Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 540
Filtrar
1.
Brain Behav Immun ; 120: 514-531, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38925414

RESUMEN

Spinal cord injury triggers a strong innate inflammatory response in both non-regenerative mammals and regenerative zebrafish. Neutrophils are the first immune population to be recruited to the injury site. Yet, their role in the repair process, particularly in a regenerative context, remains largely unknown. Here, we show that, following rapid recruitment to the injured spinal cord, neutrophils mostly reverse migrate throughout the zebrafish body. In addition, promoting neutrophil inflammation resolution by inhibiting Cxcr4 boosts cellular and functional regeneration. Neutrophil-specific RNA-seq analysis reveals an enhanced activation state that correlates with a transient increase in tnf-α expression in macrophage/microglia populations. Conversely, blocking neutrophil recruitment through Cxcr1/2 inhibition diminishes the presence of macrophage/microglia at the injury site and impairs spinal cord regeneration. Altogether, these findings provide new insights into the role of neutrophils in spinal cord regeneration, emphasizing the significant impact of their immune profile on the outcome of the repair process.


Asunto(s)
Neutrófilos , Traumatismos de la Médula Espinal , Regeneración de la Medula Espinal , Médula Espinal , Pez Cebra , Animales , Neutrófilos/metabolismo , Neutrófilos/inmunología , Traumatismos de la Médula Espinal/inmunología , Traumatismos de la Médula Espinal/metabolismo , Regeneración de la Medula Espinal/fisiología , Médula Espinal/inmunología , Médula Espinal/metabolismo , Macrófagos/metabolismo , Macrófagos/inmunología , Microglía/metabolismo , Microglía/inmunología , Proteínas de Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética , Receptores CXCR4/metabolismo , Inflamación/inmunología , Inflamación/metabolismo , Infiltración Neutrófila/fisiología , Factor de Necrosis Tumoral alfa/metabolismo
2.
Glia ; 71(7): 1607-1625, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36929654

RESUMEN

Acute ischemic stroke (AIS), one of the leading causes of mortality worldwide, is characterized by a rapid inflammatory cascade resulting in exacerbation of ischemic brain injury. Microglia are the first immune responders. However, the role of postischemic microglial activity in ischemic brain injury remains far from being fully understood. Here, using the transgenic mouse line CX3 CR1creER :R26iDTR to genetically ablate microglia, we showed that microglial deletion exaggerated ischemic brain injury. Associated with this worse outcome, there were increased neutrophil recruitment, microvessel blockade and blood flow stagnation in the acute phase, accompanied by transcriptional upregulation of chemokine (C-X-C motif) ligand 1 (CXCL1). Our study showed that microglial interleukin-1 receptor antagonist (IL-1RA) suppressed astrocytic CXCL1 expression induced by oxygen and glucose deprivation and inhibited neutrophil migration. Furthermore, neutralizing antibody therapy against CXCL1 or the administration of recombinant IL-1RA protein reduced brain infarct volume and improved motor coordination performance of mice after ischemic stroke. Our study suggests that microglia protect against acute ischemic brain injury by secreting IL-1RA to inhibit astrocytic CXCL1 expression, which reduces neutrophil recruitment and neutrophil-derived microvessel occlusion.


Asunto(s)
Lesiones Encefálicas , Isquemia Encefálica , Accidente Cerebrovascular Isquémico , Accidente Cerebrovascular , Ratones , Animales , Proteína Antagonista del Receptor de Interleucina 1/metabolismo , Proteína Antagonista del Receptor de Interleucina 1/farmacología , Accidente Cerebrovascular Isquémico/metabolismo , Quimiocina CXCL1/metabolismo , Quimiocina CXCL1/farmacología , Microglía/metabolismo , Infiltración Neutrófila/fisiología , Lesiones Encefálicas/metabolismo , Ratones Transgénicos , Isquemia Encefálica/metabolismo , Accidente Cerebrovascular/metabolismo
3.
Front Immunol ; 13: 1015577, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36405709

RESUMEN

Sepsis, a complex clinical syndrome resulting from a serious infection, is a major healthcare problem associated with high mortality. Sex-related differences in the immune response to sepsis have been proposed but the mechanism is still unknown. Purinergic signaling is a sex-specific regulatory mechanism in immune cell physiology. Our studies have shown that blocking the ADP-receptor P2Y12 but not P2Y1 receptor was protective in male mice during sepsis, but not female. We now hypothesize that there are sex-related differences in modulating P2Y12 or P2Y1 signaling pathways during sepsis. Male and female wild-type (WT), P2Y12 knock-out (KO), and P2Y1 KO mice underwent sham surgery or cecal ligation and puncture (CLP) to induce sepsis. The P2Y12 antagonist ticagrelor or the P2Y1 antagonist MRS2279 were administered intra-peritoneally after surgery to septic male and female mice. Blood, lungs and kidneys were collected 24 hours post-surgery. Sepsis-induced changes in platelet activation, secretion and platelet interaction with immune cells were measured by flow cytometry. Neutrophil infiltration in the lung and kidney was determined by a myeloperoxidase (MPO) colorimetric assay kit. Sepsis-induced platelet activation, secretion and aggregate formation were reduced in male CLP P2Y12 KO and in female CLP P2Y1 KO mice compared with their CLP WT counterpart. Sepsis-induced MPO activity was reduced in male CLP P2Y12 KO and CLP P2Y1 KO female mice. CLP males treated with ticagrelor or MRS2279 showed a decrease in sepsis-induced MPO levels in lung and kidneys, aggregate formation, and platelet activation as compared to untreated male CLP mice. There were no differences in platelet activation, aggregate formation, and neutrophil infiltration in lung and kidney between female CLP mice and female CLP mice treated with ticagrelor or MRS2279. In human T lymphocytes, blocking P2Y1 or P2Y12 alters cell growth and secretion in vitro in a sex-dependent manner, supporting the data obtained in mice. In conclusion, targeting purinergic signaling represents a promising therapy for sepsis but drug targeting purinergic signaling is sex-specific and needs to be investigated to determine sex-related targeted therapies in sepsis.


Asunto(s)
Sepsis , Femenino , Humanos , Ratones , Masculino , Animales , Ticagrelor/uso terapéutico , Sepsis/complicaciones , Infiltración Neutrófila/fisiología , Ratones Noqueados , Transducción de Señal
4.
Eur J Cell Biol ; 101(2): 151214, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35286924

RESUMEN

Sepsis remains an important health problem worldwide due to inefficient treatments often resulting in multi-organ failure. Neutrophil recruitment is critical during sepsis. While neutrophils are required to combat invading bacteria, excessive neutrophil recruitment contributes to tissue damage due to their arsenal of molecular weapons that do not distinguish between host and pathogen. Thus, neutrophil recruitment needs to be fine-tuned to ensure bacterial killing, while avoiding neutrophil-inflicted tissue damage. We recently showed that the actin-binding protein HS1 promotes neutrophil extravasation; and hypothesized that HS1 is also a critical regulator of sepsis progression. We evaluated the role of HS1 in a model of lethal sepsis induced by cecal-ligation and puncture. We found that septic HS1-deficient mice had a better survival rate compared to WT mice due to absence of lung damage. Lungs of septic HS1-deficient mice showed less inflammation, fibrosis, and vascular congestion. Importantly, systemic CLP-induced neutrophil recruitment was attenuated in the lungs, the peritoneum and the cremaster in the absence of HS1. Lungs of HS1-deficient mice produced significantly more interleukin-10. Compared to WT neutrophils, those HS1-deficient neutrophils that reached the lungs had increased surface levels of Gr-1, ICAM-1, and L-selectin. Interestingly, HS1-deficient neutrophils had similar F-actin content and phagocytic activity, but they failed to polymerize actin and deform in response to CXCL-1 likely explaining the reduced systemic neutrophil recruitment in HS1-deficient mice. Our data show that HS1 deficiency protects against sepsis by attenuating neutrophil recruitment to amounts sufficient to combat bacterial infection, but insufficient to induce tissue damage.


Asunto(s)
Neutrófilos , Sepsis , Animales , Modelos Animales de Enfermedad , Pulmón/metabolismo , Ratones , Ratones Endogámicos C57BL , Infiltración Neutrófila/fisiología , Neutrófilos/metabolismo
5.
Am J Obstet Gynecol ; 226(2S): S945-S953, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35177224

RESUMEN

Neutrophils extensively infiltrate maternal blood vessels in preeclampsia. This could explain why multiple organs are affected in this enigmatic disorder. Lipid peroxides produced by the placenta are probably the first factors that activate neutrophils as they circulate through the intervillous space, but then a second factor specific to pregnancy comes into play, protease-activated receptor 1. The only time neutrophils express protease-activated receptor 1 is during pregnancy. This means that neutrophils can be activated by a mechanism specific to pregnancy, that is, by proteases. Two proteases that are elevated in preeclampsia and activate protease-activated receptor 1 are matrix metalloproteinase-1 and neutrophil elastase. There is an 8-fold increase in vascular protease-activated receptor 1 expression in women with preeclampsia, and protease-activated receptor 1 is also expressed on the placenta, a pregnancy-specific tissue. The question arises if the pregnancy-specific expression of protease-activated receptor 1 is essential to the pathophysiology of preeclampsia. Protease activation of protease-activated receptor 1 in neutrophils of women with normal pregnancies causes activation of RhoA kinase. RhoA kinase phosphorylates nuclear factor-kappa B causing its translocation from the cytosol into the nucleus, increasing the expression of inflammatory genes. This signaling pathway is blocked by inhibition of either protease-activated receptor 1 or RhoA kinase activity. In contrast, neutrophils obtained from preeclamptic women are already activated, with nuclear factor-kappa B localized in the nucleus. Surprisingly, inhibition of either protease-activated receptor 1 or RhoA kinase results in an efflux of nuclear factor-kappa B from the nucleus back into the cytoplasm. Cyclooxygenase-2 seems to be a downstream mediator between protease-activated receptor 1 and RhoA kinase because aspirin inhibits the nuclear translocation of nuclear factor-kappa B and inhibits neutrophil production of superoxide, thromboxane, and tumor necrosis factor alpha. Currently, low-dose aspirin is the standard of care to prevent preeclampsia in high-risk women. Generally, the actions of low-dose aspirin are attributed to selective inhibition of maternal platelet thromboxane production. However, a recent study showed that beneficial effects extend to the placenta, where aspirin corrected the imbalance of increased thromboxane and reduced prostacyclin and oxidative stress. Selective inhibition of placental thromboxane is possible because thromboxane and prostacyclin are compartmentalized. Thromboxane is produced by trophoblast cells and prostacyclin by endothelial cells, so as aspirin crosses the placenta, its levels decline, sparing prostacyclin. Placental oxidative stress is attenuated because cyclooxygenase-2 inhibition decreases the generation of reactive oxygen species to decrease the formation of isoprostanes. The clinical manifestations of preeclampsia can be explained by protease activation of protease-activated receptor 1 in different tissues. In neutrophils, it can account for their activation and inflammatory response. In vascular tissue, protease-activated receptor 1 activation leads to enhanced vascular reactivity to angiotensin II to cause hypertension. In the placenta, it leads to oxidative stress, increased soluble fms-like tyrosine kinase, and thromboxane production. Activation of protease-activated receptor 1 on endothelial cells causes contraction, leading to edema and proteinuria, and activation on platelets leads to coagulation abnormalities. As proteases that activate protease-activated receptor 1 are elevated in the circulation of women with preeclampsia, consideration should be given to the inhibition of protease-activated receptor 1 as a treatment. Recently, The Food and Drug Administration (FDA) approved a protease-activated receptor 1 inhibitor, creating an opportunity to test whether protease-activated receptor 1 inhibition can prevent and/or treat preeclampsia, but a standard dose of aspirin might be just as effective by blocking its downstream actions.


Asunto(s)
Preeclampsia/metabolismo , Preeclampsia/prevención & control , Receptor PAR-1/metabolismo , Aspirina/administración & dosificación , Femenino , Fibrinolíticos/administración & dosificación , Humanos , Infiltración Neutrófila/fisiología , Placenta/metabolismo , Preeclampsia/fisiopatología , Embarazo
6.
Reprod Sci ; 29(1): 154-162, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-33959890

RESUMEN

DNA methylation is an epigenetic mechanism controlling gene expression, and reduced methylation is associated with increased gene expression. We hypothesized that IL-17 cytokines are regulated by DNA methylation, are elevated in the circulation of preeclamptic women, and stimulate vascular neutrophil chemokine expression, which could account for vascular infiltration of neutrophils in preeclampsia. We found significantly reduced DNA methylation of IL17A, IL17E, and IL17F genes in omental arteries of preeclamptic women, significantly reduced methylation of IL2, which regulates IL-17-producing T-lymphocytes, and significantly reduced methylation of genes encoding neutrophil chemokines and TNFα receptors related to lymphocyte function. Maternal plasma levels of IL-17A were significantly elevated in the second trimester of preeclamptic pregnancy as compared to normal pregnancy. To test if methylation regulates IL-17 cytokines, a lymphocyte cell line (Jurkat) was cultured with a hypomethylating agent. Hypomethylation increased expression of IL17E (aka IL25), IL17F, and IL2. IL17A was not expressed by Jurkat cells. To test the potential role of IL-17 cytokines in vascular neutrophil infiltration associated with preeclampsia, human vascular smooth muscle cells were cultured with IL-17 cytokines. IL-17A, but not IL-17E or IL-17F, increased gene expression of neutrophil chemokines (IL-8, CXCL5, and CXCL6) that are increased in vascular smooth muscle of preeclamptic women. The monocyte chemokine, CCL-2, was not increased. TNFα also increased neutrophil chemokines. IL-17 cytokines are regulated by DNA methylation; IL-17A is elevated in preeclampsia and stimulates expression of neutrophil chemokines in vascular smooth muscle. IL-17A could be responsible for vascular infiltration of neutrophils in preeclampsia.


Asunto(s)
Metilación de ADN , Interleucina-17/genética , Músculo Liso Vascular/metabolismo , Infiltración Neutrófila/fisiología , Neutrófilos/metabolismo , Preeclampsia/genética , Tejido Adiposo/metabolismo , Adulto , Quimiocinas/metabolismo , Femenino , Humanos , Interleucina-17/metabolismo , Interleucina-17/farmacología , Músculo Liso Vascular/efectos de los fármacos , Preeclampsia/metabolismo , Embarazo , Adulto Joven
7.
Shock ; 57(3): 427-434, 2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-34482317

RESUMEN

ABSTRACT: Vagus nerve stimulation has been shown to exert anti-inflammation activities in sepsis. However, surgical implantation of stimulation devices is performed under general anesthesia, which limits its clinical application. Auricular vagus nerve stimulation (AVNS) is a minimal invasive technique that delivers electrical currents to the auricular branch of the vagus nerve. The purpose of this study was to determine the effects of AVNS on systemic inflammation, lung injury, neutrophil infiltration, and neutrophil extracellular traps (NETs) formation in the lung. In a LPS challenge lung-injury mice model, AVNS was applied to bilateral ears. Twelve hours after LPS administration, samples of blood, bronchoalveolar lavage fluid (BALF), and lung tissues were processed for investigations. We found that the treatment with AVNS significantly attenuated histopathological changes and neutrophil infiltration in the lung tissue, inhibited inflammatory cytokine elevations in serum and BALF, and decreased protein concentrations in BALF. Besides, AVNS decreased leukocyte and neutrophil accounts in BALF. Furthermore, colocalization of citrullination of histone H3 and myeloperoxidase expressions (highly specific marker of NETs) was reduced in AVNS mice. In conclusion, AVNS reduced systemic inflammation, attenuated lung edema, and inhibited neutrophil infiltration and NETs formation in the lung in LPS mice.


Asunto(s)
Lesión Pulmonar Aguda/prevención & control , Trampas Extracelulares/fisiología , Infiltración Neutrófila/fisiología , Neutrófilos/fisiología , Estimulación del Nervio Vago , Lesión Pulmonar Aguda/etiología , Lesión Pulmonar Aguda/metabolismo , Animales , Líquido del Lavado Bronquioalveolar/química , Citocinas/metabolismo , Modelos Animales de Enfermedad , Histonas/metabolismo , Lipopolisacáridos , Masculino , Ratones , Ratones Endogámicos C57BL , Peroxidasa/metabolismo
8.
Hepatology ; 75(3): 646-660, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34510484

RESUMEN

BACKGROUND AND AIMS: Aging exacerbates liver neutrophil infiltration and alcohol-associated liver disease (ALD) in mice and humans, but the underlying mechanisms remain obscure. This study aimed to examine the effect of aging and alcohol consumption on neutrophilic Sirtuin 1 (SIRT1) and microRNA-223 (miR-223), and their contribution to ALD pathogeneses. APPROACH AND RESULTS: Young and aged myeloid-specific Sirt1 knockout mice were subjected to chronic-plus-binge ethanol feeding. Blood samples from healthy controls and patients with chronic alcohol drinking who presented with acute intoxication were analyzed. Neutrophilic Sirt1 and miR-223 expression were down-regulated in aged mice compared with young mice. Deletion of the Sirt1 gene in myeloid cells including neutrophils exacerbated chronic-plus-binge ethanol-induced liver injury and inflammation and down-regulated neutrophilic miR-223 expression. Immunoprecipitation experiments revealed that SIRT1 promoted C/EBPα deacetylation by directly interacting with C/EBPα, a key transcription factor that controls miR-223 biogenesis, and subsequently elevated miR-223 expression in neutrophils. Importantly, down-regulation of SIRT1 and miR-223 expression was also observed in circulating neutrophils from middle-aged and elderly subjects compared with those from young individuals. Chronic alcohol users with acute intoxication had a reduction in neutrophilic SIRT1 expression in young and middle-aged patients, with a greater reduction in the latter group. The neutrophilic SIRT1 expression correlated with neutrophilic miR-223 and serum alanine transaminase levels in those patients. CONCLUSIONS: Aging increases the susceptibility of alcohol-induced liver injury in mice and humans through the down-regulation of the neutrophilic SIRT1-C/EBPα-miR-223 axis, which could be a therapeutic target for the prevention and/or treatment of ALD.


Asunto(s)
Envejecimiento/fisiología , Hepatopatías Alcohólicas , Hígado , MicroARNs , Infiltración Neutrófila/fisiología , Sirtuina 1/metabolismo , Factores de Edad , Consumo de Bebidas Alcohólicas/efectos adversos , Animales , Enfermedad Hepática Crónica Inducida por Sustancias y Drogas/etiología , Enfermedad Hepática Crónica Inducida por Sustancias y Drogas/metabolismo , Enfermedad Hepática Crónica Inducida por Sustancias y Drogas/patología , Regulación hacia Abajo , Regulación de la Expresión Génica , Humanos , Hígado/metabolismo , Hígado/patología , Hepatopatías Alcohólicas/metabolismo , Hepatopatías Alcohólicas/patología , Ratones , Ratones Noqueados , MicroARNs/biosíntesis , MicroARNs/metabolismo , Células Mieloides/metabolismo , Sirtuina 1/genética
9.
Ann Diagn Pathol ; 56: 151845, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34763224

RESUMEN

Gallbladder carcinoma is an uncommon malignancy with an overall 5-year survival of less than 5%. Gallbladder carcinoma has been strongly linked with cholelithiasis and chronic inflammation. Case reports and series have described cholecystitis with acute (neutrophilic) inflammation in association with gallbladder carcinoma, although a clear relationship to patient outcome has not been established. Our series included 8 cases of gallbladder carcinoma with high tumor-associated neutrophils (>25 per high power field) that were associated with shorter patient survival (Cox regression coefficient 6.2, p = 0.004) than age- and stage-matched controls. High tumor-associated neutrophils were not associated with gallbladder rupture/perforation or increased bacterial load measured by 16S PCR. Neutrophilic inflammation with gallbladder carcinoma correlates to shorter survival, independent of patient age and stage of carcinoma. The findings suggest that the degree of neutrophilic inflammation may have prognostic significance in specimens from patients with gallbladder carcinoma after cholecystectomy. Further studies with larger case numbers are needed to confirm and generalize these findings.


Asunto(s)
Colecistitis/mortalidad , Neoplasias de la Vesícula Biliar/mortalidad , Vesícula Biliar/inmunología , Infiltración Neutrófila/fisiología , Anciano , Estudios de Casos y Controles , Colecistectomía , Colecistitis/inmunología , Colecistitis/patología , Vesícula Biliar/patología , Neoplasias de la Vesícula Biliar/inmunología , Neoplasias de la Vesícula Biliar/patología , Humanos , Masculino , Persona de Mediana Edad , Tasa de Supervivencia
10.
Biomed Pharmacother ; 145: 112422, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34781139

RESUMEN

The abundance of neutrophils in human circulation, their fast mobilization from blood to tissues, along with their alleged short life-span led to the image of neutrophils as a homogeneous cell type designed to fight infections and die in the process. Additionally, their granule content and capacity to produce molecules with considerable cytotoxic potential, lead to the general belief that neutrophil activation inexorably results in side effect of extensive tissue injury. Neutrophil activation in fact causes tissue injury as an adverse effect, but it seems that this is restricted to particular pathological situations and more of an "exception to the rule". Here we review evidences arising especially from intravital microscopy studies that demonstrate neutrophils as cells endowed with sophisticated mechanisms and able to engage in complex interactions as to minimize damage and optimize their effector functions. Moreover, neutrophil infiltration may even contribute to tissue healing and repair which may altogether demand a reexamination of current anti-inflammatory therapies that have neutrophil migration and activation as a target.


Asunto(s)
Antiinflamatorios/farmacología , Inflamación/patología , Neutrófilos/metabolismo , Animales , Humanos , Inflamación/tratamiento farmacológico , Activación Neutrófila/fisiología , Infiltración Neutrófila/fisiología
11.
Adv Sci (Weinh) ; 8(24): e2102381, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34713625

RESUMEN

Trauma is the leading cause of death in individuals under 44 years of age. Thorax trauma (TxT) is strongly associated with trauma-related death, an unbalanced innate immune response, sepsis, acute respiratory distress syndrome, and multiple organ dysfunction. It is shown that different in vivo traumata, such as TxT or an in vitro polytrauma cytokine cocktail trigger secretion of small extracellular nanovesicles (sEVs) from endothelial cells with pro-inflammatory cargo. These sEVs transfer transcripts for ICAM-1, VCAM-1, E-selectin, and cytokines to systemically activate the endothelium, facilitate neutrophil-endothelium interactions, and destabilize barrier integrity. Inhibition of sEV-release after TxT in mice ameliorates local as well as systemic inflammation, neutrophil infiltration, and distant organ damage in kidneys (acute kidney injury, AKI). Vice versa, injection of TxT-plasma-sEVs into healthy animals is sufficient to trigger pulmonary and systemic inflammation as well as AKI. Accordingly, increased sEV concentrations and transfer of similar cargos are observed in polytrauma patients, suggesting a fundamental pathophysiological mechanism.


Asunto(s)
Células Endoteliales/inmunología , Vesículas Extracelulares/inmunología , Inflamación/inmunología , Inflamación/fisiopatología , Traumatismo Múltiple/complicaciones , Lesión Renal Aguda/etiología , Lesión Renal Aguda/inmunología , Lesión Renal Aguda/fisiopatología , Animales , Modelos Animales de Enfermedad , Células Endoteliales/fisiología , Vesículas Extracelulares/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Traumatismo Múltiple/inmunología , Infiltración Neutrófila/fisiología , Síndrome de Dificultad Respiratoria/etiología , Síndrome de Dificultad Respiratoria/inmunología , Síndrome de Dificultad Respiratoria/fisiopatología , Sepsis/etiología , Sepsis/inmunología , Sepsis/fisiopatología
12.
Immunity ; 54(9): 1989-2004.e9, 2021 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-34363750

RESUMEN

The migration of neutrophils from the blood circulation to sites of infection or injury is a key immune response and requires the breaching of endothelial cells (ECs) that line the inner aspect of blood vessels. Unregulated neutrophil transendothelial cell migration (TEM) is pathogenic, but the molecular basis of its physiological termination remains unknown. Here, we demonstrated that ECs of venules in inflamed tissues exhibited a robust autophagic response that was aligned temporally with the peak of neutrophil trafficking and was strictly localized to EC contacts. Genetic ablation of EC autophagy led to excessive neutrophil TEM and uncontrolled leukocyte migration in murine inflammatory models, while pharmacological induction of autophagy suppressed neutrophil infiltration into tissues. Mechanistically, autophagy regulated the remodeling of EC junctions and expression of key EC adhesion molecules, facilitating their intracellular trafficking and degradation. Collectively, we have identified autophagy as a modulator of EC leukocyte trafficking machinery aimed at terminating physiological inflammation.


Asunto(s)
Autofagia/fisiología , Células Endoteliales/fisiología , Infiltración Neutrófila/fisiología , Migración Transendotelial y Transepitelial/fisiología , Animales , Quimiotaxis de Leucocito/fisiología , Células Endoteliales/patología , Células Endoteliales de la Vena Umbilical Humana/inmunología , Células Endoteliales de la Vena Umbilical Humana/patología , Humanos , Inflamación/inmunología , Inflamación/patología , Uniones Intercelulares/fisiología , Ratones , Ratones Endogámicos C57BL , Neutrófilos/fisiología
13.
Exp Eye Res ; 210: 108710, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34339682

RESUMEN

Diabetes is a significant risk factor for meibomian gland dysfunction (MGD), but its mechanism is poorly understood. The main function of the meibomian glands (MGs) is to synthesize, store, and secrete lipids. In this study, we found that the amount of lipids in the meibomian acini in STZ-induced type 1 diabetic mice decreased, and the lipid droplets became larger and irregular. In all, 31 lipid subclasses were identified in the mouse MGs, which contained 1378 lipid species in total through lipidomics analysis based on LC-MS/MS. Diabetes caused a significant increase in the content of ceramides (Cer) in the MGs but a significant decrease in the ration of sphingomyelin to ceramides (SM/Cer). The quantity of meibocytes in diabetic mice was dramatically decreased, and the proliferation activity was alleviated, which may be associated with cell cycle arrest caused by diabetes-induced abnormal Cer metabolism in MGs. We found an increase in macrophage and neutrophils infiltration in the diabetic MGs, which may be related to the significant reduction of AcCa in diabetic MGs. Taken together, the results of the present study demonstrated that diabetes induced disruption of lipid homeostasis in MGs, which may mediate the decreased cell proliferation and increased inflammation caused by diabetes in MGs.


Asunto(s)
Diabetes Mellitus Tipo 1/metabolismo , Enfermedades de los Párpados/metabolismo , Metabolismo de los Lípidos/fisiología , Glándulas Tarsales/metabolismo , Animales , Glucemia/metabolismo , Cromatografía Liquida , Diabetes Mellitus Experimental/metabolismo , Técnica del Anticuerpo Fluorescente Indirecta , Inflamación/metabolismo , Lipidómica , Macrófagos/fisiología , Masculino , Metabolómica , Ratones , Ratones Endogámicos C57BL , Microscopía Electrónica de Transmisión , Infiltración Neutrófila/fisiología , Espectrometría de Masas en Tándem
14.
J Immunol ; 207(2): 651-660, 2021 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-34253575

RESUMEN

SIGIRR has been described as a negative regulator of several IL-1R/TLR family members and has been implicated in several inflammatory disease conditions. However, it is unknown whether it can suppress IL-36 family cytokines, which are members of the broader IL-1 superfamily that have emerged as critical orchestrators of psoriatic inflammation in both humans and mice. In this study, we demonstrate that SIGIRR is downregulated in psoriatic lesions in humans and mice, and this correlates with increased expression of IL-36 family cytokines. Using Sigirr -/- mice, we identify, for the first time (to our knowledge), SIGIRR as a negative regulator of IL-36 responses in the skin. Mechanistically, we identify dendritic cells and keratinocytes as the primary cell subsets in which IL-36 proinflammatory responses are regulated by SIGIRR. Both cell types displayed elevated IL-36 responsiveness in absence of SIGIRR activity, characterized by enhanced expression of neutrophil chemoattractants, leading to increased neutrophil infiltration to the inflamed skin. Blockade of IL-36R signaling ameliorated exacerbated psoriasiform inflammation in Sigirr -/- mice and inhibited neutrophil infiltration. These data identify SIGIRR activity as an important regulatory node in suppressing IL-36-dependent psoriatic inflammation in humans and mice.


Asunto(s)
Inflamación/metabolismo , Interleucina-1/metabolismo , Infiltración Neutrófila/fisiología , Receptores de Interleucina-1/metabolismo , Piel/metabolismo , Animales , Citocinas/metabolismo , Regulación hacia Abajo/fisiología , Queratinocitos/metabolismo , Ratones , Ratones Endogámicos C57BL , Psoriasis/metabolismo , Transducción de Señal/fisiología
15.
J Neuroimmunol ; 357: 577610, 2021 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-34030107

RESUMEN

OBJECTIVE: Neutrophils induce inflammation through the exocytosis of cytotoxic granule proteins. Recently, neutrophils have been reported to be an independent parameter associated with unfavorable outcomes after subarachnoid hemorrhage (SAH). However, the mechanism by which neutrophils accumulate within the CSF after SAH remains undetermined. METHODS: Concentrations of C5a, epithelial neutrophil activating peptide 78 (ENA-78), interleukin-8 (IL-8), growth-regulated oncogene-α (GRO-α), neutrophil gelatinase-associated lipocalin (NGAL) and myeloperoxidase (MPO) were measured serially until day 14 in the CSF of 10 patients with SAH. CSF samples obtained from patients suffering from unruptured aneurysms were used as controls. RESULTS: The concentrations of C5a and ENA-78 were significantly increased on day 1, while those of IL-8 and GRO-α significantly increased during days 3-7 compared with those of the control samples. The levels of NGAL and MPO, components of neutrophil granules, significantly increased during days 1-5 and days 1-3, respectively, after SAH and gradually decreased thereafter. The correlations between ENA-78 and C5a on day 1, IL-8 and GRO-α on days 3-7, and NGAL and MPO on days 1-3 were significant. CONCLUSION: These neutrophil chemoattractants might be serially involved in the infiltration of neutrophils into the CSF after SAH. Migrated neutrophils play an important role in inflammatory reactions in the central nervous system after SAH.


Asunto(s)
Factores Quimiotácticos/líquido cefalorraquídeo , Quimiotaxis de Leucocito/fisiología , Infiltración Neutrófila/fisiología , Hemorragia Subaracnoidea/líquido cefalorraquídeo , Adulto , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad
16.
Inflammation ; 44(4): 1246-1262, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33649876

RESUMEN

Neutrophils are the most abundant type of leukocytes with diverse functions in immune defense including production of reactive oxygen species, bacteriocidal proteins, neutrophil extracellular traps, and pro-inflammatory mediators. However, aberrant accumulation of neutrophils in host tissues and excessive release of bacteriocidal compounds can lead to unexpected injury to host organs. Neutrophil-mediated liver injury has been reported in various types of liver diseases including liver ischemia/reperfusion injury, nonalcoholic fatty liver disease, endotoxin-induced liver injury, alcoholic liver disease, and drug-induced liver injury. Yet the mechanisms of neutrophil-induced hepatotoxicity in different liver diseases are complicated. Current knowledge of these mechanisms are summarized in this review. In addition, a substantial body of evidence has emerged showing that liver sinusoidal endothelial cells (LSECs) participate in several key steps of neutrophil-mediated liver injury including neutrophil recruitment, adhesion, transmigration, and activation. This review also highlights the current understanding of the interactions between LSECs and neutrophils in liver injury. The future challenge is to explore new targets for selectively interfering neutrophil-induced liver injury without impairing host defense function against microbial infection. Further understanding the role of LSECs in neutrophil-induced hepatotoxicity would aid in developing more selective therapeutic approaches for liver disease.


Asunto(s)
Capilares/metabolismo , Células Endoteliales/metabolismo , Hepatopatías/metabolismo , Hígado/metabolismo , Infiltración Neutrófila/fisiología , Neutrófilos/metabolismo , Animales , Células Endoteliales/patología , Trampas Extracelulares/metabolismo , Humanos , Mediadores de Inflamación/metabolismo , Hígado/patología , Hepatopatías/patología , Neutrófilos/patología
17.
Cell Mol Life Sci ; 78(9): 4095-4124, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33544156

RESUMEN

The neutrophil, a short-lived effector leukocyte of the innate immune system best known for its proteases and other degradative cargo, has unique, reciprocal physiological interactions with the lung. During health, large numbers of 'marginated' neutrophils reside within the pulmonary vasculature, where they patrol the endothelial surface for pathogens and complete their life cycle. Upon respiratory infection, rapid and sustained recruitment of neutrophils through the endothelial barrier, across the extravascular pulmonary interstitium, and again through the respiratory epithelium into the airspace lumen, is required for pathogen killing. Overexuberant neutrophil trafficking to the lung, however, causes bystander tissue injury and underlies several acute and chronic lung diseases. Due in part to the unique architecture of the lung's capillary network, the neutrophil follows a microanatomic passage into the distal airspace unlike that observed in other end-organs that it infiltrates. Several of the regulatory mechanisms underlying the stepwise recruitment of circulating neutrophils to the infected lung have been defined over the past few decades; however, fundamental questions remain. In this article, we provide an updated review and perspective on emerging roles for the neutrophil in lung biology, on the molecular mechanisms that control the trafficking of neutrophils to the lung, and on past and ongoing efforts to design therapeutics to intervene upon pulmonary neutrophilia in lung disease.


Asunto(s)
Infiltración Neutrófila/fisiología , Neutrófilos/inmunología , Quimiocinas/metabolismo , Factores Quimiotácticos/farmacología , Citocinas/metabolismo , Endotelio/inmunología , Endotelio/metabolismo , Matriz Extracelular/metabolismo , Humanos , Pulmón/inmunología , Pulmón/metabolismo , Enfermedades Pulmonares/inmunología , Enfermedades Pulmonares/metabolismo , Enfermedades Pulmonares/patología , Infiltración Neutrófila/efectos de los fármacos , Neutrófilos/citología , Neutrófilos/metabolismo
18.
Respir Res ; 22(1): 69, 2021 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-33632209

RESUMEN

BACKGROUND: CD34, a pan-selectin binding protein when glycosylated, has been shown to be involved in leukocyte migration to the site of inflammation. However, only one report is available on the expression and role of CD34 in neutrophil recruitment during acute lung inflammation. METHODS: We proceeded to study the role of CD34 in lung neutrophil migration using mouse model of endotoxin induced acute lung inflammation and studied over multiple time points, in generic CD34 knock-out (KO) strain. RESULTS: While there was no difference in BAL total or differential leukocyte counts, lung MPO content was lower in LPS exposed KO compared to WT group at 3 h time-point (p = 0.0308). The MPO levels in CD34 KO mice begin to rise at 9 h (p = 0.0021), as opposed to an early 3 h rise in WT mice (p = 0.0001), indicating that KO mice display delays in lung neutrophil recruitment kinetics. KO mice do not loose endotoxin induced lung vascular barrier properties as suggested by lower BAL total protein at 3 h (p = 0.0452) and 24 h (p = 0.0113) time-points. Several pro-inflammatory cytokines and chemokines (TNF-α, IL-1ß, KC, MIP-1α, IL-6, IL-10 and IL-12 p70 sub-unit; p < 0.05) had higher levels in WT compared to KO group, at 3 h. Lung immunofluorescence in healthy WT mice reveals CD34 expression in the bronchiolar epithelium, in addition to alveolar septa. CONCLUSION: Thus, given CD34's pan-selectin affinity, and expression in the bronchiolar epithelium as well as alveolar septa, our study points towards a role of CD34 in lung neutrophil recruitment but not alveolar migration, cytokine expression and lung inflammation.


Asunto(s)
Antígenos CD34/metabolismo , Mediadores de Inflamación/metabolismo , Lipopolisacáridos/toxicidad , Neumonía/inducido químicamente , Neumonía/metabolismo , Animales , Antígenos CD34/genética , Endotoxinas/toxicidad , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Infiltración Neutrófila/efectos de los fármacos , Infiltración Neutrófila/fisiología , Neumonía/genética
19.
Cancer Cell ; 39(3): 423-437.e7, 2021 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-33450198

RESUMEN

Lung metastasis is the major cause of breast cancer-related mortality. The neutrophil-associated inflammatory microenvironment aids tumor cells in metastatic colonization in lungs. Here, we show that tumor-secreted protease cathepsin C (CTSC) promotes breast-to-lung metastasis by regulating recruitment of neutrophils and formation of neutrophil extracellular traps (NETs). CTSC enzymatically activates neutrophil membrane-bound proteinase 3 (PR3) to facilitate interleukin-1ß (IL-1ß) processing and nuclear factor κB activation, thus upregulating IL-6 and CCL3 for neutrophil recruitment. In addition, the CTSC-PR3-IL-1ß axis induces neutrophil reactive oxygen species production and formation of NETs, which degrade thrombospondin-1 and support metastatic growth of cancer cells in the lungs. CTSC expression and secretion are associated with NET formation and lung metastasis in human breast tumors. Importantly, targeting CTSC with compound AZD7986 effectively suppresses lung metastasis of breast cancer in a mouse model. Overall, our findings reveal a mechanism of how tumor cells regulate neutrophils in metastatic niches and support CTSC-targeting approaches for cancer treatment.


Asunto(s)
Neoplasias de la Mama/metabolismo , Catepsina C/metabolismo , Trampas Extracelulares/metabolismo , Neoplasias Pulmonares/metabolismo , Infiltración Neutrófila/fisiología , Neutrófilos/metabolismo , Animales , Neoplasias de la Mama/patología , Línea Celular Tumoral , Femenino , Humanos , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Neoplasias Pulmonares/patología , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Neutrófilos/patología , Especies Reactivas de Oxígeno/metabolismo , Microambiente Tumoral/fisiología
20.
Cell Immunol ; 359: 104243, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33197723

RESUMEN

Excessive neutrophils are recruited to damaged tissue and cause collateral injury under chronic inflammatory conditions. Sphingosine 1-phosphate (S1P) modulates kinds of physiological and pathological actions by inducing recruitment of various cell types through S1P receptors (S1PRs). This study aimed to detect the S1P/S1PRs-mediated effects on neutrophil recruitment during chronic liver inflammation. In present study, increased neutrophils originated from bone marrow (BM) were detected in liver tissue of BDL-treated mice. Hepatic sphingosine kinase 1 (SphK, S1P rate-limiting enzyme) or S1P levels positively correlated with neutrophil marker expression in liver of mice and patients. In vitro, expression of S1PR1, S1PR2 and S1PR3 were detected in both mouse BM neutrophils and differentiated human neutrophil-like (dHL60) cells. S1P powerfully boosted the migration and cytoskeletal remodeling of BM neutrophils through S1PR1 or S1PR2. Different from BM neutrophils, the migration and cytoskeletal remodeling of dHL60 cells were mediated by S1PR2 or S1PR3. S1PR2 blockade obviously attenuates neutrophil infiltration in bile duct ligation (BDL)-induced mouse liver injury. In conclusion, S1P/S1PRs system plays a pivotal role in neutrophil recruitment.


Asunto(s)
Lisofosfolípidos/metabolismo , Infiltración Neutrófila/fisiología , Receptores de Esfingosina-1-Fosfato/metabolismo , Esfingosina/análogos & derivados , Adulto , Anciano , Animales , Células de la Médula Ósea/metabolismo , Movimiento Celular/efectos de los fármacos , Femenino , Humanos , Hígado/patología , Hepatopatías/metabolismo , Hepatopatías/fisiopatología , Lisofosfolípidos/inmunología , Macrófagos/metabolismo , Masculino , Ratones , Ratones Endogámicos ICR , Persona de Mediana Edad , Infiltración Neutrófila/inmunología , Neutrófilos/metabolismo , Receptores de Lisoesfingolípidos/metabolismo , Transducción de Señal/efectos de los fármacos , Esfingosina/inmunología , Esfingosina/metabolismo , Receptores de Esfingosina-1-Fosfato/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...