Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 426
Filtrar
1.
Physiol Plant ; 176(4): e14425, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38982330

RESUMEN

Flowering plants adjust their reproductive period to maximize the success of the offspring. Monocarpic plants, those with a single reproductive cycle that precedes plant senescence and death, tightly regulate both flowering initiation and flowering cessation. The end of the flowering period involves the arrest of the inflorescence meristem activity, known as proliferative arrest, in what has been interpreted as an evolutionary adaptation to maximize the allocation of resources to seed production and the viability of the progeny. Factors influencing proliferative arrest were described for several monocarpic plant species many decades ago, but only in the last few years studies performed in Arabidopsis have allowed to approach proliferative arrest regulation in a comprehensive manner by studying the physiology, hormone dynamics, and genetic factors involved in its regulation. However, these studies remain restricted to Arabidopsis and there is a need to expand our knowledge to other monocarpic species to propose general mechanisms controlling the process. In this work, we have characterized proliferative arrest in Pisum sativum, trying to parallel available studies in Arabidopsis to maximize this comparative framework. We have assessed quantitatively the role of fruits/seeds in the process, the influence of the positional effect of these fruits/seeds in the behavior of the inflorescence meristem, and the transcriptomic changes in the inflorescence associated with the arrested state of the meristem. Our results support a high conservation of the factors triggering arrest in pea and Arabidopsis, but also reveal differences reinforcing the need to perform similar studies in other species.


Asunto(s)
Flores , Regulación de la Expresión Génica de las Plantas , Inflorescencia , Meristema , Pisum sativum , Semillas , Meristema/genética , Meristema/crecimiento & desarrollo , Meristema/fisiología , Pisum sativum/genética , Pisum sativum/fisiología , Pisum sativum/crecimiento & desarrollo , Inflorescencia/genética , Inflorescencia/fisiología , Inflorescencia/crecimiento & desarrollo , Flores/genética , Flores/fisiología , Flores/crecimiento & desarrollo , Semillas/genética , Semillas/crecimiento & desarrollo , Semillas/fisiología , Latencia en las Plantas/genética , Latencia en las Plantas/fisiología
2.
Int J Mol Sci ; 25(12)2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38928203

RESUMEN

The morphological architecture of inflorescence influences seed production. The regulatory mechanisms underlying alfalfa (Medicago sativa) inflorescence elongation remain unclear. Therefore, in this study, we conducted a comparative analysis of the transcriptome, proteome, and metabolome of two extreme materials at three developmental stages to explore the mechanisms underlying inflorescence elongation in alfalfa. We observed the developmental processes of long and short inflorescences and found that the elongation capacity of alfalfa with long inflorescence was stronger than that of alfalfa with short inflorescences. Furthermore, integrative analysis of the transcriptome and proteome indicated that the phenylpropanoid biosynthesis pathway was closely correlated with the structural formation of the inflorescence. Additionally, we identified key genes and proteins associated with lignin biosynthesis based on the differential expressed genes and proteins (DEGs and DEPs) involved in phenylpropanoid biosynthesis. Moreover, targeted hormone metabolome analysis revealed that IAA, GA, and CK play an important role in the peduncle elongation of alfalfa inflorescences. Based on omics analysis, we detected key genes and proteins related to plant hormone biosynthesis and signal transduction. From the WGCNA and WPCNA results, we furthermore screened 28 candidate genes and six key proteins that were correlated with lignin biosynthesis, plant hormone biosynthesis, and signaling pathways. In addition, 19 crucial transcription factors were discovered using correlation analysis that might play a role in regulating candidate genes. This study provides insight into the molecular mechanism of inflorescence elongation in alfalfa and establishes a theoretical foundation for improving alfalfa seed production.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Inflorescencia , Lignina , Medicago sativa , Proteínas de Plantas , Transcriptoma , Medicago sativa/genética , Medicago sativa/crecimiento & desarrollo , Medicago sativa/metabolismo , Inflorescencia/crecimiento & desarrollo , Inflorescencia/genética , Inflorescencia/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Lignina/biosíntesis , Lignina/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Reguladores del Crecimiento de las Plantas/genética , Proteoma/metabolismo , Perfilación de la Expresión Génica , Proteómica/métodos , Metaboloma , Multiómica
3.
Mol Plant ; 17(7): 1019-1037, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38877701

RESUMEN

Maize develops separate ear and tassel inflorescences with initially similar morphology but ultimately different architecture and sexuality. The detailed regulatory mechanisms underlying these changes still remain largely unclear. In this study, through analyzing the time-course meristem transcriptomes and floret single-cell transcriptomes of ear and tassel, we revealed the regulatory dynamics and pathways underlying inflorescence development and sex differentiation. We identified 16 diverse gene clusters with differential spatiotemporal expression patterns and revealed biased regulation of redox, programmed cell death, and hormone signals during meristem differentiation between ear and tassel. Notably, based on their dynamic expression patterns, we revealed the roles of two RNA-binding proteins in regulating inflorescence meristem activity and axillary meristem formation. Moreover, using the transcriptional profiles of 53 910 single cells, we uncovered the cellular heterogeneity between ear and tassel florets. We found that multiple signals associated with either enhanced cell death or reduced growth are responsible for tassel pistil suppression, while part of the gibberellic acid signal may act non-cell-autonomously to regulate ear stamen arrest during sex differentiation. We further showed that the pistil-protection gene SILKLESS 1 (SK1) functions antagonistically to the known pistil-suppression genes through regulating common molecular pathways, and constructed a regulatory network for pistil-fate determination. Collectively, our study provides a deep understanding of the regulatory mechanisms underlying inflorescence development and sex differentiation in maize, laying the foundation for identifying new regulators and pathways for maize hybrid breeding and improvement.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Inflorescencia , Meristema , Transcriptoma , Zea mays , Zea mays/genética , Zea mays/crecimiento & desarrollo , Zea mays/metabolismo , Meristema/crecimiento & desarrollo , Meristema/genética , Meristema/metabolismo , Inflorescencia/crecimiento & desarrollo , Inflorescencia/genética , Inflorescencia/metabolismo , Transcriptoma/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Diferenciación Sexual/genética , Análisis de la Célula Individual
4.
Plant Sci ; 346: 112162, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38901780

RESUMEN

CrRLK1L subfamily members are involved in diverse growth- and development-related processes in Arabidopsis. However, the functions of their counterparts in rice are unknown. Here, OsANX expression was detected in developing inflorescences, mature pollen grains, and growing pollen tubes, and it was localized to the plasma membrane in pollen grains and tobacco epidermal cells. Homozygous osanx progeny could not be segregated from the CRISPR/Cas9-edited mutants osanx-c1+/- and osanx-c2+/-, and such progeny were segregated only occasionally from osanx-c3+/-. Further, all three alleles showed osanx male but not female gamete transmission defects, in line with premature pollen tube rupture in osanx-c3. Additionally, osanx-c3 exhibited precocious flowering, excessively branched inflorescences, and an extremely low seed setting rate of 1.4 %, while osanx-c2+/- and osanx-c3+/- had no obvious defects in inflorescence development or the seed setting rate compared to wild-type Nipponbare (Nip). Consistent with this, the complemented line pPS1:OsANX-GFP/osanx-c2 (PSC), in which the lack of OsANX expression was inflorescence-specific, showed slightly earlier flowering and overly-branched panicles. Multiple inflorescence meristem transition-related and inflorescence architecture-related genes were expressed at higher levels in osanx-c3 than in Nip; thus, they may partially account for the aforementioned mutant phenotypes. Our findings broaden our understanding of the biological functions of OsANX in rice.


Asunto(s)
Inflorescencia , Oryza , Proteínas de Plantas , Tubo Polínico , Oryza/genética , Oryza/crecimiento & desarrollo , Oryza/metabolismo , Oryza/enzimología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Inflorescencia/genética , Inflorescencia/crecimiento & desarrollo , Tubo Polínico/crecimiento & desarrollo , Tubo Polínico/genética , Flores/crecimiento & desarrollo , Flores/genética , Regulación de la Expresión Génica de las Plantas
5.
Curr Biol ; 34(11): 2330-2343.e4, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38781956

RESUMEN

Photoperiod insensitivity has been selected by breeders to help adapt crops to diverse environments and farming practices. In wheat, insensitive alleles of Photoperiod-1 (Ppd-1) relieve the requirement of long daylengths to flower by promoting expression of floral promoting genes early in the season; however, these alleles also limit yield by reducing the number and fertility of grain-producing florets through processes that are poorly understood. Here, we performed transcriptome analysis of the developing inflorescence using near-isogenic lines that contain either photoperiod-insensitive or null alleles of Ppd-1, during stages when spikelet number is determined and floret development initiates. We report that Ppd-1 influences the stage-specific expression of genes with roles in auxin signaling, meristem identity, and protein turnover, and analysis of differentially expressed transcripts identified bZIP and ALOG transcription factors, namely PDB1 and ALOG1, which regulate flowering time and spikelet architecture. These findings enhance our understanding of genes that regulate inflorescence development and introduce new targets for improving yield potential.


Asunto(s)
Flores , Regulación de la Expresión Génica de las Plantas , Inflorescencia , Fotoperiodo , Proteínas de Plantas , Transcriptoma , Triticum , Triticum/genética , Triticum/crecimiento & desarrollo , Triticum/metabolismo , Inflorescencia/genética , Inflorescencia/crecimiento & desarrollo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Flores/crecimiento & desarrollo , Flores/genética
6.
Curr Biol ; 34(11): 2344-2358.e5, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38781954

RESUMEN

Inflorescence architecture and crop productivity are often tightly coupled in our major cereal crops. However, the underlying genetic mechanisms controlling cereal inflorescence development remain poorly understood. Here, we identified recessive alleles of barley (Hordeum vulgare L.) HvALOG1 (Arabidopsis thaliana LSH1 and Oryza G1) that produce non-canonical extra spikelets and fused glumes abaxially to the central spikelet from the upper-mid portion until the tip of the inflorescence. Notably, we found that HvALOG1 exhibits a boundary-specific expression pattern that specifically excludes reproductive meristems, implying the involvement of previously proposed localized signaling centers for branch regulation. Importantly, during early spikelet formation, non-cell-autonomous signals associated with HvALOG1 expression may specify spikelet meristem determinacy, while boundary formation of floret organs appears to be coordinated in a cell-autonomous manner. Moreover, barley ALOG family members synergistically modulate inflorescence morphology, with HvALOG1 predominantly governing meristem maintenance and floral organ development. We further propose that spatiotemporal redundancies of expressed HvALOG members specifically in the basal inflorescence may be accountable for proper patterning of spikelet formation in mutant plants. Our research offers new perspectives on regulatory signaling roles of ALOG transcription factors during the development of reproductive meristems in cereal inflorescences.


Asunto(s)
Hordeum , Inflorescencia , Meristema , Proteínas de Plantas , Transducción de Señal , Hordeum/genética , Hordeum/crecimiento & desarrollo , Hordeum/metabolismo , Meristema/crecimiento & desarrollo , Meristema/genética , Meristema/metabolismo , Inflorescencia/crecimiento & desarrollo , Inflorescencia/genética , Inflorescencia/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas
7.
Nat Plants ; 10(5): 815-827, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38745100

RESUMEN

A comprehensive understanding of inflorescence development is crucial for crop genetic improvement, as inflorescence meristems give rise to reproductive organs and determine grain yield. However, dissecting inflorescence development at the cellular level has been challenging owing to a lack of specific marker genes to distinguish among cell types, particularly in different types of meristems that are vital for organ formation. In this study, we used spatial enhanced resolution omics-sequencing (Stereo-seq) to construct a precise spatial transcriptome map of the developing maize ear primordium, identifying 12 cell types, including 4 newly defined cell types found mainly in the inflorescence meristem. By extracting the meristem components for detailed clustering, we identified three subtypes of meristem and validated two MADS-box genes that were specifically expressed at the apex of determinate meristems and involved in stem cell determinacy. Furthermore, by integrating single-cell RNA transcriptomes, we identified a series of spatially specific networks and hub genes that may provide new insights into the formation of different tissues. In summary, this study provides a valuable resource for research on cereal inflorescence development, offering new clues for yield improvement.


Asunto(s)
Inflorescencia , Meristema , Transcriptoma , Zea mays , Zea mays/genética , Zea mays/crecimiento & desarrollo , Zea mays/metabolismo , Inflorescencia/genética , Inflorescencia/crecimiento & desarrollo , Meristema/genética , Meristema/crecimiento & desarrollo , Meristema/metabolismo , Regulación de la Expresión Génica de las Plantas , Perfilación de la Expresión Génica
8.
Curr Opin Plant Biol ; 79: 102539, 2024 06.
Artículo en Inglés | MEDLINE | ID: mdl-38599051

RESUMEN

Flowering is a vital process in a plant's lifecycle and variation for flowering-time has helped cereals adapt to diverse environments. Much cereal research has focused on understanding how flowering signals, or florigens, regulate the floral transition and timing of ear emergence. However, flowering genes also perform an enduring role during inflorescence development, with genotypes that elicit a weaker flowering signal producing more elaborately branched inflorescences with extra floret-bearing spikelets. While this outcome indicates that variable expression of flowering genes could boost yield potential, further analysis has shown that dampened florigen levels can compromise fertility, negating the benefit of extra grain-producing sites. Here, we discuss ways that florigens contribute to early and late inflorescence development, including their influence on branch/spikelet architecture and fertility. We propose that a deeper understanding of the role for florigens during inflorescence development could be used to balance the effects of florigens throughout flowering to improve productivity.


Asunto(s)
Grano Comestible , Fertilidad , Florigena , Inflorescencia , Inflorescencia/crecimiento & desarrollo , Inflorescencia/genética , Grano Comestible/crecimiento & desarrollo , Grano Comestible/genética , Fertilidad/genética , Florigena/metabolismo , Flores/crecimiento & desarrollo , Flores/genética , Regulación de la Expresión Génica de las Plantas
9.
J Exp Bot ; 75(13): 3903-3919, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38530289

RESUMEN

Sugars Will Eventually be Exported Transporters (SWEETs) are the most recently discovered family of plant sugar transporters. By acting as uniporters, SWEETs facilitate the diffusion of sugars across cell membranes and play an important role in various physiological processes such as abiotic stress adaptation. AtSWEET17, a vacuolar fructose facilitator, was shown to be involved in the modulation of the root system during drought. In addition, previous studies have shown that overexpression of an apple homolog leads to increased drought tolerance in tomato plants. Therefore, SWEET17 might be a molecular element involved in plant responses to drought. However, the role and function of SWEET17 in above-ground tissues of Arabidopsis under drought stress remain elusive. By combining gene expression analysis and stem architecture with the sugar profiles of different above-ground tissues, we uncovered a putative role for SWEET17 in carbohydrate supply and thus cauline branch elongation, especially during periods of carbon limitation, as occurs under drought stress. Thus, SWEET17 seems to be involved in maintaining efficient plant reproduction under drought stress conditions.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Sequías , Inflorescencia , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/crecimiento & desarrollo , Arabidopsis/fisiología , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Metabolismo de los Hidratos de Carbono , Regulación de la Expresión Génica de las Plantas , Inflorescencia/crecimiento & desarrollo , Inflorescencia/metabolismo , Inflorescencia/genética
10.
Plant Physiol ; 195(2): 1561-1585, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38318875

RESUMEN

The inflorescence (spadix) of skunk cabbage (Symplocarpus renifolius) is strongly thermogenic and can regulate its temperature at around 23 °C even when the ambient temperature drops below freezing. To elucidate the mechanisms underlying developmentally controlled thermogenesis and thermoregulation in skunk cabbage, we conducted a comprehensive transcriptome and metabolome analysis across 3 developmental stages of spadix development. Our RNA-seq analysis revealed distinct groups of expressed genes, with selenium-binding protein 1/methanethiol oxidase (SBP1/MTO) exhibiting the highest levels in thermogenic florets. Notably, the expression of alternative oxidase (AOX) was consistently high from the prethermogenic stage through the thermogenic stage in the florets. Metabolome analysis showed that alterations in nucleotide levels correspond with the developmentally controlled and tissue-specific thermogenesis of skunk cabbage, evident by a substantial increase in AMP levels in thermogenic florets. Our study also reveals that hydrogen sulfide, a product of SBP1/MTO, inhibits cytochrome c oxidase (COX)-mediated mitochondrial respiration, while AOX-mediated respiration remains relatively unaffected. Specifically, at lower temperatures, the inhibitory effect of hydrogen sulfide on COX-mediated respiration increases, promoting a shift toward the dominance of AOX-mediated respiration. Finally, despite the differential regulation of genes and metabolites throughout spadix development, we observed a convergence of gene expression and metabolite accumulation patterns during thermogenesis. This synchrony may play a key role in developmentally regulated thermogenesis. Moreover, such convergence during the thermogenic stage in the spadix may provide a solid molecular basis for thermoregulation in skunk cabbage.


Asunto(s)
Araceae , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Araceae/genética , Araceae/fisiología , Araceae/metabolismo , Oxidorreductasas/metabolismo , Oxidorreductasas/genética , Inflorescencia/genética , Transcriptoma/genética , Metaboloma , Termogénesis/genética , Proteínas Mitocondriales/metabolismo , Proteínas Mitocondriales/genética
11.
Int J Mol Sci ; 25(3)2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38339032

RESUMEN

Tassel weight (TW) is a crucial agronomic trait that significantly affects pollen supply and grain yield development in maize breeding. To improve maize yield and develop new varieties, a comprehensive understanding of the genetic mechanisms underlying tassel weight is essential. In this study, tropical maize inbred lines, namely CML312, CML373, CML444, and YML46, were selected as female parents and crossed with the elite maize inbred line Ye107, which served as the common male parent, to develop a multi-parent population comprising four F8 recombinant inbred line (RIL) subpopulations. Using 6616 high-quality single nucleotide polymorphism (SNP) markers, we conducted genome-wide association analysis (GWAS) and genomic selection (GS) on 642 F8 RILs in four subpopulations across three different environments. Through GWAS, we identified 16 SNPs that were significantly associated with TW, encompassing two stable loci expressed across multiple environments. Furthermore, within the candidate regions of these SNPs, we discovered four novel candidate genes related to TW, namely Zm00001d044362, Zm00001d011048, Zm00001d011049, and Zm00001d031173 distributed on chromosomes 1, 3, and 8, which have not been previously reported. These genes are involved in processes such as signal transduction, growth and development, protein splicing, and pollen development, all of which play crucial roles in inflorescence meristem development, directly affecting TW. The co-localized SNP, S8_137379725, on chromosome 8 was situated within a 16.569 kb long terminal repeat retrotransposon (LTR-RT), located 22.819 kb upstream and 26.428 kb downstream of the candidate genes (Zm00001d011048 and Zm00001d011049). When comparing three distinct GS models, the BayesB model demonstrated the highest accuracy in predicting TW. This study establishes the theoretical foundation for future research into the genetic mechanisms underlying maize TW and the efficient breeding of high-yielding varieties with desired tassel weight through GS.


Asunto(s)
Estudio de Asociación del Genoma Completo , Inflorescencia , Inflorescencia/genética , Sitios de Carácter Cuantitativo , Zea mays/genética , Fitomejoramiento , Fenotipo , Polimorfismo de Nucleótido Simple
12.
Mol Plant ; 17(1): 50-74, 2024 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-38130059

RESUMEN

Meristems are stem cell-containing structures that produce all plant organs and are therefore important targets for crop improvement. Developmental regulators control the balance and rate of cell divisions within the meristem. Altering these regulators impacts meristem architecture and, as a consequence, plant form. In this review, we discuss genes involved in regulating the shoot apical meristem, inflorescence meristem, axillary meristem, root apical meristem, and vascular cambium in plants. We highlight several examples showing how crop breeders have manipulated developmental regulators to modify meristem growth and alter crop traits such as inflorescence size and branching patterns. Plant transformation techniques are another innovation related to plant meristem research because they make crop genome engineering possible. We discuss recent advances on plant transformation made possible by studying genes controlling meristem development. Finally, we conclude with discussions about how meristem research can contribute to crop improvement in the coming decades.


Asunto(s)
Productos Agrícolas , Meristema , Productos Agrícolas/genética , Meristema/genética , Inflorescencia/genética , División Celular , Regulación de la Expresión Génica de las Plantas
13.
New Phytol ; 241(1): 490-503, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37858961

RESUMEN

Tassel branch number (TBN) is a key agronomic trait for adapting to high-density planting and grain yield in maize. However, the molecular regulatory mechanisms underlying tassel branching are still largely unknown. Here, we used molecular and genetic studies together to show that ZmELF3.1 plays a critical role in regulating TBN in maize. Previous studies showed that ZmELF3.1 forms the evening complex through interacting with ZmELF4 and ZmLUX to regulate flowering in maize and that RA2 and TSH4 (ZmSBP2) suppresses and promotes TBN in maize, respectively. In this study, we show that loss-of-function mutants of ZmELF3.1 exhibit a significant increase of TBN. We also show that RA2 directly binds to the promoter of TSH4 and represses its expression, thus leading to reduced TBN. We further demonstrate that ZmELF3.1 directly interacts with both RA2 and ZmELF4.2 to form tri-protein complexes that further enhance the binding of RA2 to the promoter of TSH4, leading to suppressed TSH4 expression and consequently decreased TBN. Our combined results establish a novel functional link between the ELF3-ELF4-RA2 complex and miR156-SPL regulatory module in regulating tassel branching and provide a valuable target for genetic improvement of tassel branching in maize.


Asunto(s)
Inflorescencia , Proteínas de Plantas , Sitios de Carácter Cuantitativo , Zea mays , Agricultura , Inflorescencia/genética , Fenotipo , Zea mays/genética , Zea mays/metabolismo , Proteínas de Plantas/metabolismo
14.
Genes (Basel) ; 14(12)2023 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-38137028

RESUMEN

Protein prenylation mediated by the Arabidopsis thaliana PLURIPETALA (AtPLP) gene plays a crucial role in plant growth, development, and environmental response by adding a 15-carbon farnesyl group or one to two 20-carbon geranylgeranyl groups onto one to two cysteine residues at the C-terminus of the target protein. However, the homologous genes and their functions of AtPLP in rapeseed are unclear. In this study, bioinformatics analysis and gene cloning demonstrated the existence of two homologous genes of AtPLP in the Brassica napus L. genome, namely, BnPLP1 and BnPLP2. Evolutionary analysis revealed that BnPLP1 originated from the B. rapa L. genome, while BnPLP2 originated from the B. oleracea L. genome. Genetic transformation analysis revealed that the overexpression of BnPLP1 in Arabidopsis plants exhibited earlier flowering initiation, a prolonged flowering period, increased plant height, and longer main inflorescence length compared to the wild type. Contrarily, the downregulation of BnPLP1 expression in B. napus plants led to delayed flowering initiation, shortened flowering period, decreased plant height, and reduced main inflorescence length compared to the wild type. These findings indicate that the BnPLP1 gene positively regulates flowering time, plant height, and main inflorescence length. This provides a new gene for the genetic improvement of flowering time and plant architecture in rapeseed.


Asunto(s)
Arabidopsis , Brassica napus , Brassica napus/genética , Inflorescencia/genética , Genes de Plantas , Arabidopsis/genética , Carbono
15.
Physiol Plant ; 175(6): e14088, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38148205

RESUMEN

Oilseed rape and other crops of Brassica napus have a high demand for boron (B). Boron deficiencies result in the inhibition of root growth, and eventually premature flower abortion. Understanding the genetic mechanisms underlying flower abortion in B-limiting conditions could provide the basis to enhance B-efficiency and prevent B-deficiency-related yield losses. In this study, we assessed transcriptomic responses to B-deficiency in diverse inflorescence tissues at multiple time points of soil-grown plants that were phenotypically unaffected by B-deficiency until early flowering. Whilst transcript levels of known B transporters were higher in B-deficient samples, these remained remarkably stable as the duration of B-deficiency increased. Meanwhile, GO-term enrichment analysis indicated a growing response resembling that of a pathogen or pest attack, escalating to a huge transcriptome response in shoot heads at mid-flowering. Grouping differentially expressed genes within this tissue into MapMan functional bins indicated enrichment of genes related to wounding, jasmonic acid and WRKY transcription factors. Individual candidate genes for controlling the "flowering-without-seed-setting" phenotype from within MapMan biotic stress bins include those of the metacaspase family, which have been implicated in orchestrating programmed cell death. Overall temporal expression patterns observed here imply a dynamic response to B-deficiency, first increasing expression of B transporters before recruiting various biotic stress-related pathways to coordinate targeted cell death, likely in response to as yet unidentified B-deficiency induced damage-associated molecular patterns (DAMPs). This response indicates new pathways to target and dissect to control B-deficiency-induced flower abortion and to develop more B-efficient crops.


Asunto(s)
Brassica napus , Transcriptoma , Transcriptoma/genética , Inflorescencia/genética , Inflorescencia/metabolismo , Brassica napus/genética , Brassica napus/metabolismo , Boro/metabolismo , Perfilación de la Expresión Génica , Proteínas de Transporte de Membrana/metabolismo
16.
BMC Plant Biol ; 23(1): 650, 2023 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-38102566

RESUMEN

BACKGROUND: The number of grains per panicle is an important factor in determining rice yield. The DST-OsCKX2 module has been demonstrated to regulate panicle development in rice by controlling cytokinin content. However, to date, how the function of DST-OsCKX2 module is regulated during panicle development remains obscure. RESULT: In this study, the ABNORMAL PANICLE 1 (ABP1), a severely allele of FRIZZY PANICLE (FZP), exhibits abnormal spikelets morphology. We show that FZP can repress the expression of DST via directly binding to its promotor. Consistently, the expression level of OsCKX2 increased and the cytokinin content decreased in the fzp mutant, suggesting that the FZP acts upstream of the DST-OsCKX2 to maintain cytokinin homeostasis in the inflorescence meristem. CONCLUSIONS: Our results indicate that FZP plays an important role in regulating spikelet development and grain number through mediating cytokinin metabolism.


Asunto(s)
Oryza , Oryza/metabolismo , Inflorescencia/genética , Citocininas/metabolismo , Grano Comestible/metabolismo , Proteínas de Plantas/metabolismo
17.
Plant Physiol Biochem ; 205: 108152, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37944242

RESUMEN

Secondary cell wall (SCW) thickening in plant inflorescence stems is a complicated cellular process that is essential for stem strength and biomass. Although Arabidopsis NAC transcription factor (TF) 1 (NST1) regulates the SCW thickening in anther walls, the single T-DNA-insertion mutant (nst1) does not show disrupted SCW thickening in anther endothecium, interfascicular fibers or xylem. To better understand the regulatory mechanism of this process, we generated an ethyl methanesulfonate (EMS)-mutagenized Arabidopsis population with the nst1 background. scd5 (SCW-defective mutant 5) was isolated in a forward genetic screen from the EMS mutant library, which displayed not only less lignin deposition in the interfascicular fiber and xylem than the wild type but also a pendent inflorescence stem. The EMS-induced mutation associated with the scd5 phenotype was found in the 5th exon of At2G46030 that encodes a ubiquitin-conjugating enzyme (UBC6), we thereby renamed the allele nst1 ubc6. Overexpressing UBC6 in nst1 ubc6 rescued the defective SCW, whereas disrupting UBC6 in nst1 by the CRISPR/Cas9 system caused a phenotype similar to that observed in nst1 ubc6. UBC6 was localized to the nucleus and plasma membrane, and possessed E2 ubiquitin-conjugating activity in vitro. MYB7 and MYB32 are considered as transcription repressors in the phenylpropanoid pathway and are involved in NAC TF-related transcriptional regulation in SCW thickening. UBC6 can interact with MYB7 and MYB32 and positively mediate the degradation of MYB7 and MYB32 by the 26S proteasome. Overall, these results indicated the contribution of UBC6 to SCW thickening in Arabidopsis inflorescence stems.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Enzimas Ubiquitina-Conjugadoras/genética , Enzimas Ubiquitina-Conjugadoras/metabolismo , Inflorescencia/genética , Regulación de la Expresión Génica de las Plantas , Pared Celular/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
18.
New Phytol ; 240(6): 2404-2418, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37845836

RESUMEN

Rice panicles, a major component of yield, are regulated by phytohormones and nutrients. How mineral nutrients promote panicle architecture remains largely unknown. Here, we report that NIN-LIKE PROTEIN3 and 4 (OsNLP3/4) are crucial positive regulators of rice panicle architecture in response to nitrogen (N). Loss-of-function mutants of either OsNLP3 or OsNLP4 produced smaller panicles with reduced primary and secondary branches and fewer grains than wild-type, whereas their overexpression plants showed the opposite phenotypes. The OsNLP3/4-regulated panicle architecture was positively correlated with N availability. OsNLP3/4 directly bind to the promoter of OsRFL and activate its expression to promote inflorescence meristem development. Furthermore, OsRFL activates OsMOC1 expression by binding to its promoter. Our findings reveal the novel N-responsive OsNLP3/4-OsRFL-OsMOC1 module that integrates N availability to regulate panicle architecture, shedding light on how N nutrient signals regulate panicle architecture and providing candidate targets for the improvement of crop yield.


Asunto(s)
Oryza , Oryza/metabolismo , Inflorescencia/genética , Regiones Promotoras Genéticas/genética , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
19.
Curr Opin Plant Biol ; 76: 102451, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37739867

RESUMEN

Hormones played a fundamental role in improvement of yield in cereal grasses. Natural variants affecting gibberellic acid (GA) and auxin pathways were used to breed semi-dwarf varieties of rice, wheat, and sorghum, during the "Green Revolution" in the 20th century. Since then, variants with altered GA and cytokinin homeostasis have been used to breed cereals with increased grain number. These yield improvements were enabled by hormonal regulation of intercalary and inflorescence meristems. Recent advances have highlighted additional pathways, beyond the traditional CLAVATA-WUSCHEL pathway, in the regulation of auxin and cytokinin in inflorescence meristems, and have expanded our understanding of the role of GA in intercalary meristems.


Asunto(s)
Inflorescencia , Poaceae , Poaceae/genética , Poaceae/metabolismo , Inflorescencia/genética , Inflorescencia/metabolismo , Meristema/genética , Meristema/metabolismo , Fitomejoramiento , Citocininas/metabolismo , Ácidos Indolacéticos , Grano Comestible/genética , Grano Comestible/metabolismo , Regulación de la Expresión Génica de las Plantas
20.
Plant Sci ; 336: 111863, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37683984

RESUMEN

Flowering time and floret numbers are important ornamental characteristics of chrysanthemums that control their adaptability and inflorescence morphology, respectively. The FRUITFULL (FUL) gene plays a key role in inducing flowering and inflorescence meristem development. In this study, we isolated a homolog of the MADS-box gene FUL, CmFUL-Like 1 (CmFL1), from chrysanthemum inflorescence buds. Quantitative RT-PCR and in situ analyses showed that CmFL1 was strongly expressed in young inflorescence buds. Overexpression of CmFL1 caused early flowering while co-suppression expression of CmFL1 increased the number of florets. Furthermore, the floral promoting factors CmSOC1, CmFDL1, and CmLFY were up-regulated in the shoot tips of transgenic plants. In addition, RNA-seq analysis of the transgenic plants suggested that certain differentially expressed genes (DEGs)-such as MADS-box, homeobox family, and ethylene pathway genes-may be involved in the inflorescence meristem development. GO pathway enrichment analysis showed that the differentially transcribed genes enriched the representation of the carbohydrate metabolic pathway, which is critical for flower development. Overall, our findings revealed the conserved function of CmFL1 in controlling flowering time along with a novel function in regulating the number of florets.


Asunto(s)
Chrysanthemum , Flores , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Inflorescencia/genética , Inflorescencia/metabolismo , Regulación de la Expresión Génica de las Plantas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...