Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.599
Filtrar
2.
Dev Comp Immunol ; 161: 105252, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39173725

RESUMEN

Signal Recognition Particle 54 kDa (SRP54) is a subunit of the signal recognition particle (SRP), a cytoplasmic ribonucleoprotein complex guiding the transportation of newly synthesized proteins from polyribosomes to endoplasmic reticulum. In mammals, it has been reported to regulate the RLR signaling pathway negatively by impairing the association between MAVS and MDA5/RIG-I. However, the role of SRP54 in teleost antiviral innate immune response remains obscure. In this study, the SRP54 homolog of black carp (bcSRP54) has been cloned, and its function in antiviral innate immunity has been elucidated. The CDS of bcSRP54 gene consists of 1515 nucleotides and encodes 504 amino acids. Immunofluorescence (IF) showed that bcSRP54 was mainly distributed in the cytoplasm. Overexpressed bcSRP54 significantly reduced bcMDA5-mediated transcription of interferon (IFN) promoter in reporter assay. Co-expression of bcSRP54 and bcMDA5 significantly suppressed bcMDA5-mediated IFN signaling and antiviral activity, while bcSRP54 knockdown increased the antiviral ability of host cells. In addition, the results of the immunofluorescence staining demonstrated the subcellular overlapping between bcSRP54 and bcMDA5, and the co-immunoprecipitation (co-IP) experiment identified their association. Furthermore, the over-expression of bcSRP54 did not influence the protein expression and ubiquitination modification level of bcMDA5, however, hindered the binding of bcMDA5 to bcMAVS. In summary, our results conclude that bcSRP54 targets bcMDA5 and inhibits the interaction between bcMDA5 and bcMAVS, thereby negatively regulating antiviral innate immunity, which provides insight into how teleost SRP54 regulates IFN signaling.


Asunto(s)
Carpas , Proteínas de Peces , Inmunidad Innata , Helicasa Inducida por Interferón IFIH1 , Transducción de Señal , Animales , Carpas/inmunología , Carpas/genética , Proteínas de Peces/genética , Proteínas de Peces/metabolismo , Proteínas de Peces/inmunología , Transducción de Señal/inmunología , Helicasa Inducida por Interferón IFIH1/metabolismo , Helicasa Inducida por Interferón IFIH1/genética , Interferones/metabolismo , Interferones/inmunología , Interferones/genética , Partícula de Reconocimiento de Señal/metabolismo , Partícula de Reconocimiento de Señal/inmunología , Partícula de Reconocimiento de Señal/genética , Humanos , Enfermedades de los Peces/inmunología , Enfermedades de los Peces/virología , Ubiquitinación , Infecciones por Rhabdoviridae/inmunología , Infecciones por Rhabdoviridae/veterinaria , Rhabdoviridae
3.
Fish Shellfish Immunol ; 153: 109805, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39102972

RESUMEN

The production of type I interferon is tightly regulated to prevent excessive immune activation. However, the role of selective autophagy receptor SQSTM1 in this regulation in teleost remains unknown. In this study, we cloned the triploid fish SQSTM1 (3nSQSTM1), which comprises 1371 nucleotides, encoding 457 amino acids. qRT-PCR data revealed that the transcript levels of SQSTM1 in triploid fish were increased both in vivo and in vitro following spring viraemia of carp virus (SVCV) infection. Immunofluorescence analysis confirmed that 3nSQSTM1 was mainly distributed in the cytoplasm. Luciferase reporter assay results showed that 3nSQSTM1 significantly blocked the activation of interferon promoters induced by 3nMDA5, 3nMAVS, 3nTBK1, and 3nIRF7. Co-immunoprecipitation assays further confirmed that 3nSQSTM1 could interact with both 3nTBK1 and 3nIRF7. Moreover, upon co-transfection, 3nSQSTM1 significantly inhibited the antiviral activity mediated by TBK1 and IRF7. Mechanistically, 3nSQSTM1 decreased the TBK1 phosphorylation and its interaction with 3nIRF7, thereby suppressing the subsequent antiviral response. Notably, we discovered that 3nSQSTM1 also interacted with SVCV N and P proteins, and these viral proteins may exploit 3nSQSTM1 to further limit the host's antiviral innate immune responses. In conclusion, our study demonstrates that 3nSQSTM1 plays a pivotal role in negatively regulating the interferon signaling pathway by targeting 3nTBK1 and 3nIRF7.


Asunto(s)
Carpas , Enfermedades de los Peces , Proteínas de Peces , Inmunidad Innata , Factor 7 Regulador del Interferón , Infecciones por Rhabdoviridae , Rhabdoviridae , Animales , Inmunidad Innata/genética , Enfermedades de los Peces/inmunología , Enfermedades de los Peces/virología , Proteínas de Peces/genética , Proteínas de Peces/inmunología , Factor 7 Regulador del Interferón/genética , Factor 7 Regulador del Interferón/inmunología , Rhabdoviridae/fisiología , Infecciones por Rhabdoviridae/inmunología , Infecciones por Rhabdoviridae/veterinaria , Carpas/inmunología , Carpas/genética , Proteína Sequestosoma-1/genética , Proteína Sequestosoma-1/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/inmunología , Proteínas Serina-Treonina Quinasas/metabolismo , Regulación de la Expresión Génica/inmunología , Transducción de Señal/inmunología , Triploidía , Filogenia , Secuencia de Aminoácidos , Alineación de Secuencia/veterinaria , Perfilación de la Expresión Génica/veterinaria
4.
J Virol ; 98(9): e0103824, 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39162481

RESUMEN

PHD1 is a member of the prolyl hydroxylase domain protein (PHD1-4) family, which plays a prominent role in the post-translational modification of its target proteins by hydroxylating proline residues. The best-characterized targets of PHD1 are hypoxia-inducible factor α (HIF-1α and HIF-2α), two master regulators of the hypoxia signaling pathway. In this study, we show that zebrafish phd1 positively regulates mavs-mediated antiviral innate immunity. Overexpression of phd1 enhances the cellular antiviral response. Consistently, zebrafish lacking phd1 are more susceptible to spring viremia of carp virus infection. Further assays indicate that phd1 interacts with mavs through the C-terminal transmembrane domain of mavs and promotes mavs aggregation. In addition, zebrafish phd1 attenuates K48-linked polyubiquitination of mavs, leading to stabilization of mavs. However, the enzymatic activity of phd1 is not required for phd1 to activate mavs. In conclusion, this study reveals a novel function of phd1 in the regulation of antiviral innate immunity.IMPORTANCEPHD1 is a key regulator of the hypoxia signaling pathway, but its role in antiviral innate immunity is largely unknown. In this study, we found that zebrafish phd1 enhances cellular antiviral responses in a hydroxylation-independent manner. Phd1 interacts with mavs through the C-terminal transmembrane domain of mavs and promotes mavs aggregation. In addition, phd1 attenuates K48-linked polyubiquitination of mavs, leading to stabilization of mavs. Zebrafish lacking phd1 are more susceptible to spring viremia of carp virus infection. These findings reveal a novel role for phd1 in the regulation of mavs-mediated antiviral innate immunity.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Inmunidad Innata , Infecciones por Rhabdoviridae , Rhabdoviridae , Ubiquitinación , Proteínas de Pez Cebra , Pez Cebra , Animales , Pez Cebra/inmunología , Proteínas de Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Infecciones por Rhabdoviridae/inmunología , Hidroxilación , Humanos , Células HEK293 , Transducción de Señal , Enfermedades de los Peces/inmunología , Enfermedades de los Peces/virología , Procesamiento Proteico-Postraduccional
5.
PLoS Pathog ; 20(8): e1012328, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39102417

RESUMEN

Spring viremia of carp virus (SVCV) has a broad fish host spectrum and is responsible for a disease that generally affects juvenile fishes with a mortality rate of up to 90%. In the absence of treatments or vaccines against SVCV, the search for prophylactic or therapeutic solutions is thus relevant, particularly to identify solutions compatible with mass vaccination. In addition to being a threat to aquaculture and ecosystems, SVCV is a unique pathogen to study virus-host interactions in the zebrafish model. Establishing the first reverse genetics system for SVCV and the design of recombinant SVCV (rSVCV) expressing fluorescent or bioluminescent proteins adds a new dimension for the study of these interactions using innovative imaging techniques. The infection by bath immersion of zebrafish larvae with rSVCV expressing mCherry allows us to define the first SVCV replication sites and the host innate immune responses using different transgenic lines of zebrafish. The fins were found as the main initial sites of infection in both zebrafish and carp, its natural host. Hence, new insights into the physiopathology of SVCV infection have been described. We report that neutrophils are recruited at the sites of infection and persist up to the death of the animal leading to an uncontrolled inflammation correlated with the expression of the pro-inflammatory cytokine IL1ß. Tissue damage was observed at the site of initial replication, a likely consequence of virus-induced injury or the pro-inflammatory response. Interestingly, SVCV infection by bath immersion triggers a persistent pro-inflammatory response rather than activation of the antiviral IFN signaling pathway as observed following intravenous injection, highlighting the importance of the route of infection on the progression of pathogenicity. Thus, this model of zebrafish larvae infection by rSVCV offers new perspectives to study in detail virus-host interactions and to discover new prophylactic or therapeutic solutions.


Asunto(s)
Carpas , Enfermedades de los Peces , Infecciones por Rhabdoviridae , Rhabdoviridae , Pez Cebra , Animales , Pez Cebra/virología , Rhabdoviridae/fisiología , Enfermedades de los Peces/virología , Infecciones por Rhabdoviridae/virología , Infecciones por Rhabdoviridae/inmunología , Carpas/virología , Animales Modificados Genéticamente , Modelos Animales de Enfermedad , Inmunidad Innata , Viremia
6.
Viruses ; 16(8)2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39205167

RESUMEN

Spring viremia of carp virus (SVCV) is a rhabdovirus that primarily infects cyprinid finfishes and causes a disease notifiable to the World Organization for Animal Health. Amphibians, which are sympatric with cyprinids in freshwater ecosystems, are considered non-permissive hosts of rhabdoviruses. The potential host range expansion of SVCV in an atypical host species was evaluated by testing the susceptibility of amphibians native to the Pacific Northwest. Larval long-toed salamanders Ambystoma macrodactylum and Pacific tree frog Pseudacris regilla tadpoles were exposed to SVCV strains from genotypes Ia, Ib, Ic, or Id by either intraperitoneal injection, immersion, or cohabitation with virus-infected koi Cyprinus rubrofuscus. Cumulative mortality was 100% for salamanders injected with SVCV, 98-100% for tadpoles exposed to virus via immersion, and 0-100% for tadpoles cohabited with SVCV-infected koi. Many of the animals that died exhibited clinical signs of disease and SVCV RNA was found by in situ hybridization in tissue sections of immersion-exposed tadpoles, particularly in the cells of the gastrointestinal tract and liver. SVCV was also detected by plaque assay and RT-qPCR testing in both amphibian species regardless of the virus exposure method, and viable virus was detected up to 28 days after initial exposure. Recovery of infectious virus from naïve tadpoles cohabited with SVCV-infected koi further demonstrated that SVCV transmission can occur between classes of ectothermic vertebrates. Collectively, these results indicated that SVCV, a fish rhabdovirus, can be transmitted to and cause lethal disease in two amphibian species. Therefore, members of all five of the major vertebrate groups (mammals, birds, reptiles, fish, and amphibians) appear to be vulnerable to rhabdovirus infections. Future research studying potential spillover and spillback infections of aquatic rhabdoviruses between foreign and domestic amphibian and fish species will provide insights into the stressors driving novel interclass virus transmission events.


Asunto(s)
Enfermedades de los Peces , Larva , Infecciones por Rhabdoviridae , Rhabdoviridae , Animales , Enfermedades de los Peces/virología , Enfermedades de los Peces/transmisión , Infecciones por Rhabdoviridae/veterinaria , Infecciones por Rhabdoviridae/virología , Infecciones por Rhabdoviridae/transmisión , Rhabdoviridae/genética , Rhabdoviridae/patogenicidad , Rhabdoviridae/fisiología , Larva/virología , Anfibios/virología , Especificidad del Huésped , Anuros/virología , Genotipo , Ambystoma/virología , Peces/virología
7.
J Virol Methods ; 329: 115008, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39153529

RESUMEN

Infectious hematopoietic necrosis virus (IHNV) severely and lethally infects salmonid fish, including Atlantic salmon (Salmo salar) and rainbow trout (Oncorhynchus mykiss) worldwide. Rapid and accurate viral detection is crucial for preventing pathogen spread and minimizing damage. Although several IHNV detection assays have been developed, their analytical and diagnostic performances have not been evaluated and field usability assessments have not been completely validated. Here, we developed a reverse-transcription cross-priming amplification-based lateral flow assay (RT-CPA-LFA) and validated its diagnostic performance. To detect the IHNV, primers were designed based on the consensus sequence of the nucleocapsid (N) gene. Notably, when combined with a lateral flow dipstick, it could visualize the IHNV amplification products within 5 min and the detection limit of the developed RT-CPA-LFA was 3.28×105 copies/µL. The diagnostic sensitivity and specificity in fish samples (n=140) were 98.88 % and 96.08 %, respectively. Moreover, the IHNV detection rate by RT-CPA-LFA in dead rainbow trout artificially injected with the virus was 100 %, consistent with to the results obtained from second conventional and real-time PCR, indicating its applicability for rapid IHNV detection and presumptive IHN diagnosis during the endemic period.


Asunto(s)
Cartilla de ADN , Enfermedades de los Peces , Virus de la Necrosis Hematopoyética Infecciosa , Oncorhynchus mykiss , Infecciones por Rhabdoviridae , Sensibilidad y Especificidad , Virus de la Necrosis Hematopoyética Infecciosa/genética , Virus de la Necrosis Hematopoyética Infecciosa/aislamiento & purificación , Animales , Infecciones por Rhabdoviridae/veterinaria , Infecciones por Rhabdoviridae/diagnóstico , Infecciones por Rhabdoviridae/virología , Enfermedades de los Peces/diagnóstico , Enfermedades de los Peces/virología , Oncorhynchus mykiss/virología , Cartilla de ADN/genética , Salmo salar/virología , Técnicas de Amplificación de Ácido Nucleico/métodos , Técnicas de Amplificación de Ácido Nucleico/veterinaria , Transcripción Reversa , Técnicas de Diagnóstico Molecular/métodos
8.
Fish Shellfish Immunol ; 153: 109765, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39004296

RESUMEN

TRIM family proteins are widely found in multicellular organisms and are involved in a wide range of life activities, and also act as crucial regulators in the antiviral natural immune response. This study aimed to reveal the molecular mechanism of rainbow trout TRIM protein in the anti-IHNV process. The results demonstrated that 99.1 % homology between the rainbow trout and the chinook salmon (Oncorhynchus tshawytscha) TRIM32. When rainbow trout were infected with IHNV, the TRIM32 was highly expressed in the gill, spleen, kidney and blood. Meanwhile, rainbow trout TRIM32 has E3 ubiquitin ligase activity and undergoes K29-linked polyubiquitination modifications dependent on the RING structural domain was determined by immunoprecipitation. TRIM32 could interact with the NV protein of IHNV and degrade NV protein through the ubiquitin-proteasome pathway, and was also able to activate NF-κB transcription, thereby inhibiting the replication of IHNV. Moreover, the results of the animal studies showed that the survival rate of rainbow trout overexpressing TRIM32 was 70.2 % which was significantly higher than that of the control group, and stimulating the body to produce high levels of IgM when the host was infected with the virus. In addition, TRIM32 can activate the NF-κB signalling pathway and participate in the antiviral natural immune response. The results of this study will help us to understand the molecular mechanism of TRIM protein resistance in rainbow trout, and provide new ideas for disease resistance breeding, vaccine development and immune formulation development in rainbow trout.


Asunto(s)
Enfermedades de los Peces , Proteínas de Peces , Inmunidad Innata , Oncorhynchus mykiss , Infecciones por Rhabdoviridae , Proteínas de Motivos Tripartitos , Animales , Oncorhynchus mykiss/inmunología , Enfermedades de los Peces/inmunología , Proteínas de Peces/genética , Proteínas de Peces/inmunología , Infecciones por Rhabdoviridae/inmunología , Infecciones por Rhabdoviridae/veterinaria , Inmunidad Innata/genética , Proteínas de Motivos Tripartitos/genética , Proteínas de Motivos Tripartitos/inmunología , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/inmunología , Regulación de la Expresión Génica/inmunología , Perfilación de la Expresión Génica/veterinaria , Virus de la Necrosis Hematopoyética Infecciosa/inmunología , Virus de la Necrosis Hematopoyética Infecciosa/fisiología , Alineación de Secuencia/veterinaria , Filogenia
9.
J Neurosci ; 44(35)2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39060176

RESUMEN

Infection causes reduced activity, anorexia, and sleep, which are components of the phylogenetically conserved but poorly understood sickness behavior. We developed a Caenorhabditis elegans model to study quiescence during chronic infection, using infection with the Orsay virus. The Orsay virus infects intestinal cells yet strongly affects behavior, indicating gut-to-nervous system communication. Infection quiescence has the sleep properties of reduced responsiveness and rapid reversibility. Both the ALA and RIS neurons regulate virus-induced quiescence though ALA plays a more prominent role. Quiescence-defective animals have decreased survival when infected, indicating a benefit of quiescence during chronic infectious disease. The survival benefit of quiescence is not explained by a difference in viral load, indicating that it improves resilience rather than resistance to infection. Orsay infection is associated with a decrease in ATP levels, and this decrease is more severe in quiescence-defective animals. We propose that quiescence preserves energetic resources by reducing energy expenditures and/or by increasing extraction of energy from nutrients. This model presents an opportunity to explore the role of sleep and fatigue in chronic infectious illness.


Asunto(s)
Caenorhabditis elegans , Animales , Neuronas/virología , Neuronas/fisiología , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Animales Modificados Genéticamente , Adenosina Trifosfato/metabolismo , Infecciones por Rhabdoviridae/virología , Sueño/fisiología , Modelos Animales de Enfermedad
10.
Comput Biol Med ; 179: 108835, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38996550

RESUMEN

Gene regulatory networks (GRNs) are crucial for understanding organismal molecular mechanisms and processes. Construction of GRN in the epithelioma papulosum cyprini (EPC) cells of cyprinid fish by spring viremia of carp virus (SVCV) infection helps understand the immune regulatory mechanisms that enhance the survival capabilities of cyprinid fish. Although many computational methods have been used to infer GRNs, specialized approaches for predicting the GRN of EPC cells following SVCV infection are lacking. In addition, most existing methods focus primarily on gene expression features, neglecting the valuable network structural information in known GRNs. In this study, we propose a novel supervised deep neural network, named MEFFGRN (Matrix Enhancement- and Feature Fusion-based method for Gene Regulatory Network inference), to accurately predict the GRN of EPC cells following SVCV infection. MEFFGRN considers both gene expression data and network structure information of known GRN and introduces a matrix enhancement method to address the sparsity issue of known GRN, extracting richer network structure information. To optimize the benefits of CNN (Convolutional Neural Network) in image processing, gene expression and enhanced GRN data were transformed into histogram images for each gene pair respectively. Subsequently, these histograms were separately fed into CNNs for training to obtain the corresponding gene expression and network structural features. Furthermore, a feature fusion mechanism was introduced to comprehensively integrate the gene expression and network structural features. This integration considers the specificity of each feature and their interactive information, resulting in a more comprehensive and precise feature representation during the fusion process. Experimental results from both real-world and benchmark datasets demonstrate that MEFFGRN achieves competitive performance compared with state-of-the-art computational methods. Furthermore, study findings from SVCV-infected EPC cells suggest that MEFFGRN can predict novel gene regulatory relationships.


Asunto(s)
Enfermedades de los Peces , Redes Reguladoras de Genes , Infecciones por Rhabdoviridae , Rhabdoviridae , Animales , Rhabdoviridae/genética , Enfermedades de los Peces/genética , Enfermedades de los Peces/virología , Infecciones por Rhabdoviridae/genética , Infecciones por Rhabdoviridae/virología , Carpas/genética , Carpas/virología , Biología Computacional/métodos , Redes Neurales de la Computación , Cyprinidae/genética
11.
Microbiome ; 12(1): 128, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39020382

RESUMEN

BACKGROUND: Spring viremia of carp virus (SVCV) infects a wide range of fish species and causes high mortality rates in aquaculture. This viral infection is characterized by seasonal outbreaks that are temperature-dependent. However, the specific mechanism behind temperature-dependent SVCV infectivity and pathogenicity remains unclear. Given the high sensitivity of the composition of intestinal microbiota to temperature changes, it would be interesting to investigate if the intestinal microbiota of fish could play a role in modulating the infectivity of SVCV at different temperatures. RESULTS: Our study found that significantly higher infectivity and pathogenicity of SVCV infection in zebrafish occurred at relatively lower temperature. Comparative analysis of the intestinal microbiota in zebrafish exposed to high- and low-temperature conditions revealed that temperature influenced the abundance and diversity of the intestinal microbiota in zebrafish. A significantly higher abundance of Parabacteroides distasonis and its metabolite secondary bile acid (deoxycholic acid, DCA) was detected in the intestine of zebrafish exposed to high temperature. Both colonization of Parabacteroides distasonis and feeding of DCA to zebrafish at low temperature significantly reduced the mortality caused by SVCV. An in vitro assay demonstrated that DCA could inhibit the assembly and release of SVCV. Notably, DCA also showed an inhibitory effect on the infectious hematopoietic necrosis virus, another Rhabdoviridae member known to be more infectious at low temperature. CONCLUSIONS: This study provides evidence that temperature can be an important factor to influence the composition of intestinal microbiota in zebrafish, consequently impacting the infectivity and pathogenicity of SVCV. The findings highlight the enrichment of Parabacteroides distasonis and its derivative, DCA, in the intestines of zebrafish raised at high temperature, and they possess an important role in preventing the infection of SVCV and other Rhabdoviridae members in host fish. Video Abstract.


Asunto(s)
Bacteroidetes , Enfermedades de los Peces , Microbioma Gastrointestinal , Infecciones por Rhabdoviridae , Rhabdoviridae , Temperatura , Pez Cebra , Animales , Enfermedades de los Peces/microbiología , Enfermedades de los Peces/virología , Infecciones por Rhabdoviridae/virología , Rhabdoviridae/fisiología , Rhabdoviridae/patogenicidad , Bacteroidetes/patogenicidad , Agua , Virus de la Necrosis Hematopoyética Infecciosa/patogenicidad
12.
Viruses ; 16(7)2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-39066269

RESUMEN

In addition to the rabies virus (RABV), 16 more lyssavirus species have been identified worldwide, causing a disease similar to RABV. Non-rabies-related human deaths have been described, but the number of cases is unknown, and the potential of such lyssaviruses causing human disease is unpredictable. The current rabies vaccine does not protect against divergent lyssaviruses such as Mokola virus (MOKV) or Lagos bat virus (LBV). Thus, a more broad pan-lyssavirus vaccine is needed. Here, we evaluate a novel lyssavirus vaccine with an attenuated RABV vector harboring a chimeric RABV glycoprotein (G) in which the antigenic site I of MOKV replaces the authentic site of rabies virus (RABVG-cAS1). The recombinant vaccine was utilized to immunize mice and analyze the immune response compared to homologous vaccines. Our findings indicate that the vaccine RABVG-cAS1 was immunogenic and induced high antibody titers against both RABVG and MOKVG. Challenge studies with different lyssaviruses showed that replacing a single antigenic site of RABV G with the corresponding site of MOKV G provides a significant improvement over the homologous RABV vaccine and protects against RABV, Irkut virus (IRKV), and MOKV. This strategy of epitope chimerization paves the way towards a pan-lyssavirus vaccine to safely combat the diseases caused by these viruses.


Asunto(s)
Anticuerpos Antivirales , Lyssavirus , Vacunas Antirrábicas , Virus de la Rabia , Rabia , Animales , Lyssavirus/inmunología , Lyssavirus/genética , Ratones , Anticuerpos Antivirales/inmunología , Anticuerpos Antivirales/sangre , Virus de la Rabia/inmunología , Virus de la Rabia/genética , Vacunas Antirrábicas/inmunología , Vacunas Antirrábicas/administración & dosificación , Rabia/prevención & control , Rabia/inmunología , Rabia/virología , Infecciones por Rhabdoviridae/prevención & control , Infecciones por Rhabdoviridae/inmunología , Infecciones por Rhabdoviridae/veterinaria , Infecciones por Rhabdoviridae/virología , Vacunas Sintéticas/inmunología , Vacunas Sintéticas/administración & dosificación , Femenino , Vacunas Virales/inmunología , Glicoproteínas/inmunología , Glicoproteínas/genética , Anticuerpos Neutralizantes/inmunología , Anticuerpos Neutralizantes/sangre , Desarrollo de Vacunas , Humanos , Antígenos Virales/inmunología , Ratones Endogámicos BALB C
13.
PLoS Negl Trop Dis ; 18(7): e0012297, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38976760

RESUMEN

Le Dantec virus (LDV), assigned to the species Ledantevirus ledantec, genus Ledantevirus, family Rhabdoviridae has been associated with human disease but has gone undetected since the 1970s. We describe the detection of LDV in a human case of undifferentiated fever in Uganda by metagenomic sequencing and demonstrate a serological response using ELISA and pseudotype neutralisation. By screening 997 individuals sampled in 2016, we show frequent exposure to ledanteviruses with 76% of individuals seropositive in Western Uganda, but lower seroprevalence in other areas. Serological cross-reactivity as measured by pseudotype-based neutralisation was confined to ledanteviruses, indicating population seropositivity may represent either exposure to LDV or related ledanteviruses. We also describe the discovery of a closely related ledantevirus in blood from the synanthropic rodent Mastomys erythroleucus. Ledantevirus infection is common in Uganda but is geographically heterogenous. Further surveys of patients presenting with acute fever are required to determine the contribution of these emerging viruses to febrile illness in Uganda.


Asunto(s)
Anticuerpos Antivirales , Rhabdoviridae , Humanos , Uganda/epidemiología , Adulto , Masculino , Femenino , Adolescente , Adulto Joven , Persona de Mediana Edad , Anticuerpos Antivirales/sangre , Niño , Rhabdoviridae/aislamiento & purificación , Rhabdoviridae/genética , Rhabdoviridae/clasificación , Preescolar , Infecciones por Rhabdoviridae/epidemiología , Infecciones por Rhabdoviridae/virología , Infecciones por Rhabdoviridae/veterinaria , Estudios Seroepidemiológicos , Animales , Reacciones Cruzadas , Lactante , Anciano , Filogenia , Ensayo de Inmunoadsorción Enzimática , Metagenómica
14.
Fish Shellfish Immunol ; 151: 109719, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38914181

RESUMEN

Sequestosome 1 (SQSTM1/p62) is a selective autophagy adapter protein that participates in antiviral and bacterial immune responses and plays an important regulatory role in clearing the proteins to be degraded and maintaining intracellular protein homeostasis. In this study, two p62 genes were cloned from common carp (Cyprinus carpio), namely Ccp62-1 and Ccp62-2, and conducted bioinformatics analysis on them. The results showed that Ccp62s had the same structural domain (Phox and Bem1 domain, ZZ-type zinc finger domain, and ubiquitin-associated domain) as p62 from other species. Ccp62s were widely expressed in various tissues of fish, and highly expressed in immune organs such as gills, spleen, head kidney, etc. Subcellular localization study showed that they were mainly distributed in punctate aggregates in the cytoplasm. After stimulation with Aeromonas hydrophila and spring viraemia of carp virus (SVCV), the expression level of Ccp62s was generally up-regulated. Overexpression of Ccp62s in EPC cells could inhibit SVCV replication. Upon A. hydrophila challenge, the bacterial load in Ccp62s-overexpressing group was significantly reduced, the expression levels of pro-inflammatory cytokines and interferon factors were increased, and the survival rate of the fish was improved. These results indicated that Ccp62s were involved in the immune response of common carp to bacterial and viral infections.


Asunto(s)
Aeromonas hydrophila , Carpas , Enfermedades de los Peces , Proteínas de Peces , Infecciones por Bacterias Gramnegativas , Inmunidad Innata , Filogenia , Infecciones por Rhabdoviridae , Rhabdoviridae , Animales , Carpas/inmunología , Carpas/genética , Enfermedades de los Peces/inmunología , Proteínas de Peces/genética , Proteínas de Peces/inmunología , Aeromonas hydrophila/fisiología , Inmunidad Innata/genética , Rhabdoviridae/fisiología , Infecciones por Bacterias Gramnegativas/inmunología , Infecciones por Bacterias Gramnegativas/veterinaria , Infecciones por Rhabdoviridae/inmunología , Infecciones por Rhabdoviridae/veterinaria , Regulación de la Expresión Génica/inmunología , Proteína Sequestosoma-1/genética , Proteína Sequestosoma-1/inmunología , Perfilación de la Expresión Génica/veterinaria , Alineación de Secuencia/veterinaria , Secuencia de Aminoácidos , Autofagia/inmunología
15.
Fish Shellfish Immunol ; 152: 109726, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38944254

RESUMEN

The immune system of bony fish closely resembles that of mammals, comprising both specific (adaptive) and non-specific (innate) components. Notably, the mucosa-associated lymphoid tissue (MALT) serves as the first line of defense within the non-specific immune system, playing a critical role in protecting these aquatic organisms against invading pathogens. MALT encompasses a network of immune cells strategically distributed throughout the gills and intestines, forming an integral part of the mucosal barrier that interfaces directly with the surrounding aquatic environment. Spring Viremia of Carp Virus(SVCV), a highly pathogenic agent causing substantial harm to common carp populations, has been designated as a Class 2 animal disease by the Ministry of Agriculture and Rural Affairs of China. Utilizing a comprehensive array of research techniques, including Hematoxylin and Eosin (HE)、Alcian Blue Periodic Acid-Schiff (AB-PAS)、transcriptome analysis for global gene expression profiling and Reverse Transcription-Polymerase Chain Reaction (RT-qPCR), this study uncovered several key findings: SVCV is capable of compromising the mucosal architecture in the gill and intestinal tissues of carp, and stimulate the proliferation of mucous cells both in gill and intestinal tissues. Critically, the study revealed that SVCV's invasion elicits a robust response from the carp's mucosal immune system, demonstrating the organism's capacity to resist SVCV invasion despite the challenges posed by the pathogen.


Asunto(s)
Carpas , Enfermedades de los Peces , Perfilación de la Expresión Génica , Branquias , Intestinos , Infecciones por Rhabdoviridae , Rhabdoviridae , Animales , Branquias/inmunología , Branquias/virología , Rhabdoviridae/fisiología , Enfermedades de los Peces/inmunología , Enfermedades de los Peces/virología , Carpas/inmunología , Carpas/genética , Perfilación de la Expresión Génica/veterinaria , Infecciones por Rhabdoviridae/inmunología , Infecciones por Rhabdoviridae/veterinaria , Infecciones por Rhabdoviridae/virología , Intestinos/inmunología , Intestinos/virología , Inmunidad Innata/genética , Transcriptoma/inmunología , Inmunidad Mucosa
16.
Dev Comp Immunol ; 158: 105208, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38834141

RESUMEN

Interferon regulatory factors (IRFs) are transcription factors involved in immune responses, such as pathogen response regulation, immune cell growth, and differentiation. IRFs are necessary for the synthesis of type I interferons through a signaling cascade when pathogen recognition receptors identify viral DNA or RNA. We discovered that irf3 is expressed in the early embryonic stages and in all immune organs of adult zebrafish. We demonstrated the antiviral immune mechanism of Irf3 against viral hemorrhagic septicemia virus (VHSV) using CRISPR/Cas9-mediated knockout zebrafish (irf3-KO). In this study, we used a truncated Irf3 protein, encoded by irf3 with a 10 bp deletion, for further investigation. Upon VHSV injection, irf3-KO zebrafish showed dose-dependent high and early mortality compared with zebrafish with the wild-type Irf3 protein (WT), confirming the antiviral activity of Irf3. Based on the results of expression analysis of downstream genes upon VHSV challenge, we inferred that Irf3 deficiency substantially affects the expression of ifnphi1 and ifnphi2. However, after 5 days post infection (dpi), ifnphi3 expression was not significantly altered in irf3-KO compared to that in WT, and irf7 transcription showed a considerable increase in irf3-KO after 5 dpi, indicating irf7's control over ifnphi3 expression. The significantly reduced expression of isg15, viperin, mxa, and mxb at 3 dpi also supported the effect of Irf3 deficiency on the antiviral activity in the early stage of infection. The higher mortality in irf3-KO zebrafish than in WT might be due to an increased inflammation and tissue damage that occurs in irf3-KO because of delayed immune response. Our results suggest that Irf3 plays a role in antiviral immunity of zebrafish by modulating critical immune signaling molecules and regulating antiviral immune genes.


Asunto(s)
Sistemas CRISPR-Cas , Técnicas de Inactivación de Genes , Septicemia Hemorrágica Viral , Factor 3 Regulador del Interferón , Novirhabdovirus , Proteínas de Pez Cebra , Pez Cebra , Animales , Pez Cebra/genética , Pez Cebra/inmunología , Factor 3 Regulador del Interferón/genética , Factor 3 Regulador del Interferón/metabolismo , Novirhabdovirus/fisiología , Novirhabdovirus/inmunología , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo , Septicemia Hemorrágica Viral/inmunología , Septicemia Hemorrágica Viral/genética , Septicemia Hemorrágica Viral/virología , Animales Modificados Genéticamente , Enfermedades de los Peces/inmunología , Enfermedades de los Peces/virología , Enfermedades de los Peces/genética , Inmunidad Innata/genética , Transducción de Señal/genética , Transducción de Señal/inmunología , Infecciones por Rhabdoviridae/inmunología , Infecciones por Rhabdoviridae/virología , Modelos Animales de Enfermedad , Interferones
17.
J Virol ; 98(7): e0069724, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-38916400

RESUMEN

Micropterus salmoides rhabdovirus (MSRV) is an important pathogen of largemouth bass. Despite extensive research, the functional receptors of MSRV remained unknown. This study identified the host protein, laminin receptor (LamR), as a cellular receptor facilitating MSRV entry into host cells. Our results demonstrated that LamR directly interacts with MSRV G protein, playing a pivotal role in the attachment and internalization processes of MSRV. Knockdown of LamR with siRNA, blocking cells with LamR antibody, or incubating MSRV virions with soluble LamR protein significantly reduced MSRV entry. Notably, we found that LamR mediated MSRV entry via clathrin-mediated endocytosis. Additionally, our findings revealed that MSRV G and LamR were internalized into cells and co-localized in the early and late endosomes. These findings highlight the significance of LamR as a cellular receptor facilitating MSRV binding and entry into target cells through interaction with the MSRV G protein. IMPORTANCE: Despite the serious epidemic caused by Micropterus salmoides rhabdovirus (MSRV) in largemouth bass, the precise mechanism by which it invades host cells remains unclear. Here, we determined that laminin receptor (LamR) is a novel target of MSRV, that interacts with its G protein and is involved in viral attachment and internalization, transporting with MSRV together in early and late endosomes. This is the first report demonstrating that LamR is a cellular receptor in the MSRV life cycle, thus contributing new insights into host-pathogen interactions.


Asunto(s)
Enfermedades de los Peces , Receptores de Laminina , Rhabdoviridae , Internalización del Virus , Animales , Receptores de Laminina/metabolismo , Rhabdoviridae/metabolismo , Rhabdoviridae/fisiología , Enfermedades de los Peces/virología , Enfermedades de los Peces/metabolismo , Lubina/virología , Lubina/metabolismo , Receptores Virales/metabolismo , Infecciones por Rhabdoviridae/virología , Infecciones por Rhabdoviridae/metabolismo , Endocitosis
18.
J Virol ; 98(7): e0020224, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-38842318

RESUMEN

Nucleoprotein (N) is well known for its function in the encapsidation of the genomic RNAs of negative-strand RNA viruses, which leads to the formation of ribonucleoproteins that serve as templates for viral transcription and replication. However, the function of the N protein in other aspects during viral infection is far from clear. In this study, the N protein of snakehead vesiculovirus (SHVV), a kind of fish rhabdovirus, was proved to be ubiquitinated mainly via K63-linked ubiquitination. We identified nine host E3 ubiquitin ligases that interacted with SHVV N, among which seven E3 ubiquitin ligases facilitated ubiquitination of the N protein. Further investigation revealed that only two E3 ubiquitin ligases, Siah E3 ubiquitin protein ligase 2 (Siah2) and leucine-rich repeat and sterile alpha motif containing 1 (LRSAM1), mediated K63-linked ubiquitination of the N protein. SHVV infection upregulated the expression of Siah2 and LRSAM1, which maintained the stability of SHVV N. Besides, overexpression of Siah2 or LRSAM1 promoted SHVV replication, while knockdown of Siah2 or LRSAM1 inhibited SHVV replication. Deletion of the ligase domain of Siah2 or LRSAM1 did not affect their interactions with SHVV N but reduced the K63-linked ubiquitination of SHVV N and SHVV replication. In summary, Siah2 and LRSAM1 mediate K63-linked ubiquitination of SHVV N to facilitate SHVV replication, which provides novel insights into the role of the N proteins of negative-strand RNA viruses. IMPORTANCE: Ubiquitination of viral protein plays an important role in viral replication. However, the ubiquitination of the nucleoprotein (N) of negative-strand RNA viruses has rarely been investigated. This study aimed at investigating the ubiquitination of the N protein of a fish rhabdovirus SHVV (snakehead vesiculovirus), identifying the related host E3 ubiquitin ligases, and determining the role of SHVV N ubiquitination and host E3 ubiquitin ligases in viral replication. We found that SHVV N was ubiquitinated mainly via K63-linked ubiquitination, which was mediated by host E3 ubiquitin ligases Siah2 (Siah E3 ubiquitin protein ligase 2) and LRSAM1 (leucine-rich repeat and sterile alpha motif containing 1). The data suggested that Siah2 and LRSAM1 were hijacked by SHVV to ubiquitinate the N protein for viral replication, which exhibited novel anti-SHVV targets for drug design.


Asunto(s)
Nucleoproteínas , Ubiquitina-Proteína Ligasas , Ubiquitinación , Vesiculovirus , Replicación Viral , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/genética , Animales , Nucleoproteínas/metabolismo , Nucleoproteínas/genética , Vesiculovirus/fisiología , Vesiculovirus/metabolismo , Vesiculovirus/genética , Humanos , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Células HEK293 , Proteínas Virales/metabolismo , Proteínas Virales/genética , Línea Celular , Infecciones por Rhabdoviridae/virología , Infecciones por Rhabdoviridae/metabolismo , Enfermedades de los Peces/virología , Enfermedades de los Peces/metabolismo
19.
Int J Biol Macromol ; 269(Pt 2): 132104, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38719016

RESUMEN

Stimulator of interferon genes (STING), as an imperative adaptor protein in innate immune, responds to nucleic acid from invading pathogens to build antiviral responses in host cells. Aberrant activation of STING may trigger tissue damage and autoimmune diseases. Given the decisive role in initiating innate immune response, the activity of STING is intricately governed by several posttranslational modifications, including phosphorylation and ubiquitination. Here, we cloned and characterized a novel RNF122 homolog from common carp (named CcRNF122L). Expression analysis disclosed that the expression of CcRNF122L is up-regulated under spring viremia of carp virus (SVCV) stimulation in vivo and in vitro. Overexpression of CcRNF122L hampers SVCV- or poly(I:C)-mediated the expression of IFN-1 and ISGs in a dose-dependent way. Mechanistically, CcRNF122L interacts with STING and promotes the polyubiquitylation of STING. This polyubiquitylation event inhibits the aggregation of STING and the subsequent recruitment of TBK1 and IRF3 to the signaling complex. Additionally, the deletion of the TM domain abolishes the negative regulatory function of CcRNF122L. Collectively, our discoveries unveil a mechanism that governs the STING function and the precise adjustment of the innate immune response in teleost.


Asunto(s)
Carpas , Proteínas de Peces , Inmunidad Innata , Proteínas de la Membrana , Rhabdoviridae , Animales , Carpas/inmunología , Carpas/genética , Carpas/virología , Proteínas de la Membrana/genética , Proteínas de la Membrana/inmunología , Proteínas de la Membrana/metabolismo , Rhabdoviridae/fisiología , Proteínas de Peces/genética , Proteínas de Peces/inmunología , Proteínas de Peces/metabolismo , Ubiquitinación , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Enfermedades de los Peces/inmunología , Enfermedades de los Peces/virología , Infecciones por Rhabdoviridae/inmunología , Transducción de Señal
20.
J Virol ; 98(6): e0015824, 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38695539

RESUMEN

Tripartite motif (TRIM) proteins are involved in different cellular functions, including regulating virus infection. In teleosts, two orthologous genes of mammalian TRIM2 are identified. However, the functions and molecular mechanisms of piscine TRIM2 remain unclear. Here, we show that trim2b-knockout zebrafish are more susceptible to spring viremia of carp virus (SVCV) infection than wild-type zebrafish. Transcriptomic analysis demonstrates that NOD-like receptor (NLR), but not RIG-I-like receptor (RLR), signaling pathway is significantly enriched in the trim2b-knockout zebrafish. In vitro, overexpression of Trim2b fails to degrade RLRs and those key proteins involved in the RLR signaling pathway but does for negative regulators NLRP12-like proteins. Zebrafish Trim2b degrades NLRP12-like proteins through its NHL_TRIM2_like and IG_FLMN domains in a ubiquitin-proteasome degradation pathway. SVCV-N and SVCV-G proteins are also degraded by NHL_TRIM2_like domains, and the degradation pathway is an autophagy lysosomal pathway. Moreover, zebrafish Trim2b can interfere with the binding between NLRP12-like protein and SVCV viral RNA and can completely block the negative regulation of NLRP12-like protein on SVCV infection. Taken together, our data demonstrate that the mechanism of action of zebrafish trim2b against SVCV infection is through targeting the degradation of host-negative regulators NLRP12-like receptors and viral SVCV-N/SVCV-G genes.IMPORTANCESpring viremia of carp virus (SVCV) is a lethal freshwater pathogen that causes high mortality in cyprinid fish. In the present study, we identified zebrafish trim2b, NLRP12-L1, and NLRP12-L2 as potential pattern recognition receptors (PRRs) for sensing and binding viral RNA. Zebrafish trim2b functions as a positive regulator; however, NLRP12-L1 and NLRP12-L2 function as negative regulators during SVCV infection. Furthermore, we find that zebrafish trim2b decreases host lethality in two manners. First, zebrafish Trim2b promotes protein degradations of negative regulators NLRP12-L1 and NLRP12-L2 by enhancing K48-linked ubiquitination and decreasing K63-linked ubiquitination. Second, zebrafish trim2b targets viral RNAs for degradation. Therefore, this study reveals a special antiviral mechanism in lower vertebrates.


Asunto(s)
Carpas , Proteolisis , Receptores de Reconocimiento de Patrones , Rhabdoviridae , Proteínas de Motivos Tripartitos , Proteínas Virales , Proteínas de Pez Cebra , Pez Cebra , Animales , Carpas/virología , Proteína 58 DEAD Box/metabolismo , Enfermedades de los Peces/virología , Enfermedades de los Peces/metabolismo , Inmunidad Innata , Receptores de Reconocimiento de Patrones/metabolismo , Rhabdoviridae/metabolismo , Infecciones por Rhabdoviridae/metabolismo , Infecciones por Rhabdoviridae/veterinaria , Infecciones por Rhabdoviridae/virología , Transducción de Señal , Proteínas de Motivos Tripartitos/deficiencia , Proteínas de Motivos Tripartitos/genética , Proteínas de Motivos Tripartitos/metabolismo , Ubiquitinación , Proteínas Virales/metabolismo , Viremia/veterinaria , Viremia/virología , Pez Cebra/genética , Pez Cebra/metabolismo , Pez Cebra/virología , Proteínas de Pez Cebra/deficiencia , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...