , China/epidemiología , Infecciones del Sistema Respiratorio/virología , Infecciones del Sistema Respiratorio/epidemiología , Preescolar , Genoma Viral/genética , Niño , Masculino , Femenino , Lactante , Virus de la Parainfluenza 1 Humana/genética , Virus de la Parainfluenza 1 Humana/aislamiento & purificación , Virus de la Parainfluenza 1 Humana/clasificación , Virus de la Parainfluenza 4 Humana/genética , Virus de la Parainfluenza 4 Humana/clasificación , Virus de la Parainfluenza 4 Humana/aislamiento & purificación , Virus de la Parainfluenza 3 Humana/genética , Virus de la Parainfluenza 3 Humana/clasificación , Virus de la Parainfluenza 3 Humana/aislamiento & purificación , Secuenciación de Nucleótidos de Alto Rendimiento , Secuenciación Completa del Genoma , Variación Genética , Infecciones por Respirovirus/virología , Infecciones por Respirovirus/epidemiología , Respirovirus/genética , Respirovirus/clasificación , Respirovirus/aislamiento & purificación , Virus de la Parainfluenza 2 Humana/genética , Virus de la Parainfluenza 2 Humana/clasificación , Virus de la Parainfluenza 2 Humana/aislamiento & purificación , Pueblos del Este de AsiaRESUMEN
BACKGROUND: Since the outbreak of COVID-19, China has undertaken a variety of preventative and control measures, effectively reducing the incidence of numerous infectious diseases among the pediatric population in Hangzhou. We aim to investigate the genetic and epidemiological characteristics of Human parainfluenza virus-3 (HPIV-3) in pediatric patients during this period. METHODS: A total of 1442 pharyngeal swab samples were collected from outpatients and inpatients with a diagnosis of acute respiratory tract infections (ARTIs) from November 2020 to March 2021. HPIV-3 was detected by quantitative real time polymerase chain reaction (qRT-PCR). The L gene of HPIV-3 positive samples was amplified and sequenced. RESULTS: Among 1442 children with ARTI, the positive rate of HPIV-3 was 7.07% (102/1442). The positive detection rate was the highest in the 6-month to 1-year age group. Coinfection was observed in 36 HPIV-3-positive samples (35.29%, 36/102), and adenovirus (ADV) was the most common coinfecting virus (63.89%, 23/36). The L gene of 48 HPIV-3 positive samples was sequenced. The nucleotide sequence analysis showed high consistency (92.10%-99.40%), and all strains belonged to C3a. CONCLUSIONS: During study periods, the positive detection rate of HPIV-3 among children is high, and the highest proportion of coinfection was observed in HPIV-3 mixed ADV infection. Phylogenetic analysis revealed that the nucleotide sequence of the L gene of HPIV-3 was highly consistent, and the main epidemic strain in this area was the C3a subtype.
Asunto(s)
Epidemiología Molecular , Virus de la Parainfluenza 3 Humana , Filogenia , Infecciones del Sistema Respiratorio , Infecciones por Respirovirus , Humanos , Virus de la Parainfluenza 3 Humana/genética , Virus de la Parainfluenza 3 Humana/aislamiento & purificación , Virus de la Parainfluenza 3 Humana/clasificación , Infecciones del Sistema Respiratorio/virología , Infecciones del Sistema Respiratorio/epidemiología , China/epidemiología , Preescolar , Lactante , Masculino , Niño , Femenino , Infecciones por Respirovirus/epidemiología , Infecciones por Respirovirus/virología , Coinfección/epidemiología , Coinfección/virología , Adolescente , Recién NacidoRESUMEN
Human parainfluenza virus type 3 (hPIV3) is a respiratory pathogen that can cause severe disease in older people and infants. Currently, vaccines against hPIV3 are in clinical trials but none have been approved yet. The haemagglutinin-neuraminidase (HN) and fusion (F) surface glycoproteins of hPIV3 are major antigenic determinants. Here we describe naturally occurring potently neutralizing human antibodies directed against both surface glycoproteins of hPIV3. We isolated seven neutralizing HN-reactive antibodies and a pre-fusion conformation F-reactive antibody from human memory B cells. One HN-binding monoclonal antibody (mAb), designated PIV3-23, exhibited functional attributes including haemagglutination and neuraminidase inhibition. We also delineated the structural basis of neutralization for two HN and one F mAbs. MAbs that neutralized hPIV3 in vitro protected against infection and disease in vivo in a cotton rat model of hPIV3 infection, suggesting correlates of protection for hPIV3 and the potential clinical utility of these mAbs.
Asunto(s)
Anticuerpos Monoclonales , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Proteína HN , Virus de la Parainfluenza 3 Humana , Infecciones por Respirovirus , Sigmodontinae , Proteínas Virales de Fusión , Animales , Virus de la Parainfluenza 3 Humana/inmunología , Virus de la Parainfluenza 3 Humana/genética , Humanos , Anticuerpos Monoclonales/inmunología , Anticuerpos Monoclonales/química , Anticuerpos Neutralizantes/inmunología , Anticuerpos Neutralizantes/química , Anticuerpos Antivirales/inmunología , Anticuerpos Antivirales/química , Proteínas Virales de Fusión/inmunología , Proteínas Virales de Fusión/química , Proteína HN/inmunología , Proteína HN/química , Proteína HN/genética , Infecciones por Respirovirus/inmunología , Infecciones por Respirovirus/virología , Modelos Animales de Enfermedad , Pruebas de Neutralización , Linfocitos B/inmunología , Modelos MolecularesRESUMEN
Human parainfluenza virus type 3 (HPIV3) is a major pediatric respiratory pathogen lacking available vaccines or antiviral drugs. We generated live-attenuated HPIV3 vaccine candidates by codon-pair deoptimization (CPD). HPIV3 open reading frames (ORFs) encoding the nucleoprotein (N), phosphoprotein (P), matrix (M), fusion (F), hemagglutinin-neuraminidase (HN), and polymerase (L) were modified singly or in combination to generate 12 viruses designated Min-N, Min-P, Min-M, Min-FHN, Min-L, Min-NP, Min-NPM, Min-NPL, Min-PM, Min-PFHN, Min-MFHN, and Min-PMFHN. CPD of N or L severely reduced growth in vitro and was not further evaluated. CPD of P or M was associated with increased and decreased interferon (IFN) response in vitro, respectively, but had little effect on virus replication. In Vero cells, CPD of F and HN delayed virus replication, but final titers were comparable to wild-type (wt) HPIV3. In human lung epithelial A549 cells, CPD F and HN induced a stronger IFN response, viral titers were reduced 100-fold, and the expression of F and HN proteins was significantly reduced without affecting N or P or the relative packaging of proteins into virions. Following intranasal infection in hamsters, replication in the nasal turbinates and lungs tended to be the most reduced for viruses bearing CPD F and HN, with maximum reductions of approximately 10-fold. Despite decreased in vivo replication (and lower expression of CPD F and HN in vitro), all viruses induced titers of serum HPIV3-neutralizing antibodies similar to wt and provided complete protection against HPIV3 challenge. In summary, CPD of HPIV3 yielded promising vaccine candidates suitable for further development.
Asunto(s)
Codón , Virus de la Parainfluenza 3 Humana , Vacunas Atenuadas , Replicación Viral , Animales , Virus de la Parainfluenza 3 Humana/inmunología , Virus de la Parainfluenza 3 Humana/genética , Humanos , Vacunas Atenuadas/inmunología , Vacunas Atenuadas/genética , Codón/genética , Cricetinae , Infecciones por Respirovirus/inmunología , Infecciones por Respirovirus/prevención & control , Infecciones por Respirovirus/virología , Chlorocebus aethiops , Células Vero , Sistemas de Lectura Abierta/genética , Mesocricetus , Anticuerpos Antivirales/inmunología , Anticuerpos Antivirales/sangre , Vacunas Virales/inmunología , Vacunas Virales/genética , Proteínas Virales/inmunología , Proteínas Virales/genética , Vacunas contra la Parainfluenza/inmunología , Vacunas contra la Parainfluenza/genéticaRESUMEN
Respiratory diseases constitute a major health problem for ruminants, resulting in considerable economic losses throughout the world. Parainfluenza type 3 virus (PIV3) is one of the most important respiratory pathogens of ruminants. The pathogenicity and phylogenetic analyses of PIV3 virus have been reported in sheep and goats. However, there are no recent studies of the vaccination of sheep or goats against PIV3. Here, we developed a purified inactivated ovine parainfluenza virus type 3 (OPIV3) vaccine candidate. In addition, we immunized sheep with the inactivated OPIV3 vaccine and evaluated the immune response and pathological outcomes associated with OPIV3 TX01 infection. The vaccinated sheep demonstrated no obvious symptoms of respiratory tract infection, and there were no gross lesions or pathological changes in the lungs. The average body weight gain significantly differed between the vaccinated group and the control group (P < 0.01). The serum neutralization antibody levels rapidly increased in sheep post-vaccination and post-challenge with OPIV3. Furthermore, viral shedding in nasal swabs and viral loads in the lungs were reduced. The results of this study suggest that vaccination with this candidate vaccine induces the production of neutralizing antibodies and provides significant protection against OPIV3 infection. These results may be helpful for further studies on prevention and control strategies for OPIV3 infections.
Asunto(s)
Infecciones por Respirovirus , Enfermedades de las Ovejas , Vacunas de Productos Inactivados , Vacunas Virales , Animales , Ovinos , Infecciones por Respirovirus/veterinaria , Infecciones por Respirovirus/prevención & control , Infecciones por Respirovirus/virología , Infecciones por Respirovirus/inmunología , Vacunas de Productos Inactivados/inmunología , Enfermedades de las Ovejas/prevención & control , Enfermedades de las Ovejas/virología , Enfermedades de las Ovejas/inmunología , Vacunas Virales/inmunología , Respirovirus/inmunología , Inmunogenicidad Vacunal , Vacunación/veterinariaRESUMEN
OBJECTIVES: Parainfluenza virus type 3 (PIV3) outbreaks among hematology patients are associated with high morbidity and mortality. Prompt implementation of infection prevention (IP) measures has proven to be the most efficacious approach for controlling PIV3 outbreaks within this patient population. The most suitable IP measures can vary depending on the mode of virus transmission, which remains unidentified in most outbreaks. We describe the molecular epidemiology of an outbreak of PIV3 among hematology patients and the development of a new method that allows for the differentiation of outbreak and community strains, from which a closed outbreak could be inferred. METHODS: Patients were screened for respiratory viruses using multiplex-PCR. PIV3 positive samples with a cycle threshold (Ct)-value of <31 underwent a retrospective characterization via an in-house developed sequence analysis of the hemagglutinin-neuraminidase (HN) gene. RESULTS: Between July and September 2022, 31 hematology patients were identified with PIV3. Although infection control measures were implemented, the outbreak persisted for nine weeks. Sequencing the HN gene of 27 PIV3 strains from 27 patients revealed that all outbreak strains formed a distinct cluster separate from the control strains, suggestive of a nosocomial transmission route. CONCLUSIONS: Sequencing the HN gene of PIV3 strains in an outbreak setting enables outbreak strains to be distinguished from community strains. Early molecular characterization of PIV3 strains during an outbreak can serve as a tool in determining potential transmission routes. This, in turn, enables rapid implementation of targeted infection prevention measures, with the goal of minimizing the outbreak's duration and reducing associated morbidity and mortality.
Asunto(s)
Brotes de Enfermedades , Control de Infecciones , Epidemiología Molecular , Virus de la Parainfluenza 3 Humana , Infecciones por Respirovirus , Humanos , Virus de la Parainfluenza 3 Humana/genética , Virus de la Parainfluenza 3 Humana/clasificación , Virus de la Parainfluenza 3 Humana/aislamiento & purificación , Masculino , Control de Infecciones/métodos , Femenino , Persona de Mediana Edad , Adulto , Infecciones por Respirovirus/epidemiología , Infecciones por Respirovirus/virología , Infecciones por Respirovirus/prevención & control , Estudios Retrospectivos , Anciano , Infección Hospitalaria/epidemiología , Infección Hospitalaria/prevención & control , Infección Hospitalaria/virología , Adulto Joven , Proteína HN/genética , Anciano de 80 o más Años , FilogeniaRESUMEN
During the coronavirus disease 2019 (COVID-19) pandemic, outbreaks of parainfluenza virus type 3 (PIV-3) decreased due to infection control measures. However, a post-pandemic resurgence of PIV-3 has recently been observed. Nonetheless, the role of viral genetic epidemiology, possibly influenced by a genetic bottleneck effect, remains unexplored. We investigated the phylogenetic structure of the publicly available PIV-3 whole-genome and hemagglutinin-neuraminidase (HN) gene sequences spanning the last 65 years, including the COVID-19 pandemic. Sequences were retrieved from the nucleotide database of the National Center for Biotechnology Information using the search term "Human respirovirus 3." Sequence subsets covering all six genes of PIV-3 or the HN gene were designated as the whole-genome and HN surveillance data sets, respectively. Using these data sets, we constructed maximum-likelihood phylogenetic trees and performed a time-scaled analysis using a Bayesian SkyGrid coalescent prior. A total of 455 whole-genome and 1,139 HN gene sequences were extracted, revealing 10 and 11 distinct lineages, respectively, with >98% concurrence in lineage assignments. During the 2020 COVID-19 pandemic, only three single-lineage clusters were identified in Japan, Korea, and the USA. The inferred year of origin for PIV-3 was 1938 (1903-1963) for the whole-genome data set and 1955 (1930-1963) for the HN gene data set. Our study suggests that PIV-3 epidemics in the post-COVID era are likely influenced by a pandemic-driven bottleneck phenomenon and supports previous hypotheses suggesting s that PIV-3 originated during the early half of the 20th century.IMPORTANCEUsing publicly available parainfluenza virus type 3 (PIV-3) whole-genome sequences, we estimated that PIV-3 originated during the 1930s, consistent with previous hypotheses. Lineage typing and time-scaled phylogenetic analysis revealed that PIV-3 experienced a bottleneck phenomenon in Korea and the USA during the coronavirus disease 2019 pandemic. We identified the conservative hemagglutinin-neuraminidase gene as a viable alternative marker in long-term epidemiological studies of PIV-3 when whole-genome analysis is limited.
Asunto(s)
COVID-19 , Genoma Viral , Virus de la Parainfluenza 3 Humana , Filogenia , Humanos , Genoma Viral/genética , Virus de la Parainfluenza 3 Humana/genética , Virus de la Parainfluenza 3 Humana/clasificación , COVID-19/epidemiología , COVID-19/virología , Pandemias , SARS-CoV-2/genética , SARS-CoV-2/clasificación , Teorema de Bayes , Proteína HN/genética , Infecciones por Respirovirus/epidemiología , Infecciones por Respirovirus/virologíaRESUMEN
Human parainfluenza virus type 3 (HPIV-3, human respirovirus 3) is the second most frequently detected virus in lower respiratory tract infections in children after human respiratory syncytial virus (HRSV). HPIV-3, similar to related respiratory viruses such as HRSV and influenza virus, may cause encephalopathy; however, the relevance of HPIV-3 as a pathogenic factor in encephalopathy is unknown. We attempted to detect HPIV-1, HPIV-2, HPIV-3, HPIV-4, HRSV, and human metapneumovirus (HMPV) in 136 patients with encephalitis/encephalopathy or suspected encephalitis/encephalopathy during a 6-year period from 2014 to 2019. HPIV-3 was detected in 6 patients, followed by HRSV in 3 patients. The HPIV-3 strains detected were closely related to those detected in a patient with respiratory disease during the same period. Although HPIV-3 is less widely recognized than HRSV as a triggering virus of encephalopathy, our results suggest that HPIV-3 is as important as HRSV. Surveillance of the causative viruses of encephalopathy, including HPIV-3, would help clarify the causes of encephalopathy in Japan, as the cause is currently reported in less than half of cases in Japan.
Asunto(s)
Virus de la Parainfluenza 3 Humana , Infecciones por Respirovirus , Humanos , Virus de la Parainfluenza 3 Humana/genética , Virus de la Parainfluenza 3 Humana/aislamiento & purificación , Japón/epidemiología , Preescolar , Masculino , Femenino , Niño , Lactante , Infecciones por Respirovirus/virología , Infecciones por Respirovirus/epidemiología , Adolescente , Infecciones del Sistema Respiratorio/virología , Infecciones del Sistema Respiratorio/epidemiología , Filogenia , Adulto , Encefalitis Viral/virología , Adulto Joven , Persona de Mediana Edad , Encefalopatías/virología , Anciano , Virus Sincitial Respiratorio Humano/genética , Virus Sincitial Respiratorio Humano/aislamiento & purificaciónRESUMEN
Viruses constantly evolve and adapt to the antiviral defenses of their hosts. The biology of viral circumvention of these selective pressures can often be attributed to the acquisition of novel antagonistic gene products or by rapid genome change that prevents host recognition. To study viral evasion of RNA interference (RNAi)-based defenses, we established a robust antiviral system in mammalian cells using recombinant Sendai virus designed to be targeted by endogenous host microRNAs (miRNAs) with perfect complementarity. Using this system, we previously demonstrated the intrinsic ability of positive-strand RNA viruses to escape this selective pressure via homologous recombination, which was not observed in negative-strand RNA viruses. Here, we show that given extensive time, escape of miRNA-targeted Sendai virus was enabled by host adenosine deaminase acting on RNA 1 (ADAR1). Independent of the viral transcript targeted, ADAR1 editing resulted in disruption of the miRNA-silencing motif, suggesting an intolerance for extensive RNA-RNA interactions necessary for antiviral RNAi. This was further supported in Nicotiana benthamiana, where exogenous expression of ADAR1 interfered with endogenous RNAi. Together, these results suggest that ADAR1 diminishes the effectiveness of RNAi and may explain why it is absent in species that utilize this antiviral defense system. IMPORTANCE All life at the cellular level has the capacity to induce an antiviral response. Here, we examine the result of imposing the antiviral response of one branch of life onto another and find evidence for conflict. To determine the consequences of eliciting an RNAi-like defense in mammals, we applied this pressure to a recombinant Sendai virus in cell culture. We find that ADAR1, a host gene involved in regulation of the mammalian response to virus, prevented RNAi-mediated silencing and subsequently allowed for viral replication. In addition, the expression of ADAR1 in Nicotiana benthamiana, which lacks ADARs and has an endogenous RNAi system, suppresses gene silencing. These data indicate that ADAR1 is disruptive to RNAi biology and provide insight into the evolutionary relationship between ADARs and antiviral defenses in eukaryotic life.
Asunto(s)
Adenosina Desaminasa , Interacciones Microbiota-Huesped , MicroARNs , Interferencia de ARN , Infecciones por Respirovirus , Animales , Adenosina Desaminasa/genética , Adenosina Desaminasa/metabolismo , Antivirales/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Replicación Viral/genética , Virus Sendai/clasificación , Silenciador del Gen , Humanos , Mutación , Sistemas de Lectura Abierta , Evolución Biológica , Interacciones Microbiota-Huesped/genética , Infecciones por Respirovirus/metabolismo , Infecciones por Respirovirus/virologíaRESUMEN
Vesicular stomatitis virus (VSV), the founding member of the mononegavirus order (Mononegavirales), was found to be a negative strand RNA virus in the 1960s, and since then the number of such viruses has continually increased with no end in sight. Sendai virus (SeV) was noted soon afterwards due to an outbreak of newborn pneumonitis in Japan whose putative agent was passed in mice, and nowadays this mouse virus is mainly the bane of animal houses and immunologists. However, SeV was important in the study of this class of viruses because, like flu, it grows to high titers in embryonated chicken eggs, facilitating the biochemical characterization of its infection and that of its nucleocapsid, which is very close to that of measles virus (MeV). This review and opinion piece follow SeV as more is known about how various mononegaviruses express their genetic information and carry out their RNA synthesis, and proposes a unified model based on what all MNV have in common.
Asunto(s)
Infecciones por Mononegavirales/virología , Mononegavirales/genética , ARN Viral/genética , Virus Sendai/genética , Animales , Genoma Viral , Humanos , Mononegavirales/metabolismo , ARN Viral/metabolismo , Infecciones por Respirovirus/virología , Virus Sendai/metabolismoRESUMEN
Human parainfluenza virus type 1 (hPIV1) and 3 (hPIV3) cause seasonal epidemics, but little is known about their interaction with human airway cells. In this study, we determined cytopathology, replication, and progeny virion release from human airway cells during long-term infection in vitro. Both viruses readily established persistent infection without causing significant cytopathic effects. However, assembly and release of hPIV1 rapidly declined in sharp contrast to hPIV3 due to impaired viral ribonucleocapsid (vRNP) trafficking and virus assembly. Transcriptomic analysis revealed that both viruses induced similar levels of type I and III IFNs. However, hPIV1 induced specific ISGs stronger than hPIV3, such as MX2, which bound to hPIV1 vRNPs in infected cells. In addition, hPIV1 but not hPIV3 suppressed genes involved in lipid biogenesis and hPIV1 infection resulted in ubiquitination and degradation of 3-hydroxy-3-methylglutaryl-coenzyme A reductase, a rate limiting enzyme in cholesterol biosynthesis. Consequently, formation of cholesterol-rich lipid rafts was impaired in hPIV1 infected cells. These results indicate that hPIV1 is capable of regulating cholesterol biogenesis, which likely together with ISGs contributes to establishment of a quiescent infection.
Asunto(s)
Colesterol/biosíntesis , Mucosa Respiratoria/virología , Infecciones por Respirovirus/metabolismo , Infecciones por Respirovirus/virología , Células A549 , Humanos , Interferones/inmunología , Virus de la Parainfluenza 1 Humana/inmunología , Virus de la Parainfluenza 1 Humana/metabolismo , Virus de la Parainfluenza 3 Humana/inmunología , Virus de la Parainfluenza 3 Humana/metabolismo , Infecciones por Respirovirus/inmunologíaRESUMEN
Bovine Respiratory Syncytial virus (BRSV) and Bovine Parainfluenza 3 virus (BPIV3) are closely related viruses involved in and both important pathogens within bovine respiratory disease (BRD), a major cause of morbidity with economic losses in cattle populations around the world. The two viruses share characteristics such as morphology and replication strategy with each other and with their counterparts in humans, HRSV and HPIV3. Therefore, BRSV and BPIV3 infections in cattle are considered useful animal models for HRSV and HPIV3 infections in humans.The interaction between the viruses and the different branches of the host's immune system is rather complex. Neutralizing antibodies seem to be a correlate of protection against severe disease, and cell-mediated immunity is thought to be essential for virus clearance following acute infection. On the other hand, the host's immune response considerably contributes to the tissue damage in the upper respiratory tract.BRSV and BPIV3 also have similar pathobiological and epidemiological features. Therefore, combination vaccines against both viruses are very common and a variety of traditional live attenuated and inactivated BRSV and BPIV3 vaccines are commercially available.
Asunto(s)
Enfermedades de los Bovinos/virología , Infecciones por Virus Sincitial Respiratorio/veterinaria , Virus Sincitial Respiratorio Bovino , Infecciones por Respirovirus/veterinaria , Respirovirus , Animales , Bovinos , Infecciones por Virus Sincitial Respiratorio/virología , Infecciones por Respirovirus/virologíaRESUMEN
Bovine parainfluenza-3 virus (BPIV-3) is one of the main viruses associated with bovine respiratory disease complex (BRDC) worldwide. BPIV-3 infect the bovine respiratory tract causing from subclinical infections to severe pneumonia with significant economic losses in the cattle industry. BPIV-3 is a RNA virus with high genetic variability, nevertheless, the contribution of recombination events to its variability has not been assessed so far. In this study the 25 complete genome sequences (CGS) reported so far and 215 partial sequences of different viral genes of BPIV-3 were analyzed to determine their genotypes and subgenotypes, distribution, and the existence of potential recombination events. Based on the analysis of the HN, M, N, and P genes one hypothetical subgenotype was found (subgenotype A4). Four recombination events between sequences of swine and cattle were detected by RDP4 analysis in conjunction with phylogenetic incongruences in the L gene. In addition, 9 sequences reported from Argentina were found to be miss-classified. These results reveal that homologous recombination events have a relevant role in the evolution of BPIV-3 and highlight the importance of implement advanced molecular characterization to better understand the variability and evolution of BPIV-3 as a component of BRDC.
Asunto(s)
Variación Genética/genética , Recombinación Homóloga/genética , Virus de la Parainfluenza 3 Bovina/genética , Proteínas Virales/genética , Animales , Bovinos , Enfermedades de los Bovinos/virología , Genotipo , Virus de la Parainfluenza 3 Bovina/clasificación , Filogenia , Infecciones por Respirovirus/virología , Ovinos , Enfermedades de las Ovejas/virologíaRESUMEN
Respiratory diseases constitute a major health problem in small ruminant herds around the world, and parainfluenza virus type 3 (PIV-3) has been shown to play a vital role in their etiology. This cross-sectional study describes the serological status of the non-vaccinated dairy goat popu- lation in Poland with respect to PIV-3 infection and investigates the relationship between the presence of antibodies to PIV-3 and some basic herd-level and animal-level factors, including small ruminant lentivirus (SRLV) infection. Serum samples from 1188 goats from 48 herds were tested for the concentration of antibodies to PIV-3 using a quantitative immunoenzymatic assay. Specific antibodies were detected in all tested goats from all herds. The concentration of PIV-3 antibodies varied from 8.4 to >240 ng/ml (median 95.9 ng/ml) and was significantly higher in goats from larger herds and from these herds in which cough was often observed by farmers. Moreover, it was noted that female goats had higher antibody concentrations than males. On the other hand, the concentration of PIV-3 antibodies did not prove to be significantly linked to the presence of SRLV infection. This study shows that PIV-3 infection in the Polish goat population is widespread and appears to contribute to the occurrence of respiratory diseases in goat herds.
Asunto(s)
Anticuerpos Antivirales/sangre , Enfermedades de las Cabras/virología , Virus de la Parainfluenza 3 Humana/inmunología , Infecciones por Respirovirus/veterinaria , Animales , Estudios Transversales , Femenino , Enfermedades de las Cabras/epidemiología , Cabras , Masculino , Polonia/epidemiología , Infecciones por Respirovirus/epidemiología , Infecciones por Respirovirus/virologíaRESUMEN
Accurate control of innate immune responses is required to eliminate invading pathogens and simultaneously avoid autoinflammation and autoimmune diseases. Here, we demonstrate that arginine monomethylation precisely regulates the mitochondrial antiviral-signaling protein (MAVS)-mediated antiviral response. Protein arginine methyltransferase 7 (PRMT7) forms aggregates to catalyze MAVS monomethylation at arginine residue 52 (R52), attenuating its binding to TRIM31 and RIG-I, which leads to the suppression of MAVS aggregation and subsequent activation. Upon virus infection, aggregated PRMT7 is disabled in a timely manner due to automethylation at arginine residue 32 (R32), and SMURF1 is recruited to PRMT7 by MAVS to induce proteasomal degradation of PRMT7, resulting in the relief of PRMT7 suppression of MAVS activation. Therefore, we not only reveal that arginine monomethylation by PRMT7 negatively regulates MAVS-mediated antiviral signaling in vitro and in vivo but also uncover a mechanism by which PRMT7 is tightly controlled to ensure the timely activation of antiviral defense.
Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Arginina/metabolismo , Interacciones Huésped-Patógeno/fisiología , Inmunidad Innata/fisiología , Proteína-Arginina N-Metiltransferasas/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/inmunología , Animales , Proteína 58 DEAD Box/metabolismo , Fibroblastos/virología , Células HEK293 , Herpes Simple/inmunología , Herpes Simple/metabolismo , Herpes Simple/virología , Humanos , Metilación , Ratones , Ratones Noqueados , Alcamidas Poliinsaturadas , Proteína-Arginina N-Metiltransferasas/antagonistas & inhibidores , Proteína-Arginina N-Metiltransferasas/genética , Proteína-Arginina N-Metiltransferasas/inmunología , Receptores Inmunológicos/metabolismo , Infecciones por Respirovirus/inmunología , Infecciones por Respirovirus/metabolismo , Infecciones por Respirovirus/virología , Proteínas de Motivos Tripartitos/genética , Proteínas de Motivos Tripartitos/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismoRESUMEN
Caprine parainfluenza virus type 3 (CPIV3) is one of the most important viral respiratory pathogens of goat. Accumulating evidence demonstrates that apoptosis is a cellular mechanism for the host response to pathogens, and it participates in regulating viral replication. However, there is little study on CPIV3-induced host cells apoptosis. In this study, primary goat tracheal epithelial (GTE) cells were established as a cellular model that is permissive to CPIV3 infection. Then, we showed that CPIV3 infection induced apoptosis in GTE cells, as determined by morphological changes, flow cytometry and TUNEL assay. Moreover, Caspase activity and the expression of pro-apoptotic genes further suggested that CPIV3 induced apoptosis by activating both the intrinsic and extrinsic pathways. Mechanistically, the ability of CPIV3 to induce apoptosis was activated by N protein, and the viral protein increased CPIV3 replication through effecting apoptosis. Overall, our findings showed that GTE cells that will enable further analysis of CPIV3 infection and offers novel insights into the mechanisms of CPIV3-induced apoptosis in host cells.
Asunto(s)
Apoptosis/genética , Proteínas de la Nucleocápside/genética , Virus de la Parainfluenza 3 Humana/química , Virus de la Parainfluenza 3 Humana/genética , Infecciones por Respirovirus/genética , Infecciones por Respirovirus/veterinaria , Replicación Viral/genética , Animales , Células Cultivadas , Células Epiteliales/virología , Enfermedades de las Cabras/virología , Cabras/virología , Proteínas de la Nucleocápside/metabolismo , Virus de la Parainfluenza 3 Humana/patogenicidad , Infecciones por Respirovirus/virología , Tráquea/citologíaRESUMEN
The objective of this study was to investigate human coronavirus NL63 (HCoV-NL63) prevalence among the other respiratory viruses such as parainfluenza, respiratory syncytial virus, and non-enteric adenoviruses in clinical specimens of Egyptian children and raw sewage samples. One hundred clinical specimens were collected from Egyptian children suffering from upper and lower respiratory viral infections in the years 2005-2006 to detect HCoV-NL63 genome using RT-PCR. All the specimens were negative for the virus. Also, a complete absence of HCoV-NL63 genome was observed in the twenty-four raw sewage samples collected from two wastewater treatment plants within Greater Cairo from February 2006 to January 2007. Using nested RT-PCR, parainfluenza virus type 1, respiratory syncytial virus type A, adenovirus type 4, and adenovirus type 7 were detected in 3%, 2%, 5%, and 2% of the clinical specimens, respectively. Of these viruses, only adenovirus type 4 was detected in 1/24 (4.17%) of the raw sewage samples, while a complete absence of the other investigated respiratory viruses was observed in the raw sewage samples. The low percentage of positivity in the clinical specimens, the concentration method of the raw sewage samples, and the indirect routes of transmission may be the reasons for the absence of respiratory viruses in raw sewage samples. On the other hand, enteric adenoviruses were detected in 21/24 (87.5%) of the raw sewage samples with a higher prevalence of adenovirus type 41 than adenovirus type 40. A direct route of transmission of enteric viruses to raw sewage may be the reason for the high positivity percentage of enteric adenoviruses in raw sewage samples.
Asunto(s)
Adenoviridae , Infecciones por Coronavirus/virología , Coronavirus Humano NL63 , Virus de la Parainfluenza 1 Humana , Virus Sincitial Respiratorio Humano , Infecciones del Sistema Respiratorio/virología , Aguas del Alcantarillado/virología , Infecciones por Adenoviridae/virología , Preescolar , Ciudades , Egipto/epidemiología , Humanos , Lactante , Reacción en Cadena de la Polimerasa , Infecciones por Virus Sincitial Respiratorio/virología , Infecciones por Respirovirus/virología , Manejo de Especímenes , VirusRESUMEN
Activation of MAVS, an adaptor molecule in Rig-I-like receptor (RLR) signaling, is indispensable for antiviral immunity, yet the molecular mechanisms modulating MAVS activation are not completely understood. Ubiquitination has a central function in regulating the activity of MAVS. Here, we demonstrate that a mitochondria-localized deubiquitinase USP18 specifically interacts with MAVS, promotes K63-linked polyubiquitination and subsequent aggregation of MAVS. USP18 upregulates the expression and production of type I interferon following infection with Sendai virus (SeV) or Encephalomyocarditis virus (EMCV). Mice with a deficiency of USP18 are more susceptible to RNA virus infection. USP18 functions as a scaffold protein to facilitate the re-localization of TRIM31 and enhances the interaction between TRIM31 and MAVS in mitochondria. Our results indicate that USP18 functions as a post-translational modulator of MAVS-mediated antiviral signaling.