Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Virol ; 98(7): e0069724, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-38916400

RESUMEN

Micropterus salmoides rhabdovirus (MSRV) is an important pathogen of largemouth bass. Despite extensive research, the functional receptors of MSRV remained unknown. This study identified the host protein, laminin receptor (LamR), as a cellular receptor facilitating MSRV entry into host cells. Our results demonstrated that LamR directly interacts with MSRV G protein, playing a pivotal role in the attachment and internalization processes of MSRV. Knockdown of LamR with siRNA, blocking cells with LamR antibody, or incubating MSRV virions with soluble LamR protein significantly reduced MSRV entry. Notably, we found that LamR mediated MSRV entry via clathrin-mediated endocytosis. Additionally, our findings revealed that MSRV G and LamR were internalized into cells and co-localized in the early and late endosomes. These findings highlight the significance of LamR as a cellular receptor facilitating MSRV binding and entry into target cells through interaction with the MSRV G protein. IMPORTANCE: Despite the serious epidemic caused by Micropterus salmoides rhabdovirus (MSRV) in largemouth bass, the precise mechanism by which it invades host cells remains unclear. Here, we determined that laminin receptor (LamR) is a novel target of MSRV, that interacts with its G protein and is involved in viral attachment and internalization, transporting with MSRV together in early and late endosomes. This is the first report demonstrating that LamR is a cellular receptor in the MSRV life cycle, thus contributing new insights into host-pathogen interactions.


Asunto(s)
Enfermedades de los Peces , Receptores de Laminina , Rhabdoviridae , Internalización del Virus , Animales , Receptores de Laminina/metabolismo , Rhabdoviridae/metabolismo , Rhabdoviridae/fisiología , Enfermedades de los Peces/virología , Enfermedades de los Peces/metabolismo , Lubina/virología , Lubina/metabolismo , Receptores Virales/metabolismo , Infecciones por Rhabdoviridae/virología , Infecciones por Rhabdoviridae/metabolismo , Endocitosis
2.
J Virol ; 98(7): e0020224, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-38842318

RESUMEN

Nucleoprotein (N) is well known for its function in the encapsidation of the genomic RNAs of negative-strand RNA viruses, which leads to the formation of ribonucleoproteins that serve as templates for viral transcription and replication. However, the function of the N protein in other aspects during viral infection is far from clear. In this study, the N protein of snakehead vesiculovirus (SHVV), a kind of fish rhabdovirus, was proved to be ubiquitinated mainly via K63-linked ubiquitination. We identified nine host E3 ubiquitin ligases that interacted with SHVV N, among which seven E3 ubiquitin ligases facilitated ubiquitination of the N protein. Further investigation revealed that only two E3 ubiquitin ligases, Siah E3 ubiquitin protein ligase 2 (Siah2) and leucine-rich repeat and sterile alpha motif containing 1 (LRSAM1), mediated K63-linked ubiquitination of the N protein. SHVV infection upregulated the expression of Siah2 and LRSAM1, which maintained the stability of SHVV N. Besides, overexpression of Siah2 or LRSAM1 promoted SHVV replication, while knockdown of Siah2 or LRSAM1 inhibited SHVV replication. Deletion of the ligase domain of Siah2 or LRSAM1 did not affect their interactions with SHVV N but reduced the K63-linked ubiquitination of SHVV N and SHVV replication. In summary, Siah2 and LRSAM1 mediate K63-linked ubiquitination of SHVV N to facilitate SHVV replication, which provides novel insights into the role of the N proteins of negative-strand RNA viruses. IMPORTANCE: Ubiquitination of viral protein plays an important role in viral replication. However, the ubiquitination of the nucleoprotein (N) of negative-strand RNA viruses has rarely been investigated. This study aimed at investigating the ubiquitination of the N protein of a fish rhabdovirus SHVV (snakehead vesiculovirus), identifying the related host E3 ubiquitin ligases, and determining the role of SHVV N ubiquitination and host E3 ubiquitin ligases in viral replication. We found that SHVV N was ubiquitinated mainly via K63-linked ubiquitination, which was mediated by host E3 ubiquitin ligases Siah2 (Siah E3 ubiquitin protein ligase 2) and LRSAM1 (leucine-rich repeat and sterile alpha motif containing 1). The data suggested that Siah2 and LRSAM1 were hijacked by SHVV to ubiquitinate the N protein for viral replication, which exhibited novel anti-SHVV targets for drug design.


Asunto(s)
Nucleoproteínas , Ubiquitina-Proteína Ligasas , Ubiquitinación , Vesiculovirus , Replicación Viral , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/genética , Animales , Nucleoproteínas/metabolismo , Nucleoproteínas/genética , Vesiculovirus/fisiología , Vesiculovirus/metabolismo , Vesiculovirus/genética , Humanos , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Células HEK293 , Proteínas Virales/metabolismo , Proteínas Virales/genética , Línea Celular , Infecciones por Rhabdoviridae/virología , Infecciones por Rhabdoviridae/metabolismo , Enfermedades de los Peces/virología , Enfermedades de los Peces/metabolismo
3.
J Virol ; 98(6): e0015824, 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38695539

RESUMEN

Tripartite motif (TRIM) proteins are involved in different cellular functions, including regulating virus infection. In teleosts, two orthologous genes of mammalian TRIM2 are identified. However, the functions and molecular mechanisms of piscine TRIM2 remain unclear. Here, we show that trim2b-knockout zebrafish are more susceptible to spring viremia of carp virus (SVCV) infection than wild-type zebrafish. Transcriptomic analysis demonstrates that NOD-like receptor (NLR), but not RIG-I-like receptor (RLR), signaling pathway is significantly enriched in the trim2b-knockout zebrafish. In vitro, overexpression of Trim2b fails to degrade RLRs and those key proteins involved in the RLR signaling pathway but does for negative regulators NLRP12-like proteins. Zebrafish Trim2b degrades NLRP12-like proteins through its NHL_TRIM2_like and IG_FLMN domains in a ubiquitin-proteasome degradation pathway. SVCV-N and SVCV-G proteins are also degraded by NHL_TRIM2_like domains, and the degradation pathway is an autophagy lysosomal pathway. Moreover, zebrafish Trim2b can interfere with the binding between NLRP12-like protein and SVCV viral RNA and can completely block the negative regulation of NLRP12-like protein on SVCV infection. Taken together, our data demonstrate that the mechanism of action of zebrafish trim2b against SVCV infection is through targeting the degradation of host-negative regulators NLRP12-like receptors and viral SVCV-N/SVCV-G genes.IMPORTANCESpring viremia of carp virus (SVCV) is a lethal freshwater pathogen that causes high mortality in cyprinid fish. In the present study, we identified zebrafish trim2b, NLRP12-L1, and NLRP12-L2 as potential pattern recognition receptors (PRRs) for sensing and binding viral RNA. Zebrafish trim2b functions as a positive regulator; however, NLRP12-L1 and NLRP12-L2 function as negative regulators during SVCV infection. Furthermore, we find that zebrafish trim2b decreases host lethality in two manners. First, zebrafish Trim2b promotes protein degradations of negative regulators NLRP12-L1 and NLRP12-L2 by enhancing K48-linked ubiquitination and decreasing K63-linked ubiquitination. Second, zebrafish trim2b targets viral RNAs for degradation. Therefore, this study reveals a special antiviral mechanism in lower vertebrates.


Asunto(s)
Carpas , Proteolisis , Receptores de Reconocimiento de Patrones , Rhabdoviridae , Proteínas de Motivos Tripartitos , Proteínas Virales , Proteínas de Pez Cebra , Pez Cebra , Animales , Carpas/virología , Proteína 58 DEAD Box/metabolismo , Enfermedades de los Peces/virología , Enfermedades de los Peces/metabolismo , Inmunidad Innata , Receptores de Reconocimiento de Patrones/metabolismo , Rhabdoviridae/metabolismo , Infecciones por Rhabdoviridae/metabolismo , Infecciones por Rhabdoviridae/veterinaria , Infecciones por Rhabdoviridae/virología , Transducción de Señal , Proteínas de Motivos Tripartitos/deficiencia , Proteínas de Motivos Tripartitos/genética , Proteínas de Motivos Tripartitos/metabolismo , Ubiquitinación , Proteínas Virales/metabolismo , Viremia/veterinaria , Viremia/virología , Pez Cebra/genética , Pez Cebra/metabolismo , Pez Cebra/virología , Proteínas de Pez Cebra/deficiencia , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
4.
Int J Biol Macromol ; 255: 128201, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37979762

RESUMEN

Snakehead vesiculovirus (SHVV) is a type of rhabdovirus that causes serious economic losses in snakehead fish culture in China. However, no specific antiviral drugs or vaccines are currently available for SHVV infection. In this study, 4D label-free ubiquitome analysis of SHVV-infected cells revealed dozens of ubiquitinated sites on the five SHVV proteins. We focused on investigating the ubiquitination of phosphoprotein (P), a viral polymerase co-factor involved in viral replication. SHVV-P was proved to be ubiquitinated via K63-linked ubiquitination at lysine 264 (K264). Overexpression of wild-type P, but not its K264R mutant, facilitated SHVV replication, indicating that K264 ubiquitination of the P protein is critical for SHVV replication. RNAi screening of 26 cellular E3 ubiquitin ligases identified five pro-viral factors for SHVV replication, including macrophage erythroblast attacher (MAEA), TNF receptor-associated factor 7 (TRAF7), and SH3 domain-containing ring finger protein 1 (SH3RF1), which interacted with and mediated ubiquitination of SHVV P. TRAF7 and SH3RF1, but not MAEA, mediated K63-linked ubiquitination of SHVV P, while only SH3RF1 mediated K264 ubiquitination of SHVV P. Besides, overexpression of SH3RF1 promoted SHVV replication and maintained the stability of SHVV P. In summary, SH3RF1 mediated K63-linked ubiquitination of SHVV P at K264 to facilitate SHVV replication, providing targets for developing anti-SHVV drugs and live-attenuated SHVV vaccines. Our study provides novel insights into the role of P protein in the replication of single-stranded, negative-sense RNA viruses.


Asunto(s)
Perciformes , Infecciones por Rhabdoviridae , Vacunas , Animales , Perciformes/metabolismo , Vesiculovirus/genética , Fosfoproteínas/metabolismo , Infecciones por Rhabdoviridae/metabolismo , Ubiquitinación
5.
J Virol ; 97(11): e0122623, 2023 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-37861337

RESUMEN

IMPORTANCE: Although a virus can regulate many cellular responses to facilitate its replication by interacting with host proteins, the host can also restrict virus infection through these interactions. In the present study, we showed that the host eukaryotic translation elongation factor 1 alpha (eEF1A), an essential protein in the translation machinery, interacted with two proteins of a fish rhabdovirus, Siniperca chuatsi rhabdovirus (SCRV), and inhibited virus infection via two different mechanisms: (i) inhibiting the formation of crucial viral protein complexes required for virus transcription and replication and (ii) promoting the ubiquitin-proteasome degradation of viral protein. We also revealed the functional regions of eEF1A that are involved in the two processes. Such a host protein inhibiting a rhabdovirus infection in two ways is rarely reported. These findings provided new information for the interactions between host and fish rhabdovirus.


Asunto(s)
Enfermedades de los Peces , Proteínas de Peces , Factor 1 de Elongación Peptídica , Infecciones por Rhabdoviridae , Rhabdoviridae , Animales , Peces , Factor 1 de Elongación Peptídica/genética , Factor 1 de Elongación Peptídica/metabolismo , Rhabdoviridae/fisiología , Infecciones por Rhabdoviridae/metabolismo , Infecciones por Rhabdoviridae/veterinaria , Proteínas Virales/genética , Proteínas Virales/metabolismo , Proteínas de Peces/metabolismo , Enfermedades de los Peces/metabolismo
6.
Virulence ; 14(1): 2196847, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37005771

RESUMEN

Heterogeneous nuclear ribonucleoprotein A1 (hnRNPA1) plays an important role in regulating the replication of many viruses. However, it remains elusive whether and how hnRNPA1 regulates fish virus replication. In this study, the effects of twelve hnRNPs on the replication of snakehead vesiculovirus (SHVV) were screened. Three hnRNPs, one of which was hnRNPA1, were identified as anti-SHVV factors. Further verification showed that knockdown of hnRNPA1 promoted, while overexpression of hnRNPA1 inhibited, SHVV replication. SHVV infection reduced the expression level of hnRNPA1 and induced the nucleocytoplasmic shuttling of hnRNPA1. Besides, we found that hnRNPA1 interacted with the viral phosphoprotein (P) via its glycine-rich domain, but not with the viral nucleoprotein (N) or large protein (L). The hnRNPA1-P interaction competitively disrupted the viral P-N interaction. Moreover, we found that overexpression of hnRNPA1 enhanced the polyubiquitination of the P protein and degraded it through proteasomal and lysosomal pathways. This study will help understanding the function of hnRNPA1 in the replication of single-stranded negative-sense RNA viruses and providing a novel antiviral target against fish rhabdoviruses.


Asunto(s)
Nucleoproteínas , Infecciones por Rhabdoviridae , Animales , Ribonucleoproteína Nuclear Heterogénea A1/genética , Nucleoproteínas/metabolismo , Infecciones por Rhabdoviridae/metabolismo , Peces , Vesiculovirus/genética , Vesiculovirus/metabolismo , Fosfoproteínas/metabolismo , Replicación Viral
7.
Commun Biol ; 4(1): 921, 2021 07 29.
Artículo en Inglés | MEDLINE | ID: mdl-34326461

RESUMEN

Retinoic acid-inducible gene I (RIG-I) senses viral RNA and instigates an innate immune signaling cascade to induce type I interferon expression. Currently, the regulatory mechanisms controlling RIG-I activation remain to be fully elucidated. Here we show that the FAK family kinase-interacting protein of 200 kDa (FIP200) facilitates RIG-I activation. FIP200 deficiency impaired RIG-I signaling and increased host susceptibility to RNA virus infection. In vivo studies further demonstrated FIP200 knockout mice were more susceptible to RNA virus infection due to the reduced innate immune response. Mechanistic studies revealed that FIP200 competed with the helicase domain of RIG-I for interaction with the two tandem caspase activation and recruitment domains (2CARD), thereby facilitating the release of 2CARD from the suppression status. Furthermore, FIP200 formed a dimer and facilitated 2CARD oligomerization, thereby promoting RIG-I activation. Taken together, our study defines FIP200 as an innate immune signaling molecule that positively regulates RIG-I activation.


Asunto(s)
Proteínas Relacionadas con la Autofagia/genética , Resfriado Común/prevención & control , Coronavirus Humano OC43/fisiología , Proteína 58 DEAD Box/genética , Infecciones por Rhabdoviridae/prevención & control , Virus de la Estomatitis Vesicular Indiana/fisiología , Células A549 , Animales , Proteínas Relacionadas con la Autofagia/metabolismo , Chlorocebus aethiops , Resfriado Común/metabolismo , Infecciones por Coronavirus/metabolismo , Infecciones por Coronavirus/prevención & control , Proteína 58 DEAD Box/metabolismo , Células HEK293 , Humanos , Ratones , Ratones Noqueados , Células RAW 264.7 , Infecciones por Rhabdoviridae/metabolismo , Células Vero , Estomatitis Vesicular/metabolismo , Estomatitis Vesicular/prevención & control
8.
Sci Rep ; 11(1): 13253, 2021 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-34168211

RESUMEN

Chandipura virus (CHPV, a member of the Rhabdoviridae family) is an emerging pathogen that causes rapidly progressing influenza-like illness and acute encephalitis often leading to coma and death of the human host. Given several CHPV outbreaks in Indian sub-continent, recurring sporadic cases, neurological manifestation, and high mortality rate of this infection, CHPV is gaining global attention. The 'dark proteome' includes the whole proteome with special emphasis on intrinsically disordered proteins (IDP) and IDP regions (IDPR), which are proteins or protein regions that lack unique (or ordered) three-dimensional structures within the cellular milieu. These proteins/regions, however, play a number of vital roles in various biological processes, such as cell cycle regulation, control of signaling pathways, etc. and, therefore, are implicated in many human diseases. IDPs and IPPRs are also abundantly found in many viral proteins enabling their multifunctional roles in the viral life cycles and their capability to highjack various host systems. The unknown abundance of IDP and IDPR in CHPV, therefore, prompted us to analyze the dark proteome of this virus. Our analysis revealed a varying degree of disorder in all five CHPV proteins, with the maximum level of intrinsic disorder propensity being found in Phosphoprotein (P). We have also shown the flexibility of P protein using extensive molecular dynamics simulations up to 500 ns (ns). Furthermore, our analysis also showed the abundant presence of the disorder-based binding regions (also known as molecular recognition features, MoRFs) in CHPV proteins. The identification of IDPs/IDPRs in CHPV proteins suggests that their disordered regions may function as potential interacting domains and may also serve as novel targets for disorder-based drug designs.


Asunto(s)
Proteínas Intrínsecamente Desordenadas/metabolismo , Infecciones por Rhabdoviridae/metabolismo , Vesiculovirus/metabolismo , ARN Polimerasas Dirigidas por ADN/metabolismo , Genoma Viral/genética , Humanos , Nucleoproteínas/genética , Nucleoproteínas/metabolismo , Fosfoproteínas/metabolismo , Proteoma , Infecciones por Rhabdoviridae/virología , Alineación de Secuencia , Vesiculovirus/genética , Proteínas Virales/genética , Proteínas Virales/metabolismo
9.
Front Immunol ; 12: 667478, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34025669

RESUMEN

Viral encephalitis is the most common cause of encephalitis. It is responsible for high morbidity rates, permanent neurological sequelae, and even high mortality rates. The host immune response plays a critical role in preventing or clearing invading pathogens, especially when effective antiviral treatment is lacking. However, due to blockade of the blood-brain barrier, it remains unclear how peripheral immune cells contribute to the fight against intracerebral viruses. Here, we report that peripheral injection of an antibody against human Tim-3, an immune checkpoint inhibitor widely expressed on immune cells, markedly attenuated vesicular stomatitis virus (VSV) encephalitis, marked by decreased mortality and improved neuroethology in mice. Peripheral injection of Tim-3 antibody enhanced the recruitment of immune cells to the brain, increased the expression of major histocompatibility complex-I (MHC-I) on macrophages, and as a result, promoted the activation of VSV-specific CD8+ T cells. Depletion of macrophages abolished the peripheral injection-mediated protection against VSV encephalitis. Notably, for the first time, we found a novel post-translational modification of MHC-I by Tim-3, wherein, by enhancing the expression of MARCH9, Tim-3 promoted the proteasome-dependent degradation of MHC-I via K48-linked ubiquitination in macrophages. These results provide insights into the immune response against intracranial infections; thus, manipulating the peripheral immune cells with Tim-3 antibody to fight viruses in the brain may have potential applications for combating viral encephalitis.


Asunto(s)
Anticuerpos Monoclonales/administración & dosificación , Anticuerpos Neutralizantes/administración & dosificación , Células Presentadoras de Antígenos/efectos de los fármacos , Encéfalo/efectos de los fármacos , Encefalitis Viral/prevención & control , Receptor 2 Celular del Virus de la Hepatitis A/antagonistas & inhibidores , Macrófagos/efectos de los fármacos , Infecciones por Rhabdoviridae/prevención & control , Vesiculovirus/inmunología , Animales , Células Presentadoras de Antígenos/inmunología , Células Presentadoras de Antígenos/metabolismo , Células Presentadoras de Antígenos/virología , Encéfalo/inmunología , Encéfalo/metabolismo , Encéfalo/virología , Chlorocebus aethiops , Modelos Animales de Enfermedad , Encefalitis Viral/inmunología , Encefalitis Viral/metabolismo , Encefalitis Viral/virología , Células HEK293 , Receptor 2 Celular del Virus de la Hepatitis A/inmunología , Antígenos de Histocompatibilidad Clase I/metabolismo , Interacciones Huésped-Patógeno , Humanos , Inyecciones Intraperitoneales , Macrófagos/inmunología , Macrófagos/metabolismo , Macrófagos/virología , Masculino , Ratones , Ratones Endogámicos C57BL , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteolisis , Células RAW 264.7 , Infecciones por Rhabdoviridae/inmunología , Infecciones por Rhabdoviridae/metabolismo , Infecciones por Rhabdoviridae/virología , Ubiquitinación , Células Vero , Vesiculovirus/patogenicidad , Carga Viral
10.
Arch Virol ; 166(4): 1057-1070, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33532870

RESUMEN

Infectious hematopoietic necrosis virus (IHNV) causes clinical diseases and mortality in a wide variety of salmonid species. Here, we studied transcriptional responses in rainbow trout infected by the IHNV-Nagano strain isolated in Korea. RNA-seq-based transcriptome analysis of head kidney tissues cataloged differentially expressed genes. Enrichment analysis of gene ontology annotations was performed, and a total of fifteen biological process terms were commonly identified at all time points. In the Kyoto Encyclopedia of Genes and Genomes pathway analysis, pathogen recognition receptor (PRR) signaling pathways such as the retinoic-acid-inducible gene-I-like receptor signaling pathway and the Toll-like receptor signaling pathway were identified at all time points. The nucleotide-binding oligomerization-domain-like receptor signaling pathway and cytosolic DNA-sensing pathway were identified at days 1 and 3. Protein-protein interaction network and centrality analyses revealed that the immune system, signaling molecules, and interaction pathways were upregulated at days 1 and 3, with the highest centrality of tumor necrosis factor. Cancer, cellular community, and endocrine system pathways were downregulated, with the highest centrality of fibronectin 1 at day 5. STAT1 was upregulated from days 1 to 5 with a high centrality. The reproducibility and repeatability of the transcriptome analysis were validated by RT-qPCR. IHNV-Nagano infection dynamically changed the transcriptome profiles in the head kidney of rainbow trout and induced a defense mechanism by regulating the immune and inflammatory pathways through PRR signaling at an early stage. Downregulated pathways involved in extracellular matrix formation and focal adhesion at day 5 indicated the possible failure of wound healing, which is important in the pathogenesis of IHNV infection.


Asunto(s)
Enfermedades de los Peces/virología , Riñón Cefálico/virología , Virus de la Necrosis Hematopoyética Infecciosa/fisiología , Oncorhynchus mykiss/virología , Infecciones por Rhabdoviridae/veterinaria , Transcriptoma , Animales , Enfermedades de los Peces/inmunología , Enfermedades de los Peces/metabolismo , Regulación de la Expresión Génica , Ontología de Genes , Genotipo , Riñón Cefálico/inmunología , Riñón Cefálico/metabolismo , Mapas de Interacción de Proteínas , Reproducibilidad de los Resultados , República de Corea , Infecciones por Rhabdoviridae/inmunología , Infecciones por Rhabdoviridae/metabolismo , Infecciones por Rhabdoviridae/virología , Transducción de Señal
11.
PLoS Pathog ; 17(2): e1009317, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33600488

RESUMEN

The transmembrane protein 33 (TMEM33) was originally identified as an endoplasmic reticulum (ER) protein that influences the tubular structure of the ER and modulates intracellular calcium homeostasis. However, the role of TMEM33 in antiviral immunity in vertebrates has not been elucidated. In this article, we demonstrate that zebrafish TMEM33 is a negative regulator of virus-triggered interferon (IFN) induction via two mechanisms: mitochondrial antiviral signaling protein (MAVS) ubiquitination and a decrease in the kinase activity of TANK binding kinase 1 (TBK1). Upon stimulation with viral components, tmem33 was remarkably upregulated in the zebrafish liver cell line. The IFNφ1 promoter (IFNφ1pro) activity and mRNA level induced by retinoic acid-inducible gene (RIG)-I-like receptors (RLRs) were significantly inhibited by TMEM33. Knockdown of TMEM33 increased host ifn transcription. Subsequently, we found that TMEM33 was colocalized in the ER and interacted with the RLR cascades, whereas MAVS was degraded by TMEM33 during the K48-linked ubiquitination. On the other hand, TMEM33 reduced the phosphorylation of mediator of IFN regulatory factor 3 (IRF3) activation (MITA)/IRF3 by acting as a decoy substrate of TBK1, which was also phosphorylated. A functional domain assay revealed that the N-terminal transmembrane domain 1 (TM1) and TM2 regions of TMEM33 were necessary for IFN suppression. Finally, TMEM33 significantly attenuated the host cellular antiviral capacity by blocking the IFN response. Taken together, our findings provide insight into the different mechanisms employed by TMEM33 in cellular IFN-mediated antiviral process.


Asunto(s)
Regulación de la Expresión Génica , Interferones/metabolismo , Hígado/metabolismo , Proteínas de la Membrana/metabolismo , Infecciones por Rhabdoviridae/virología , Proteínas de Pez Cebra/metabolismo , Animales , Hígado/inmunología , Hígado/virología , Proteínas de la Membrana/genética , Fosforilación , Rhabdoviridae/fisiología , Infecciones por Rhabdoviridae/inmunología , Infecciones por Rhabdoviridae/metabolismo , Ubiquitinación , Pez Cebra , Proteínas de Pez Cebra/genética
12.
PLoS Pathog ; 17(1): e1009111, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33411856

RESUMEN

Antiviral innate immune response to RNA virus infection is supported by Pattern-Recognition Receptors (PRR) including RIG-I-Like Receptors (RLR), which lead to type I interferons (IFNs) and IFN-stimulated genes (ISG) production. Upon sensing of viral RNA, the E3 ubiquitin ligase TNF Receptor-Associated Factor-3 (TRAF3) is recruited along with its substrate TANK-Binding Kinase (TBK1), to MAVS-containing subcellular compartments, including mitochondria, peroxisomes, and the mitochondria-associated endoplasmic reticulum membrane (MAM). However, the regulation of such events remains largely unresolved. Here, we identify TRK-Fused Gene (TFG), a protein involved in the transport of newly synthesized proteins to the endomembrane system via the Coat Protein complex II (COPII) transport vesicles, as a new TRAF3-interacting protein allowing the efficient recruitment of TRAF3 to MAVS and TBK1 following Sendai virus (SeV) infection. Using siRNA and shRNA approaches, we show that TFG is required for virus-induced TBK1 activation resulting in C-terminal IRF3 phosphorylation and dimerization. We further show that the ability of the TRAF3-TFG complex to engage mTOR following SeV infection allows TBK1 to phosphorylate mTOR on serine 2159, a post-translational modification shown to promote mTORC1 signaling. We demonstrate that the activation of mTORC1 signaling during SeV infection plays a positive role in the expression of Viperin, IRF7 and IFN-induced proteins with tetratricopeptide repeats (IFITs) proteins, and that depleting TFG resulted in a compromised antiviral state. Our study, therefore, identifies TFG as an essential component of the RLR-dependent type I IFN antiviral response.


Asunto(s)
Antivirales/metabolismo , Inmunidad Innata/inmunología , Interferón Tipo I/metabolismo , Proteínas/metabolismo , Infecciones por Rhabdoviridae/inmunología , Vías Secretoras , Vesiculovirus/inmunología , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Células HeLa , Humanos , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas/genética , Infecciones por Rhabdoviridae/metabolismo , Infecciones por Rhabdoviridae/virología , Transducción de Señal , Factor 3 Asociado a Receptor de TNF/genética , Factor 3 Asociado a Receptor de TNF/metabolismo , Vesiculovirus/fisiología
13.
Cell Res ; 31(2): 206-218, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-32759968

RESUMEN

Type I interferons (IFN-I) protect us from viral infections. Signal transducer and activator of transcription 2 (STAT2) is a key component of interferon-stimulated gene factor 3 (ISGF3), which drives gene expression in response to IFN-I. Using electron microscopy, we found that, in naive cells, U-STAT2, lacking the activating tyrosine phosphorylation, forms a heterodimer with U-STAT1 in an inactive, anti-parallel conformation. A novel phosphorylation of STAT2 on T404 promotes IFN-I signaling by disrupting the U-STAT1-U-STAT2 dimer, facilitating the tyrosine phosphorylation of STATs 1 and 2 and enhancing the DNA-binding ability of ISGF3. IKK-ε, activated by virus infection, phosphorylates T404 directly. Mice with a T-A mutation at the corresponding residue (T403) are highly susceptible to virus infections. We conclude that T404 phosphorylation drives a critical conformational switch that, by boosting the response to IFN-I in infected cells, enables a swift and efficient antiviral defense.


Asunto(s)
Herpes Simple/metabolismo , Multimerización de Proteína/genética , Infecciones por Rhabdoviridae/metabolismo , Factor de Transcripción STAT1/química , Factor de Transcripción STAT2/química , Transducción de Señal/genética , Simplexvirus/metabolismo , Virus de la Estomatitis Vesicular Indiana/metabolismo , Animales , Chlorocebus aethiops , Fibroblastos/metabolismo , Fibroblastos/virología , Células HEK293 , Células HeLa , Herpes Simple/virología , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Fosforilación/genética , Conformación Proteica , Interferencia de ARN , Infecciones por Rhabdoviridae/virología , Factor de Transcripción STAT1/metabolismo , Factor de Transcripción STAT2/genética , Factor de Transcripción STAT2/metabolismo , Células Vero
14.
J Biol Chem ; 295(52): 18023-18035, 2020 12 25.
Artículo en Inglés | MEDLINE | ID: mdl-33077519

RESUMEN

Type I and III interferons induce expression of the "myxovirus resistance proteins" MxA in human cells and its ortholog Mx1 in murine cells. Human MxA forms cytoplasmic structures, whereas murine Mx1 forms nuclear bodies. Whereas both HuMxA and MuMx1 are antiviral toward influenza A virus (FLUAV) (an orthomyxovirus), only HuMxA is considered antiviral toward vesicular stomatitis virus (VSV) (a rhabdovirus). We previously reported that the cytoplasmic human GFP-MxA structures were phase-separated membraneless organelles ("biomolecular condensates"). In the present study, we investigated whether nuclear murine Mx1 structures might also represent phase-separated biomolecular condensates. The transient expression of murine GFP-Mx1 in human Huh7 hepatoma, human Mich-2H6 melanoma, and murine NIH 3T3 cells led to the appearance of Mx1 nuclear bodies. These GFP-MuMx1 nuclear bodies were rapidly disassembled by exposing cells to 1,6-hexanediol (5%, w/v), or to hypotonic buffer (40-50 mosm), consistent with properties of membraneless phase-separated condensates. Fluorescence recovery after photobleaching (FRAP) assays revealed that the GFP-MuMx1 nuclear bodies upon photobleaching showed a slow partial recovery (mobile fraction: ∼18%) suggestive of a gel-like consistency. Surprisingly, expression of GFP-MuMx1 in Huh7 cells also led to the appearance of GFP-MuMx1 in 20-30% of transfected cells in a novel cytoplasmic giantin-based intermediate filament meshwork and in cytoplasmic bodies. Remarkably, Huh7 cells with cytoplasmic murine GFP-MuMx1 filaments, but not those with only nuclear bodies, showed antiviral activity toward VSV. Thus, GFP-MuMx1 nuclear bodies comprised phase-separated condensates. Unexpectedly, GFP-MuMx1 in Huh7 cells also associated with cytoplasmic giantin-based intermediate filaments, and such cells showed antiviral activity toward VSV.


Asunto(s)
Antivirales/uso terapéutico , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Filamentos Intermedios/metabolismo , Proteínas de Resistencia a Mixovirus/metabolismo , Infecciones por Rhabdoviridae/prevención & control , Animales , Núcleo Celular/genética , Proteínas Fluorescentes Verdes/genética , Humanos , Ratones , Proteínas de Resistencia a Mixovirus/genética , Infecciones por Rhabdoviridae/metabolismo , Infecciones por Rhabdoviridae/virología , Virus de la Estomatitis Vesicular Indiana/fisiología
15.
PLoS Pathog ; 16(9): e1008767, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32903273

RESUMEN

Many viruses target signal transducer and activator of transcription (STAT) 1 to antagonise antiviral interferon signalling, but targeting of STAT3, a pleiotropic molecule that mediates signalling by diverse cytokines, is poorly understood. Here, using lyssavirus infection, quantitative live cell imaging, innate immune signalling and protein interaction assays, and complementation/depletion of STAT expression, we show that STAT3 antagonism is conserved among P-proteins of diverse pathogenic lyssaviruses and correlates with pathogenesis. Importantly, P-protein targeting of STAT3 involves a highly selective mechanism whereby P-protein antagonises cytokine-activated STAT3-STAT1 heterodimers, but not STAT3 homodimers. RT-qPCR and reporter gene assays indicate that this results in specific modulation of interleukin-6-dependent pathways, effecting differential antagonism of target genes. These data provide novel insights into mechanisms by which viruses can modulate cellular function to support infection through discriminatory targeting of immune signalling complexes. The findings also highlight the potential application of selective interferon-antagonists as tools to delineate signalling by particular STAT complexes, significant not only to pathogen-host interactions but also cell physiology, development and cancer.


Asunto(s)
Citocinas/metabolismo , Regulación de la Expresión Génica , Lyssavirus/inmunología , Infecciones por Rhabdoviridae/inmunología , Factor de Transcripción STAT1/metabolismo , Factor de Transcripción STAT3/metabolismo , Proteínas Virales/metabolismo , Células HEK293 , Células HeLa , Humanos , Interleucina-6/metabolismo , Infecciones por Rhabdoviridae/metabolismo , Infecciones por Rhabdoviridae/virología , Factor de Transcripción STAT1/genética , Factor de Transcripción STAT3/genética , Transactivadores , Proteínas Virales/genética
16.
Viruses ; 12(5)2020 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-32365817

RESUMEN

Viral hemorrhagic septicemia virus (VHSV) is one of the most deadly infectious fish pathogens, posing a serious threat to the aquaculture industry and freshwater ecosystems worldwide. Previous work showed that VHSV sub-genotype IVb suppresses host innate immune responses, but the exact mechanism by which VHSV IVb inhibits antiviral response remains incompletely characterized. As with other novirhabdoviruses, VHSV IVb contains a unique and highly variable nonvirion (NV) gene, which is implicated in viral replication, virus-induced apoptosis and regulating interferon (IFN) production. However, the molecular mechanisms underlying the role of IVb NV gene in regulating viral or cellular processes is poorly understood. Compared to the wild-type recombinant (rWT) VHSV, mutant VHSV lacking a functional IVb NV reduced IFN expression and compromised innate immune response of the host cells by inhibiting translation. VHSV IVb infection increased phosphorylated eukaryotic initiation factor 2α (p-eIF2α), resulting in host translation shutoff. However, VHSV IVb protein synthesis proceeds despite increasing phosphorylation of eIF2α. During VHSV IVb infection, eIF2α phosphorylation was mediated via PKR-like endoplasmic reticulum kinase (PERK) and was required for efficient viral protein synthesis, but shutoff of host translation and IFN signaling was independent of p-eIF2α. Similarly, IVb NV null VHSV infection induced less p-eIF2α, but exhibited decreased viral protein synthesis despite increased levels of viral mRNA. These findings show a role for IVb NV in VHSV pathogenesis by utilizing the PERK-eIF2α pathway for viral-mediated host shutoff and interferon signaling to regulate host cell response.


Asunto(s)
Factor 2 Eucariótico de Iniciación/metabolismo , Enfermedades de los Peces/metabolismo , Proteínas de Peces/metabolismo , Novirhabdovirus/genética , Biosíntesis de Proteínas , Infecciones por Rhabdoviridae/veterinaria , Proteínas Virales/genética , eIF-2 Quinasa/metabolismo , Animales , Factor 2 Eucariótico de Iniciación/genética , Enfermedades de los Peces/genética , Enfermedades de los Peces/virología , Proteínas de Peces/genética , Peces , Interacciones Huésped-Patógeno , Interferones/genética , Interferones/metabolismo , Novirhabdovirus/aislamiento & purificación , Novirhabdovirus/metabolismo , Fosforilación , Infecciones por Rhabdoviridae/genética , Infecciones por Rhabdoviridae/metabolismo , Infecciones por Rhabdoviridae/virología , Proteínas Virales/metabolismo , eIF-2 Quinasa/genética
17.
Fish Shellfish Immunol ; 102: 36-46, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32289513

RESUMEN

Snakehead vesiculovirus (SHVV) causes enormous economic losses in snakehead fish (Ophicephalus striatus) culture. Understanding replication mechanisms of virus is considerable significance in preventing and treating viral disease. In our previous studies, we have reported that glutamine starvation could significant inhibit the replication of SHVV. Furthermore, we also showed that SHVV infection could cause apoptosis of striped snakehead fish cells (SSN-1). However, the underlying mechanisms remain enigmatic. To decipher the relationships among the viral infection, glutamine starvation and apoptosis, SSN-1 cells transcriptomic profilings of SSN-1 cells infected with or without SHVV under glutamine deprived condition were analyzed. RNA-seq was used to identify differentially expressed genes (DEGs). Our data revealed that 1215 up-regulated and 226 down-regulated genes at 24 h post-infection were involved in MAPK, apoptosis, RIG-1-like and toll-like receptors pathways and glutamine metabolism. Subsequently, DEGs of glutamine metabolism and apoptosis pathways were selected to validate the sequencing data by quantitative real-time PCR (qRT-PCR). The expression patterns of both transcriptomic data and qRT-PCR were consistent. We observed that lack of glutamine alone could cause mild cellular apoptosis. However, lack of glutamine together with SHVV infection could synergistically enhance cellular apoptosis. When the cells were cultured in complete medium with glutamine, overexpression of glutaminase (GLS), an essential enzyme for glutamine metabolism, could significantly enhance the SHVV replication. While, SHVV replication was decreased in cells when GLS was knocked down by specific siRNA, indicating that glutamine metabolism was essential for viral replication. Furthermore, the expression level of caspase-3 and Bax was significantly decreased in SHVV infected cells with GLS overexpression. By contrast, they were significantly increased in SHVV infected cells with GLS silence by SiRNA, indicating that SHVV infection activated the Bax and caspase-3 pathways to induce apoptosis independent of glutamine. Our results reveal that SHVV replication and starvation of glutamine could synergistically promote the cellular apoptosis, which will pave a new way for developing strategies against the vial infection.


Asunto(s)
Apoptosis , Enfermedades de los Peces/metabolismo , Peces , Glutamina/metabolismo , Infecciones por Rhabdoviridae/veterinaria , Vesiculovirus/fisiología , Replicación Viral , Animales , Línea Celular , Enfermedades de los Peces/fisiopatología , Enfermedades de los Peces/virología , Proteínas de Peces/metabolismo , Glutaminasa/metabolismo , Infecciones por Rhabdoviridae/metabolismo , Infecciones por Rhabdoviridae/fisiopatología , Infecciones por Rhabdoviridae/virología
18.
Sci Rep ; 10(1): 566, 2020 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-31953490

RESUMEN

In the present work, the mechanisms involved in the recently reported antiviral activity of zebrafish C-reactive protein-like protein (CRP1-7) against the spring viraemia of carp rhabdovirus (SVCV) in fish are explored. The results neither indicate blocking of the attachment or the binding step of the viral replication cycle nor suggest the direct inhibition of G protein fusion activity or the stimulation of the host's interferon system. However, an antiviral state in the host is induced. Further results showed that the antiviral protection conferred by CRP1-7 was mainly due to the inhibition of autophagic processes. Thus, given the high affinity of CRPs for cholesterol and the recently described influence of the cholesterol balance in lipid rafts on autophagy, both methyl-ß-cyclodextrin (a cholesterol-complexing agent) and 25-hydroxycholesterol (a cholesterol molecule with antiviral properties) were used to further describe CRP activity. All the tested compounds exerted antiviral activity by affecting autophagy in a similar manner. Further assays indicate that CRP reduces autophagy activity by initially disturbing the cholesterol ratios in the host cellular membranes, which in turn negatively affects the intracellular regulation of reactive oxygen species (ROS) and increases lysosomal pH as a consequence. Ultimately, here we propose that such pH changes exert an inhibitory direct effect on SVCV replication by disrupting the pH-dependent membrane-fusogenic ability of the viral glycoprotein G, which allows the release of the virus from endosomes into cytoplasm during its entry phase.


Asunto(s)
Proteína C-Reactiva/farmacología , Membrana Celular/química , Colesterol/metabolismo , Infecciones por Rhabdoviridae/prevención & control , Rhabdoviridae/fisiología , Pez Cebra/virología , Animales , Autofagia , Proteína C-Reactiva/genética , Línea Celular , Concentración de Iones de Hidrógeno/efectos de los fármacos , Hidroxicolesteroles/metabolismo , Isoformas de Proteínas/farmacología , Especies Reactivas de Oxígeno/metabolismo , Rhabdoviridae/efectos de los fármacos , Infecciones por Rhabdoviridae/metabolismo , Replicación Viral/efectos de los fármacos , Pez Cebra/genética , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/farmacología , beta-Ciclodextrinas/metabolismo
19.
J Virol ; 93(21)2019 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-31413136

RESUMEN

Interferon (IFN) production activated by phosphorylated interferon regulatory factor 7 (IRF7) is a pivotal process during host antiviral infection. For viruses, suppressing the host IFN response is beneficial for viral proliferation; in such cases, evoking host-derived IFN negative regulators would be very useful for viruses. Here, we report that the zebrafish rapunzel 5 (RPZ5) protein which activated by virus degraded phosphorylated IRF7 is activated by TANK-binding kinase 1 (TBK1), leading to a reduction in IFN production. Upon viral infection, zebrafish rpz5 was significantly upregulated, as was ifn, in response to the stimulation. Overexpression of RPZ5 blunted the IFN expression induced by both viral and retinoic acid-inducible gene I (RIG-I) like-receptor (RLR) factors. Subsequently, RPZ5 interacted with RLRs but did not affect the stabilization of the proteins in the normal state. Interestingly, RPZ5 degraded the phosphorylated IRF7 under TBK1 activation through K48-linked ubiquitination. Finally, the overexpression of RPZ5 remarkably reduced the host cell antiviral capacity. These findings suggest that zebrafish RPZ5 is a negative regulator of phosphorylated IRF7 and attenuates IFN expression during viral infection, providing insight into the IFN balance mechanism in fish.IMPORTANCE The phosphorylation of IRF7 is helpful for host IFN production to defend against viral infection; thus, it is a potential target for viruses to mitigate the antiviral response. We report that the fish RPZ5 is an IFN negative regulator induced by fish viruses and degrades the phosphorylated IRF7 activated by TBK1, leading to IFN suppression and promotion of viral proliferation. These findings reveal a novel mechanism for interactions between the host cell and viruses in the lower vertebrate.


Asunto(s)
Enfermedades de los Peces/virología , Inmunidad Innata/inmunología , Interferones/metabolismo , Infecciones por Rhabdoviridae/veterinaria , Rhabdoviridae/inmunología , Proteínas de Pez Cebra/metabolismo , Pez Cebra/virología , Animales , Antivirales/inmunología , Antivirales/metabolismo , Enfermedades de los Peces/inmunología , Enfermedades de los Peces/metabolismo , Factores Reguladores del Interferón/genética , Factores Reguladores del Interferón/metabolismo , Interferones/inmunología , Fosforilación , Infecciones por Rhabdoviridae/inmunología , Infecciones por Rhabdoviridae/metabolismo , Infecciones por Rhabdoviridae/virología , Ubiquitinación , Replicación Viral , Pez Cebra/fisiología , Proteínas de Pez Cebra/genética
20.
J Virol ; 93(14)2019 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-31043529

RESUMEN

Chandipura virus (CHPV), a cytoplasmic RNA virus, has been implicated in several outbreaks of acute encephalitis in India. Despite the relevance of CHPV to human health, how the virus interacts with the host signaling machinery remains obscure. In response to viral infections, mammalian cells activate RelA/NF-κB heterodimers, which induce genes encoding interferon beta (IFN-ß) and other immune mediators. Therefore, RelA is generally considered to be an antiviral transcription factor. However, RelA activates a wide spectrum of genes in physiological settings, and there is a paucity of direct genetic evidence substantiating antiviral RelA functions. Using mouse embryonic fibroblasts, we genetically dissected the role of RelA in CHPV pathogenesis. We found that CHPV indeed activated RelA and that RelA deficiency abrogated the expression of IFN-ß in response to virus infections. Unexpectedly, infection of Rela-/- fibroblasts led to a decreased CHPV yield. Our investigation clarified that RelA-dependent synthesis of prosurvival factors restrained infection-inflicted cell death and that exacerbated cell death processes prevented multiplication of CHPV in RelA-deficient cells. Chikungunya virus, a cytopathic RNA virus associated also with epidemics, required RelA, and Japanese encephalitis virus, which produced relatively minor cytopathic effects in fibroblasts, circumvented the need of RelA for their propagation. In sum, we documented a proviral function of the pleiotropic factor RelA linked to its prosurvival properties. RelA promoted the growth of cytopathic RNA viruses by extending the life span of infected cells, which serve as the replicative niche of intracellular pathogens. We argue that our finding bears significance for understanding host-virus interactions and may have implications for antiviral therapeutic regimes.IMPORTANCE RelA/NF-κB participates in a wide spectrum of physiological processes, including shaping immune responses against invading pathogens. In virus-infected cells, RelA typically induces the expression of IFN-ß, which restrains viral propagation in neighboring cells involving paracrine mechanisms. Our study suggested that RelA might also play a proviral role. A cell-autonomous RelA activity amplified the yield of Chandipura virus, a cytopathic RNA virus associated with human epidemics, by extending the life span of infected cells. Our finding necessitates a substantial revision of our understanding of host-virus interactions and indicates a dual role of NF-κB signaling during the course of RNA virus infections. Our study also bears significance for therapeutic regimes which alter NF-κB activities while alleviating the viral load.


Asunto(s)
Embrión de Mamíferos/metabolismo , Fibroblastos/metabolismo , Interacciones Huésped-Patógeno , Infecciones por Rhabdoviridae/metabolismo , Factor de Transcripción ReIA/metabolismo , Vesiculovirus/fisiología , Células 3T3 , Animales , Línea Celular , Chlorocebus aethiops , Embrión de Mamíferos/patología , Embrión de Mamíferos/virología , Fibroblastos/patología , Fibroblastos/virología , Ratones , Infecciones por Rhabdoviridae/patología , Células Vero
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...