Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 21(7)2020 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-32252420

RESUMEN

Heterosis has been widely accepted as an effective strategy to increase yields in plant breeding. Notably, the chemical hybridization agent SQ-1 induces male sterility in wheat, representing a critical potential tool in hybrid seed production. However, the mechanisms underlying the male sterility induced by SQ-1 still remain poorly understood. In this study, a cyclin-dependent kinase inhibitor gene, TaICK1, which encodes a 229 amino acid protein, was identified as a potential contributor to male sterility in common wheat. The expression of TaICK1 was upregulated during the development of anthers in Xinong1376 wheat treated with SQ-1. Meanwhile, the seed setting rate was found to be significantly decreased in TaICK1 transgenic rice. Furthermore, we identified two cyclin proteins, TaCYCD2;1 and TaCYCD6;1, as interactors through yeast two-hybrid screening using TaICK1 as the bait, which were validated using bimolecular fluorescence complementation. Subcellular localization revealed that the proteins encoded by TaICK1, TaCYCD2;1, and TaCYCD6;1 were localized in the cell nucleus. The expression levels of TaCYCD2;1 and TaCYCD6;1 were lower in Xinong1376 treated with SQ-1. A further analysis demonstrated that the expression levels of OsCYCD2;1 and OsCYCD6;1 were lower in transgenic TaICK1 rice lines as well. Taken together, these results suggest that the upregulation of TaICK1, induced by SQ-1, may subsequently suppress the expression of TaCYCD2;1 and TaCYCD6;1 in anthers, resulting in male sterility. This study provides new insights into the understanding of SQ-1-induced wheat male sterility, as well as the developmental mechanisms of anthers.


Asunto(s)
Proteínas Inhibidoras de las Quinasas Dependientes de la Ciclina/genética , Vigor Híbrido/efectos de los fármacos , Vigor Híbrido/genética , Infertilidad Vegetal/efectos de los fármacos , Infertilidad Vegetal/genética , Triticum/efectos de los fármacos , Triticum/genética , Proteínas Inhibidoras de las Quinasas Dependientes de la Ciclina/metabolismo , Dihidroxiacetona/análogos & derivados , Expresión Génica , Glucosa/análogos & derivados , Humanos , Hibridación Genética , Fenotipo , Filogenia , Fitomejoramiento , Plantas Modificadas Genéticamente , Unión Proteica , Transporte de Proteínas , Proteínas Recombinantes , Triticum/clasificación
2.
Mol Biotechnol ; 62(8): 364-369, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32270362

RESUMEN

Targeted gene expression in plants allows us to further study biological traits of interest, such as reproductive and developmental processes. Here, the tobacco TA29 anther-specific promoter was used to direct the expression of the ricin enzymatic subunit A (RTA) in transgenic tobacco plants, phenotypic analysis of the resulting positive transgenic tobacco (Nicotiana tabacum L.) plants demonstrated that RTA expression led to a reduction in pistil length and shriveling of anthers, as well as the grayish-brown color of anthers, the reduced pollen viability and male sterility. For the first time, a plant-derived ricin gene enzymatic subunit A (RTA) expression system under the tissue-specific promoter was demonstrated to be sensitive and efficient in controlling plant sterility and creating male-sterile materials. Consequently, it could be used to control other agronomic traits and produce hybrid seeds in plants in the future.


Asunto(s)
Flores/metabolismo , Nicotiana/efectos de los fármacos , Infertilidad Vegetal/efectos de los fármacos , Plantas Modificadas Genéticamente/efectos de los fármacos , Ricina , Flores/efectos de los fármacos , Flores/genética , Infertilidad Vegetal/genética , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Ricina/genética , Ricina/metabolismo , Ricina/farmacología , Nicotiana/genética , Nicotiana/metabolismo
3.
BMC Plant Biol ; 19(1): 124, 2019 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-30940071

RESUMEN

BACKGROUND: Acetolactate synthase (ALS)-inhibiting herbicide tribenuron-methyl (TBM) is an efficient gametocide that can cause rapeseed (Brassica napus L.) to become male sterile and outcrossing. To find the reason the TBM treatment leads to male sterility, an integrated study using cytological, physiological, and transcriptomic methods was conducted. RESULTS: Some temporary symptoms, including the discoloration of young leaves and a short halt of raceme elongation, were observed in the rapeseed plants exposed to TBM at an application rate of 1 µg per plant. Both chloroplasts in young leaves and plastids in anthers were deformed. TBM also reduced the leaf photosynthetic rate and the contents of chlorophyll, soluble sugar and pyruvate. Both the tapetal cells and uni-nucleate microspores in the treated plants showed large autophagic vacuoles, and the tissue degenerated quickly. A transcriptomic comparison with the control identified 200 upregulated and 163 downregulated differential expression genes in the small flower buds of the TBM treatment. The genes encoding functionally important proteins, including glucan endo-1,3-beta-glucosidase A6, QUARTET3 (QRT3), ARABIDOPSIS ANTHER 7 (ATA7), non-specific lipid-transfer protein LTP11 and LTP12, histone-lysine N-methyltransferase ATXR6, spermidine coumaroyl-CoA acyltransferase (SCT), and photosystem II reaction centre protein psbB, were downregulated by TBM exposure. Some important genes encoding autophagy-related protein ATG8a and metabolic detoxification related proteins, including DTX1, DTX6, DTX35, cytosolic sulfotransferase SOT12, and six members of glutathione S-transferase, were upregulated. In addition, several genes related to hormone stimulus, such as 1-aminocyclopropane-1-carboxylate synthase 8 (ACS8), ethylene-responsive factor ERF1A, ERF1, ERF71, CRF6, and RAP2-3, were also upregulated. The transcriptional regulation is in accordance with the functional abnormalities of pollen wall formation, lipid metabolism, chloroplast structure, ethylene generation, cell cycle, and tissue autophagy. CONCLUSION: The results suggested that except for ALS, the metabolic pathways related to lipid metabolism, pollen exine formation, photosynthesis and hormone response are associated with male sterility induced by TBM. The results provide new insight into the molecular mechanisms of inducing male sterility by sulfonylurea.


Asunto(s)
Acetolactato Sintasa/antagonistas & inhibidores , Arilsulfonatos/farmacología , Brassica napus/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Herbicidas/farmacología , Infertilidad Vegetal/efectos de los fármacos , Acetolactato Sintasa/metabolismo , Brassica napus/enzimología , Brassica napus/fisiología , Regulación hacia Abajo/efectos de los fármacos , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Fotosíntesis/efectos de los fármacos , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/enzimología , Hojas de la Planta/fisiología , Proteínas de Plantas/antagonistas & inhibidores , Proteínas de Plantas/metabolismo
4.
BMC Plant Biol ; 18(1): 7, 2018 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-29304738

RESUMEN

BACKGROUND: Heterosis is widely used to increase the yield of many crops. However, as wheat is a self-pollinating crop, hybrid breeding is not so successful in this organism. Even though male sterility induced by chemical hybridizing agents is an important aspect of crossbreeding, the mechanisms by which these agents induce male sterility in wheat is not well understood. RESULTS: We performed proteomic analyses using the wheat Triticum aestivum L.to identify those proteins involved in physiological male sterility (PHYMS) induced by the chemical hybridizing agent CHA SQ-1. A total of 103 differentially expressed proteins were found by 2D-PAGE and subsequently identified by MALDI-TOF/TOF MS/MS. In general, these proteins had obvious functional tendencies implicated in carbohydrate metabolism, oxidative stress and resistance, protein metabolism, photosynthesis, and cytoskeleton and cell structure. In combination with phenotypic, tissue section, and bioinformatics analyses, the identified differentially expressed proteins revealed a complex network behind the regulation of PHYMS and pollen development. Accordingly, we constructed a protein network of male sterility in wheat, drawing relationships between the 103 differentially expressed proteins and their annotated biological pathways. To further validate our proposed protein network, we determined relevant physiological values and performed real-time PCR assays. CONCLUSIONS: Our proteomics based approach has enabled us to identify certain tendencies in PHYMS anthers. Anomalies in carbohydrate metabolism and oxidative stress, together with premature tapetum degradation, may be the cause behind carbohydrate starvation and male sterility in CHA SQ-1 treated plants. Here, we provide important insight into the mechanisms underlying CHA SQ-1-induced male sterility. Our findings have practical implications for the application of hybrid breeding in wheat.


Asunto(s)
Flores/metabolismo , Fitomejoramiento , Infertilidad Vegetal/fisiología , Proteínas de Plantas/genética , Proteoma , Triticum/fisiología , Electroforesis en Gel Bidimensional , Infertilidad Vegetal/efectos de los fármacos , Proteínas de Plantas/metabolismo , Triticum/efectos de los fármacos
5.
Protoplasma ; 255(3): 751-759, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29134282

RESUMEN

The formation of fertile male gametophyte is known to require timely degeneration of polyfunctional tapetum tissue. The last process caused by the programmed cell death (PCD) is a part of the anther program maturation which leads to sequential anther tissue destruction coordinated with pollen differentiation. In the present work, distribution of abscisic acid (ABA) and indole-3-acetic acid (IAA) in developing anthers of male-fertile and male-sterile lines of petunia (Petunia hybrida L.) was analyzed by using the immunohistochemical method. It was established that the development of fertile male gametophyte was accompanied by monotonous elevation of ABA and IAA levels in reproductive cells and, in contrast, their monotonous lowering in tapetum cells and the middle layers. Abortion of microsporocytes in the meiosis prophase in the sterile line caused by premature tapetum degeneration along with complete maintenance of the middle layers was accompanied by dramatic, twofold elevation in the levels of both the phytohormones in reproductive cells. The data obtained allowed us to conclude that at the meiosis stage ABA and IAA are involved in the PCD of microsporocytes.


Asunto(s)
Ácido Abscísico/farmacología , Gametogénesis en la Planta/efectos de los fármacos , Ácidos Indolacéticos/farmacología , Petunia/fisiología , Ácido Abscísico/metabolismo , Fluorescencia , Ácidos Indolacéticos/metabolismo , Petunia/efectos de los fármacos , Infertilidad Vegetal/efectos de los fármacos , Polen/citología , Polen/efectos de los fármacos
6.
Mol Plant ; 8(12): 1710-24, 2015 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-26362932

RESUMEN

Tribenuron-methyl (TM) is a powerful sulfonylurea herbicide that inhibits branched-chain amino acid (BCAA) biosynthesis by targeting the catalytic subunit (CSR1) of acetolactate synthase (ALS). Selective induction of male sterility by foliar spraying of TM at low doses has been widely used for hybrid seed production in rapeseed (Brassica napus); however, the underlying mechanism remains unknown. Here, we report greater TM accumulation and subsequent stronger ALS inhibition and BCAA starvation in anthers than in leaves and stems after TM application. Constitutive or anther-specific expression of csr1-1D (a CSR1 mutant) eliminated anther-selective ALS inhibition and reversed the TM-induced male sterile phenotype in both rapeseed and Arabidopsis. The results of TM daub-stem experiments, combined with the observations of little TM accumulation in anthers and reversion of TM-induced male sterility by targeted expression of the TM metabolism gene Bel in either the mesophyll or phloem, suggested that foliar-sprayed TM was polar-transported to anthers mainly through the mesophyll and phloem. Microscopy and immunoblotting revealed that autophagy, a bulk degradation process induced during cell death, was elevated in TM-induced male sterile anthers and by anther-specific knockdown of ALS. Moreover, TM-induced pollen abortion was significantly inhibited by the autophagy inhibitor 3-MA. These data suggested that TM was polar-transported to anthers, resulting in BCAA starvation via anther-specific ALS inhibition and, ultimately, autophagic cell death in anthers.


Asunto(s)
Acetolactato Sintasa/metabolismo , Arilsulfonatos/toxicidad , Brassica napus/fisiología , Flores/enzimología , Herbicidas/toxicidad , Infertilidad Vegetal/efectos de los fármacos , Proteínas de Plantas/metabolismo , Polen/citología , Acetolactato Sintasa/antagonistas & inhibidores , Acetolactato Sintasa/genética , Autofagia/efectos de los fármacos , Brassica napus/efectos de los fármacos , Brassica napus/enzimología , Brassica napus/genética , Regulación hacia Abajo/efectos de los fármacos , Flores/efectos de los fármacos , Flores/genética , Flores/crecimiento & desarrollo , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Proteínas de Plantas/antagonistas & inhibidores , Proteínas de Plantas/genética , Polen/efectos de los fármacos , Polen/enzimología , Polen/genética
7.
Plant Physiol ; 169(1): 705-16, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26198258

RESUMEN

Here, we show a mechanism for expansion regulation through mutations in the green revolution gene gibberellin20 (GA20)-oxidase and show that GAs control biosynthesis of the plants main structural polymer cellulose. Within a 12,000 mutagenized Sorghum bicolor plant population, we identified a single cellulose-deficient and male gametophyte-dysfunctional mutant named dwarf1-1 (dwf1-1). Through the Sorghum propinquum male/dwf1-1 female F2 population, we mapped dwf1-1 to a frameshift in GA20-oxidase. Assessment of GAs in dwf1-1 revealed ablation of GA. GA ablation was antagonistic to the expression of three specific cellulose synthase genes resulting in cellulose deficiency and growth dwarfism, which were complemented by exogenous bioactive gibberellic acid application. Using quantitative polymerase chain reaction, we found that GA was positively regulating the expression of a subset of specific cellulose synthase genes. To cross reference data from our mapped Sorghum sp. allele with another monocotyledonous plant, a series of rice (Oryza sativa) mutants involved in GA biosynthesis and signaling were isolated, and these too displayed cellulose deficit. Taken together, data support a model whereby suppressed expansion in green revolution GA genes involves regulation of cellulose biosynthesis.


Asunto(s)
Celulosa/biosíntesis , Mapeo Cromosómico , Genes de Plantas , Giberelinas/metabolismo , Mutación/genética , Sorghum/genética , Clonación Molecular , Regulación hacia Abajo/efectos de los fármacos , Regulación hacia Abajo/genética , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Germinación/efectos de los fármacos , Giberelinas/farmacología , Patrón de Herencia/genética , Oryza/genética , Fenotipo , Infertilidad Vegetal/efectos de los fármacos , Infertilidad Vegetal/genética , Polen/efectos de los fármacos , Polen/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Transcripción Genética/efectos de los fármacos
8.
BMC Genomics ; 16: 206, 2015 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-25880309

RESUMEN

BACKGROUND: Chemical hybridization agents (CHAs) are often used to induce male sterility for the production of hybrid seeds. We previously discovered that monosulfuron ester sodium (MES), an acetolactate synthase (ALS) inhibitor of the herbicide sulfonylurea family, can induce rapeseed (Brassica napus L.) male sterility at approximately 1% concentration required for its herbicidal activity. To find some clues to the mechanism of MES inducing male sterility, the ultrastructural cytology observations, comparative transcriptome analysis, and physiological analysis on carbohydrate content were carried out in leaves and anthers at different developmental stages between the MES-treated and mock-treated rapeseed plants. RESULTS: Cytological analysis revealed that the plastid ultrastructure was abnormal in pollen mother cells and tapetal cells in male sterility anthers induced by MES treatment, with less material accumulation in it. However, starch granules were observed in chloroplastids of the epidermis cells in male sterility anthers. Comparative transcriptome analysis identified 1501 differentially expressed transcripts (DETs) in leaves and anthers at different developmental stages, most of these DETs being localized in plastid and mitochondrion. Transcripts involved in metabolism, especially in carbohydrate and lipid metabolism, and cellular transport were differentially expressed. Pathway visualization showed that the tightly regulated gene network for metabolism was reprogrammed to respond to MES treatment. The results of cytological observation and transcriptome analysis in the MES-treated rapeseed plants were mirrored by carbohydrate content analysis. MES treatment led to decrease in soluble sugars content in leaves and early stage buds, but increase in soluble sugars content and decrease in starch content in middle stage buds. CONCLUSIONS: Our integrative results suggested that carbohydrate and lipid metabolism were influenced by CHA-MES treatment during rapeseed anther development, which might responsible for low concentration MES specifically inducing male sterility. A simple action model of CHA-MES inducing male sterility in B. napus was proposed. These results will help us to understand the mechanism of MES inducing male sterility at low concentration, and might provide some potential targets for developing new male sterility inducing CHAs and for genetic manipulation in rapeseed breeding.


Asunto(s)
Brassica napus/genética , Metabolismo de los Hidratos de Carbono/efectos de los fármacos , Metabolismo de los Lípidos/efectos de los fármacos , Pirimidinas/farmacología , Compuestos de Sulfonilurea/farmacología , Transcriptoma/efectos de los fármacos , Brassica napus/metabolismo , Pared Celular/genética , Pared Celular/metabolismo , Regulación hacia Abajo/efectos de los fármacos , Flores/genética , Flores/metabolismo , Perfilación de la Expresión Génica , Microscopía Electrónica de Transmisión , Anotación de Secuencia Molecular , Análisis de Secuencia por Matrices de Oligonucleótidos , Infertilidad Vegetal/efectos de los fármacos , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Plastidios/efectos de los fármacos , Plastidios/metabolismo , Plastidios/ultraestructura , Regulación hacia Arriba/efectos de los fármacos
9.
PLoS One ; 10(3): e0119557, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25803723

RESUMEN

Chemical hybridization agent (CHA)-induced male sterility is an important tool in crop heterosis. To demonstrate that CHA-SQ-1-induced male sterility is associated with abnormal tapetal and microspore development, the cytology of CHA-SQ-1-treated plant anthers at various developmental stages was studied by light microscopy, scanning and transmission electron microscopy, in situ terminal deoxynucleotidyl transferasemediated dUTP nick end-labelling (TUNEL) assay and DAPI staining. The results indicated that the SQ-1-treated plants underwent premature tapetal programmed cell death (PCD), which was initiated at the early-uninucleate stage of microspore development and continued until the tapetal cells were completely degraded; the process of microspore development was then blocked. Microspores with low-viability (fluorescein diacetate staining) were aborted. The study suggests that premature tapetal PCD is the main cause of pollen abortion. Furthermore, it determines the starting period and a key factor in CHA-SQ-1-induced male sterility at the cell level, and provides cytological evidence to further study the mechanism between PCD and male sterility.


Asunto(s)
Flores/citología , Infertilidad Vegetal/efectos de los fármacos , Polen/efectos de los fármacos , Piridazinas/farmacología , Triticum/efectos de los fármacos , Triticum/genética , Apoptosis/efectos de los fármacos , Flores/efectos de los fármacos , Gametogénesis en la Planta/efectos de los fármacos , Gametogénesis en la Planta/genética , Vigor Híbrido , Etiquetado Corte-Fin in Situ , Microscopía , Polen/citología , Triticum/crecimiento & desarrollo
10.
N Biotechnol ; 32(6): 739-46, 2015 Dec 25.
Artículo en Inglés | MEDLINE | ID: mdl-25639197

RESUMEN

Ergot alkaloids are widely used in the pharmaceutical industry in drug preparations for treating migraines and Parkinson's disease, inducing uterine contraction, and other purposes. Phytopathogenic fungi of the genus Claviceps (e.g. C. purpurea) comprise a major biological source of ergot alkaloids. Worldwide industrial production of these alkaloids derives almost equally from two biotechnological procedures: submerged culture of the fungus in fermenters and field parasitic production in dormant fungal organs known as sclerotia (also termed ergot). Ergot yields from field cultivation are greatly affected by weather and also can be much reduced by pollen contamination from imperfectly male-sterile rye, as only unfertilized ovaries can be infected by C. purpurea spores. Two substances with gametocidal effect - maleic hydrazide and 2-chloroethylphosphonic acid - were tested during three consecutive seasons in small field experiments for the ability to induce or amplify the male sterility of rye as well as the impacts on germination of C. purpurea spores and general vitality of rye host plants. Maleic hydrazide was proven to be a highly effective gametocide on both a fertile rye variety and a variety with imperfectly induced cytoplasmic male sterility. It showed negligible effect on germination of C. purpurea spores. Both accurate dosaging of the active gametocidal compound and timing of the application just 2-3 weeks before onset of anthesis proved crucial to achieving high ergot yield with minimum grain impurities.


Asunto(s)
Alcaloides de Claviceps/biosíntesis , Células Germinativas de las Plantas/efectos de los fármacos , Hidrazida Maleica/administración & dosificación , Compuestos Organofosforados/administración & dosificación , Infertilidad Vegetal/fisiología , Secale/metabolismo , Relación Dosis-Respuesta a Droga , Alcaloides de Claviceps/aislamiento & purificación , Reguladores del Crecimiento de las Plantas/farmacología , Infertilidad Vegetal/efectos de los fármacos , Secale/efectos de los fármacos , Regulación hacia Arriba/efectos de los fármacos , Regulación hacia Arriba/fisiología
11.
BMC Plant Biol ; 14: 70, 2014 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-24655547

RESUMEN

BACKGROUND: Herbicide resistance in weedy plant populations can develop through different mechanisms such as gene flow of herbicide resistance transgenes from crop species into compatible weedy species or by natural evolution of herbicide resistance or tolerance following selection pressure. Results from our previous studies suggest that sub-lethal levels of the herbicide glyphosate can alter the pattern of gene flow between glyphosate resistant Canola®, Brassica napus, and glyphosate sensitive varieties of B. napus and B. rapa. The objectives of this study were to examine the phenological and developmental changes that occur in Brassica crop and weed species following sub-lethal doses of the herbicides glyphosate and glufosinate. We examined several vegetative and reproductive traits of potted plants under greenhouse conditions, treated with sub-lethal herbicide sprays. RESULTS: Our results indicate that exposure of Brassica spp. to a sub-lethal dose of glyphosate results in altering flowering phenology and reproductive function. Flowering of all sensitive species was significantly delayed and reproductive function, specifically male fertility, was suppressed. Higher dosage levels typically contributed to an increase in the magnitude of phenotypic changes. CONCLUSIONS: These results demonstrate that Brassica spp. plants that are exposed to sub-lethal doses of glyphosate could be subject to very different pollination patterns and an altered pattern of gene flow that would result from changes in the overlap of flowering phenology between species. Implications include the potential for increased glyphosate resistance evolution and spread in weedy communities exposed to sub-lethal glyphosate.


Asunto(s)
Brassica/efectos de los fármacos , Brassica/fisiología , Flores/fisiología , Glicina/análogos & derivados , Infertilidad Vegetal/efectos de los fármacos , Flores/efectos de los fármacos , Glicina/farmacología , Glifosato
12.
Plant Physiol ; 164(4): 2011-9, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24569847

RESUMEN

Microsporogenesis in rice (Oryza sativa) plants is susceptible to moderate low temperature (LT; approximately 19°C) that disrupts pollen development and causes severe reductions in grain yields. Although considerable research has been invested in the study of cool-temperature injury, a full understanding of the molecular mechanism has not been achieved. Here, we show that endogenous levels of the bioactive gibberellins (GAs) GA4 and GA7, and expression levels of the GA biosynthesis genes GA20ox3 and GA3ox1, decrease in the developing anthers by exposure to LT. By contrast, the levels of precursor GA12 were higher in response to LT. In addition, the expression of the dehydration-responsive element-binding protein DREB2B and SLENDER RICE1 (SLR1)/DELLA was up-regulated in response to LT. Mutants involved in GA biosynthetic and response pathways were hypersensitive to LT stress, including the semidwarf mutants sd1 and d35, the gain-of-function mutant slr1-d, and gibberellin insensitive dwarf1. The reduction in the number of sporogenous cells and the abnormal enlargement of tapetal cells occurred most severely in the GA-insensitive mutant. Application of exogenous GA significantly reversed the male sterility caused by LT, and simultaneous application of exogenous GA with sucrose substantially improved the extent of normal pollen development. Modern rice varieties carrying the sd1 mutation are widely cultivated, and the sd1 mutation is considered one of the greatest achievements of the Green Revolution. The protective strategy achieved by our work may help sustain steady yields of rice under global climate change.


Asunto(s)
Frío , Giberelinas/metabolismo , Oryza/crecimiento & desarrollo , Polen/crecimiento & desarrollo , Biomasa , Cromatografía Líquida de Alta Presión , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Genes de Plantas , Giberelinas/farmacología , Mutación/genética , Oryza/efectos de los fármacos , Oryza/genética , Infertilidad Vegetal/efectos de los fármacos , Infertilidad Vegetal/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Polen/efectos de los fármacos , Polen/genética , Semillas/efectos de los fármacos , Semillas/genética , Semillas/crecimiento & desarrollo , Estrés Fisiológico/efectos de los fármacos , Estrés Fisiológico/genética , Sacarosa/farmacología , Espectrometría de Masas en Tándem , Regulación hacia Arriba/efectos de los fármacos , Regulación hacia Arriba/genética
13.
J Agric Food Chem ; 62(8): 1964-73, 2014 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-24397242

RESUMEN

Conventional maize hybrid seed production has historically relied upon detasseling using either manual methods or semiautomated processes to ensure the purity of the hybrid cross. Monsanto Co. has developed biotechnology-derived MON 87427 maize with tissue-selective glyphosate tolerance to facilitate the production of hybrid maize seed. MON 87427 utilizes a specific promoter and intron combination to drive expression of CP4 EPSPS protein in vegetative and female reproductive tissues, conferring tolerance to glyphosate. This specific combination of regulatory elements also results in limited or no production of CP4 EPSPS protein in two key male reproductive tissues: pollen microspores, which develop into pollen grains, and tapetum cells that supply nutrients to the pollen. Thus, MON 87427 induces a male sterile phenotype after appropriately timed glyphosate applications. To confer additional benefits of herbicide tolerance and/or insect resistance, MON 87427 was combined with MON 89034 and NK603 by conventional breeding to develop MON 87427 × MON 89034 × NK603. The work described here is an assessment of the nutrient, antinutrient, and secondary metabolite levels in grain and forage tissues of MON 87427 and MON 87427 × MON 89034 × NK603. Results demonstrated that MON 87427 is compositionally equivalent to a near-isogenic conventional comparator. Results from this analysis established that the compositional equivalence observed for the single-event product MON 87427 is extendable to the combined-trait product, MON 87427 × MON 89034 × NK603. With increasing global demand for food production, the development of more efficient seed production strategies is important to sustainable agriculture. The study reported here demonstrated that biotechnology can be applied to simplify hybrid maize seed production without affecting crop composition.


Asunto(s)
Glicina/análogos & derivados , Herbicidas/farmacología , Extractos Vegetales/química , Infertilidad Vegetal , Plantas Modificadas Genéticamente/química , Zea mays/química , Aminoácidos/análisis , Cruzamiento , Fibras de la Dieta/análisis , Alimentos Modificados Genéticamente , Glicina/farmacología , Infertilidad Vegetal/efectos de los fármacos , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Plantas Modificadas Genéticamente/fisiología , Semillas/química , Semillas/efectos de los fármacos , Semillas/genética , Semillas/fisiología , Zea mays/efectos de los fármacos , Zea mays/genética , Zea mays/fisiología , Glifosato
14.
Pest Manag Sci ; 70(2): 212-8, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23460547

RESUMEN

BACKGROUND: Hybrid corn varieties exhibit benefits associated with heterosis and account for most of the corn acreage in the USA. Hybrid seed corn is produced by crossing a female parent which is male-sterile and therefore incapable of self-pollination with a male parent as the pollen donor. The majority of hybrid seed corn is produced by mechanical detasseling which involves physically removing the tassel, a process that is laborious and costly. RESULTS: Glyphosate-resistant corn was developed via expression of a glyphosate insensitive 5-enolpyruvyl-shikimate 3-phosphate synthase enzyme (CP4-EPSPS). Experimentation with molecular expression elements resulted in selective reduction of CP4-EPSPS expression in male reproductive tissues. The resulting plant demonstrated sterile tassel following glyphosate application with little to no injury to the rest of the plant. Using (14)C-glyphosate as a marker, we also examined the translocation of glyphosate to the tassel via spray application in a track sprayer to simulate field application. The results allowed optimization of spray parameters such as dose, spray timing and target to maximize tassel delivery of glyphosate for efficient sterilization. CONCLUSION: The Roundup hybridization system (RHS) is a novel process for hybrid seed production based on glyphosate-mediated male sterility. RHS replaces mechanical detasseling with glyphosate spray and greatly simplifies the process of hybrid seed corn production.


Asunto(s)
Ingeniería Genética/métodos , Glicina/análogos & derivados , Hibridación Genética/efectos de los fármacos , Infertilidad Vegetal/efectos de los fármacos , Semillas/efectos de los fármacos , Zea mays/genética , Zea mays/fisiología , 3-Fosfoshikimato 1-Carboxiviniltransferasa/genética , 3-Fosfoshikimato 1-Carboxiviniltransferasa/metabolismo , Relación Dosis-Respuesta a Droga , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/genética , Glicina/farmacología , Herbicidas/farmacología , Infertilidad Vegetal/genética , Plantas Modificadas Genéticamente , Transporte de Proteínas/efectos de los fármacos , Semillas/genética , Semillas/fisiología , Factores de Tiempo , Zea mays/efectos de los fármacos , Glifosato
15.
J Exp Bot ; 65(2): 621-39, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24323506

RESUMEN

ANTHER INDEHISCENCE FACTOR (AIF), a NAC-like gene, was identified in Arabidopsis. In AIF:GUS flowers, ß-glucuronidase (GUS) activity was detected in the anther, the upper parts of the filaments, and in the pollen of stage 7-9 young flower buds; GUS activity was reduced in mature flowers. Yellow fluorescent protein (YFP)+AIF-C fusion proteins, which lacked a transmembrane domain, accumulated in the nuclei of the Arabidopsis cells, whereas the YFP+AIF fusion proteins accumulated in the membrane and were absent in the nuclei. Further detection of a cleaved AIF protein in flowers revealed that AIF needs to be processed and released from the endoplasmic reticulum in order to function. The ectopic expression of AIF-C caused a male-sterile phenotype with indehiscent anthers throughout flower development in Arabidopsis. The presence of a repressor domain in AIF and the similar phenotype of indehiscent anthers in AIF-C+SRDX plants suggest that AIF acts as a repressor. The defect in anther dehiscence was due to the down-regulation of genes that participate in jasmonic acid (JA) biosynthesis, such as DAD1/AOS/AOC3/OPR3/OPCL1. The external application of JA rescued the anther indehiscence in AIF-C and AIF-C+SRDX flowers. In AIF-C+VP16 plants, which are transgenic dominant-negative mutants in which AIF is converted to a potent activator via fusion to a VP16-AD motif, the anther dehiscence was promoted, and the expression of DAD1/AOS/AOC3/OPR3/OPCL1 was up-regulated. Furthermore, the suppression of AIF through an antisense strategy resulted in a mutant phenotype similar to that observed in the AIF-C+VP16 flowers. The present data suggest a role for AIF in controlling anther dehiscence by suppressing the expression of JA biosynthesis genes in Arabidopsis.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Vías Biosintéticas/genética , Ciclopentanos/metabolismo , Flores/fisiología , Regulación de la Expresión Génica de las Plantas , Oxilipinas/metabolismo , Proteínas Represoras/metabolismo , Secuencia de Aminoácidos , Arabidopsis/efectos de los fármacos , Arabidopsis/ultraestructura , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Vías Biosintéticas/efectos de los fármacos , Ciclopentanos/farmacología , ADN Complementario/genética , ADN Complementario/aislamiento & purificación , Regulación hacia Abajo/efectos de los fármacos , Regulación hacia Abajo/genética , Retículo Endoplásmico/efectos de los fármacos , Retículo Endoplásmico/metabolismo , Flores/efectos de los fármacos , Flores/genética , Flores/ultraestructura , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Genes Dominantes , Genes de Plantas , Glucuronidasa/metabolismo , Modelos Biológicos , Datos de Secuencia Molecular , Mutación/genética , Oxilipinas/farmacología , Fenotipo , Infertilidad Vegetal/efectos de los fármacos , Infertilidad Vegetal/genética , Plantas Modificadas Genéticamente , Polen/genética , Polen/ultraestructura , Transporte de Proteínas/efectos de los fármacos , Protoplastos/efectos de los fármacos , Protoplastos/metabolismo , Proteínas Represoras/química , Proteínas Represoras/genética , Regulación hacia Arriba/efectos de los fármacos , Regulación hacia Arriba/genética
16.
PLoS One ; 8(11): e80191, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24244648

RESUMEN

Male sterility induced by a chemical hybridization agent (CHA) is an important tool for utilizing crop heterosis. Monosulphuron ester sodium (MES), a new acetolactate synthase-inhibitor herbicide belonging to the sulphonylurea family, has been developed as an effective CHA to induce male sterility in rapeseed (Brassica napus L.). To understand MES-induced male sterility in rapeseed better, comparative cytological and proteomic analyses were conducted in this study. Cytological analysis indicated that defective tapetal cells and abnormal microspores were gradually generated in the developing anthers of MES-treated plants at various development stages, resulting in unviable microspores and male sterility. A total of 141 differentially expressed proteins between the MES-treated and control plants were revealed, and 131 of them were further identified by MALDI-TOF/TOF MS. Most of these proteins decreased in abundance in tissues of MES-treated rapeseed plants, and only a few increased. Notably, some proteins were absent or induced in developing anthers after MES treatment. These proteins were involved in several processes that may be crucial for tapetum and microspore development. Down-regulation of these proteins may disrupt the coordination of developmental and metabolic processes, resulting in defective tapetum and abnormal microspores that lead to male sterility in MES-treated plants. Accordingly, a simple model of CHA-MES-induced male sterility in rapeseed was established. This study is the first cytological and dynamic proteomic investigation on CHA-MES-induced male sterility in rapeseed, and the results provide new insights into the molecular events of male sterility.


Asunto(s)
Brassica napus/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas , Infertilidad Vegetal/efectos de los fármacos , Proteínas de Plantas/genética , Polen/efectos de los fármacos , Pirimidinas/farmacología , Compuestos de Sulfonilurea/farmacología , Brassica napus/genética , Brassica napus/crecimiento & desarrollo , Cruzamiento , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Hibridación Genética , Microscopía Electrónica de Transmisión , Infertilidad Vegetal/genética , Proteínas de Plantas/metabolismo , Polen/genética , Polen/crecimiento & desarrollo , Proteómica , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
17.
Plant Sci ; 195: 143-50, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22921008

RESUMEN

Cytoplasmic male sterility (CMS) is a phenomenon widely observed in various plant species characterized with disrupted anther development caused by mitochondrial mutation. CMS is becoming a model system for the investigations of nucleus-cytoplasmic interaction. To reveal the possible effects of CMS genes on plant growth in adverse environment, plant development and biochemical characters of mitochondria from Honglian (HL)-CMS line Yuetai A and maintainer Yuetai B treated with H(2)O(2) were analyzed. Results showed that 40-60mM H(2)O(2) significantly inhibits rice seedling development and growth. When treated with H(2)O(2), ATP content and mitochondrial membrane potential in Yuetai A decreased significantly faster than those of Yuetai B. These biochemical changes were accompanied by the severe nuclear DNA fragmentation and the release of mitochondrial cytochrome c in the leaf cells of Yuetai A. In addition, the antioxidative enzyme activities and mitochondrial electron transfer chain complexes were significantly down-regulated. Disturbance of the biochemical indexes indicate that HL-CMS line is more susceptible to H(2)O(2) stress than the maintainer line, the deleterious effects caused by the CMS-related ORFH79 peptide compromises the adaptability of HL-CMS line to the adverse environment.


Asunto(s)
Adaptación Fisiológica/genética , Peróxido de Hidrógeno/farmacología , Mitocondrias/genética , Mutación , Oryza/genética , Desarrollo de la Planta/genética , Infertilidad Vegetal/genética , Adenosina Trifosfato/metabolismo , Antioxidantes/metabolismo , Núcleo Celular , Citocromos c/metabolismo , Citoplasma , Fragmentación del ADN , Regulación hacia Abajo , Transporte de Electrón/genética , Flores/efectos de los fármacos , Flores/genética , Flores/crecimiento & desarrollo , Genes Mitocondriales , Genes de Plantas , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Potencial de la Membrana Mitocondrial/genética , Mitocondrias/efectos de los fármacos , Mitocondrias/fisiología , Oryza/efectos de los fármacos , Oryza/fisiología , Péptidos/genética , Desarrollo de la Planta/efectos de los fármacos , Desarrollo de la Planta/fisiología , Infertilidad Vegetal/efectos de los fármacos , Infertilidad Vegetal/fisiología , Hojas de la Planta/citología , Hojas de la Planta/efectos de los fármacos , Proteínas de Plantas/genética , Plantones/efectos de los fármacos , Plantones/genética , Plantones/crecimiento & desarrollo , Estrés Fisiológico/genética
18.
Mol Biol Rep ; 39(4): 4169-76, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21773942

RESUMEN

We studied how plant cell modulated redox homeostasis in cytoplasmic male-sterility (CMS) Brassica juncea. The CMS Brassica juncea was identified to be mutated in several mitochondrial genes that suggested the changes of cell redox homeostasis. We observed that it was not associated with increased oxidative stress as shown by decreased H(2)O(2) and (∙)OH contents in this type of CMS. The expressions of several anti-oxidative genes were up-regulated in 5-day-old seedlings of CMS than MF lines under light and dark conditions. The mitochondrial alternative oxidase pathway was not activated, as indicated by no increased expression of AOX1a gene in CMS. Interestingly, the expression of Ferritin1 gene was markedly activated in 5-day-old seedlings of CMS than MF line under light and dark conditions. Consequently, we detected increased content of total iron in 30-day-old leaves in CMS than MF line. We isolated Ferritin1 orthologous gene from Brassica juncea, which was targeted to the chloroplast and induced by Fe-citrate and H(2)O(2), not ABA. Taken together, we proposed that increased expressions of BjFer1 and several antioxidant genes protected cell from oxidative stress in CMS Brassica juncea.


Asunto(s)
Cloroplastos/genética , Ferritinas/metabolismo , Genes de Plantas/genética , Peróxido de Hidrógeno/toxicidad , Radical Hidroxilo/toxicidad , Planta de la Mostaza/genética , Infertilidad Vegetal/efectos de los fármacos , Antioxidantes/metabolismo , Cloroplastos/efectos de los fármacos , Cloroplastos/enzimología , Clonación Molecular , Ferritinas/genética , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Peróxido de Hidrógeno/metabolismo , Radical Hidroxilo/metabolismo , Hierro/metabolismo , Proteínas Mitocondriales/metabolismo , Planta de la Mostaza/efectos de los fármacos , Planta de la Mostaza/enzimología , Oxidorreductasas/metabolismo , Infertilidad Vegetal/genética , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Transporte de Proteínas/efectos de los fármacos , Plantones/efectos de los fármacos , Plantones/metabolismo , Fracciones Subcelulares/efectos de los fármacos , Fracciones Subcelulares/metabolismo , Transcripción Genética/efectos de los fármacos
20.
New Phytol ; 193(2): 364-75, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22077663

RESUMEN

• Mutations in the breast cancer susceptibility gene 2 (BRCA2) are correlated with hereditary breast cancer in humans. Studies have revealed that mammalian BRCA2 plays crucial roles in DNA repair. Therefore, we wished to define the role of the BRCA2 homologs in Arabidopsis in detail. • As Arabidopsis contains two functional BRCA2 homologs, an Atbrca2 double mutant was generated and analyzed with respect to hypersensitivity to genotoxic agents and recombination frequencies. Cytological studies addressing male and female meiosis were also conducted, and immunolocalization was performed in male meiotic prophase I. • The Atbrca2 double mutant showed hypersensitivity to the cross-linking agent mitomycin C and displayed a dramatic reduction in somatic homologous recombination frequency, especially after double-strand break induction. The loss of AtBRCA2 also led to severe defects in male meiosis and development of the female gametophyte and impeded proper localization of the synaptonemal complex protein AtZYP1 and the recombinases AtRAD51 and AtDMC1. • The results demonstrate that AtBRCA2 is important for both somatic and meiotic homologous recombination. We further show that AtBRCA2 is required for proper meiotic synapsis and mediates the recruitment of AtRAD51 and AtDMC1. Our results suggest that BRCA2 controls single-strand invasion steps during homologous recombination in plants.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteína BRCA2/metabolismo , Proteínas de Ciclo Celular/metabolismo , Recombinación Homóloga/genética , Recombinasa Rad51/metabolismo , Rec A Recombinasas/metabolismo , Arabidopsis/citología , Arabidopsis/embriología , Secuencia de Bases , Segregación Cromosómica/efectos de los fármacos , Segregación Cromosómica/genética , ADN Bacteriano/genética , Genes de Plantas/genética , Recombinación Homóloga/efectos de los fármacos , Meiosis/efectos de los fármacos , Mitomicina/farmacología , Datos de Secuencia Molecular , Mutagénesis Insercional/efectos de los fármacos , Mutagénesis Insercional/genética , Mutación/genética , Tasa de Mutación , Óvulo Vegetal/citología , Óvulo Vegetal/efectos de los fármacos , Óvulo Vegetal/crecimiento & desarrollo , Óvulo Vegetal/metabolismo , Infertilidad Vegetal/efectos de los fármacos , Infertilidad Vegetal/genética , Polen/citología , Polen/efectos de los fármacos , Polen/metabolismo , Semillas/citología , Semillas/efectos de los fármacos , Semillas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...