Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 117
Filtrar
1.
J Am Vet Med Assoc ; 262(S1): S40-S49, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38621412

RESUMEN

The ability to genetically redirect the antigenic specificity of T cells using chimeric antigen receptors (CAR) has led to unprecedented durable clinical remissions in human patients with relapsed/refractory hematological malignancies. This remarkable advance in successful immune cell engineering has now led to investigations into the application of CAR-T-cell technology to treat nonmalignant diseases. The use of CAR-T cells to target and eliminate specific cell subsets involved in the pathogenesis of autoimmunity, fibrosis, senescence, and infectious disease represents a new direction for adoptive cell therapies. While the use of CAR-T cells for nonmalignant disease is still in its infancy, early reports of dramatic clinical responses to CAR-T cells targeting CD19+ B cells in patients with severe autoimmune disease raise the possibility that this approach could lead to durable remissions, eliminating the need for ongoing conventional immunosuppressive therapies. Excitingly, nonmalignant disease processes that may be addressed by CAR-T-cell therapy in humans also occur in our canine populations. Given that technologies for developing canine CAR constructs are now available, robust protocols have been described for generating canine CAR-T cells, and experience is being gathered with their clinical use in oncology, it is anticipated that CAR-T cells will soon enter the veterinary clinics for the treatment of debilitating nonmalignant diseases. Here, we provide a broad overview of CAR-T-cell therapies for nonmalignant diseases and extrapolate these advances into the veterinary space, highlighting areas in which canine CAR-T cells are poised to enter the clinics for the treatment of nonmalignant disease.


Asunto(s)
Enfermedades de los Perros , Linfocitos T , Perros , Animales , Enfermedades de los Perros/terapia , Enfermedades de los Perros/inmunología , Linfocitos T/inmunología , Linfocitos T/trasplante , Ingeniería Genética/veterinaria , Inmunoterapia/veterinaria
2.
J Vet Sci ; 25(1): e10, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38311323

RESUMEN

In livestock industry, there is growing interest in methods to increase the production efficiency of livestock to address food shortages, given the increasing global population. With the advancements in gene engineering technology, it is a valuable tool and has been intensively utilized in research specifically focused on human disease. In historically, this technology has been used with livestock to create human disease models or to produce recombinant proteins from their byproducts. However, in recent years, utilizing gene editing technology, cattle with identified genes related to productivity can be edited, thereby enhancing productivity in response to climate change or specific disease instead of producing recombinant proteins. Furthermore, with the advancement in the efficiency of gene editing, it has become possible to edit multiple genes simultaneously. This cattle breed improvement has been achieved by discovering the genes through the comprehensive analysis of the entire genome of cattle. The cattle industry has been able to address gene bottlenecks that were previously impossible through conventional breeding systems. This review concludes that gene editing is necessary to expand the cattle industry, improving productivity in the future. Additionally, the enhancement of cattle through gene editing is expected to contribute to addressing environmental challenges associated with the cattle industry. Further research and development in gene editing, coupled with genomic analysis technologies, will significantly contribute to solving issues that conventional breeding systems have not been able to address.


Asunto(s)
Edición Génica , Ingeniería Genética , Animales , Bovinos/genética , Humanos , Edición Génica/veterinaria , Ingeniería Genética/métodos , Ingeniería Genética/veterinaria , Cruzamiento , Genoma , Ganado/genética , Proteínas Recombinantes
3.
Annu Rev Anim Biosci ; 12: 369-390, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-37906838

RESUMEN

End-stage organ failure can result from various preexisting conditions and occurs in patients of all ages, and organ transplantation remains its only treatment. In recent years, extensive research has been done to explore the possibility of transplanting animal organs into humans, a process referred to as xenotransplantation. Due to their matching organ sizes and other anatomical and physiological similarities with humans, pigs are the preferred organ donor species. Organ rejection due to host immune response and possible interspecies infectious pathogen transmission have been the biggest hurdles to xenotransplantation's success. Use of genetically engineered pigs as tissue and organ donors for xenotransplantation has helped to address these hurdles. Although several preclinical trials have been conducted in nonhuman primates, some barriers still exist and demand further efforts. This review focuses on the recent advances and remaining challenges in organ and tissue xenotransplantation.


Asunto(s)
Trasplante de Órganos , Trasplantes , Animales , Humanos , Porcinos , Trasplante Heterólogo/veterinaria , Trasplante de Órganos/veterinaria , Ingeniería Genética/veterinaria
5.
Biol Reprod ; 106(1): 24-46, 2022 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-34668968

RESUMEN

Generating biopharmaceuticals in genetically engineered bioreactors continues to reign supreme. Hence, genetically engineered birds have attracted considerable attention from the biopharmaceutical industry. Fairly recent genome engineering methods have made genome manipulation an easy and affordable task. In this review, we first provide a broad overview of the approaches and main impediments ahead of generating efficient and reliable genetically engineered birds, and various factors that affect the fate of a transgene. This section provides an essential background for the rest of the review, in which we discuss and compare different genome manipulation methods in the pre-clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR era in the field of avian genome engineering.


Asunto(s)
Aves/genética , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Ingeniería Genética/veterinaria , Animales , Animales Modificados Genéticamente , Productos Biológicos , Femenino , Técnicas de Sustitución del Gen/métodos , Técnicas de Transferencia de Gen/tendencias , Técnicas de Transferencia de Gen/veterinaria , Ingeniería Genética/métodos , Vectores Genéticos , Masculino , Espermatozoides
6.
Int J Mol Sci ; 22(14)2021 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-34299109

RESUMEN

The domestic goat (Capra aegagrus hircus), a mammalian species with high genetic merit for production of milk and meat, can be a tremendously valuable tool for transgenic research. This research is focused on the production and multiplication of genetically engineered or genome-edited cloned specimens by applying somatic cell nuclear transfer (SCNT), which is a dynamically developing assisted reproductive technology (ART). The efficiency of generating the SCNT-derived embryos, conceptuses, and progeny in goats was found to be determined by a variety of factors controlling the biological, molecular, and epigenetic events. On the one hand, the pivotal objective of our paper was to demonstrate the progress and the state-of-the-art achievements related to the innovative and highly efficient solutions used for the creation of transgenic cloned does and bucks. On the other hand, this review seeks to highlight not only current goals and obstacles but also future challenges to be faced by the approaches applied to propagate genetically modified SCNT-derived goats for the purposes of pharmacology, biomedicine, nutritional biotechnology, the agri-food industry, and modern livestock breeding.


Asunto(s)
Animales Modificados Genéticamente/genética , Clonación de Organismos/veterinaria , Embrión de Mamíferos/citología , Ingeniería Genética/veterinaria , Técnicas de Transferencia Nuclear/veterinaria , Animales , Animales Modificados Genéticamente/crecimiento & desarrollo , Cabras
7.
Annu Rev Anim Biosci ; 9: 453-478, 2021 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-33186503

RESUMEN

Genetically engineered (GE) livestock were first reported in 1985, and yet only a single GE food animal, the fast-growing AquAdvantage salmon, has been commercialized. There are myriad interconnected reasons for the slow progress in this once-promising field, including technical issues, the structure of livestock industries, lack of public research funding and investment, regulatory obstacles, and concern about public opinion. This review focuses on GE livestock that have been produced and documents the difficulties that researchers and developers have encountered en route. Additionally, the costs associated with delayed commercialization of GE livestock were modeled using three case studies: GE mastitis-resistant dairy cattle, genome-edited porcine reproductive and respiratory syndrome virus-resistant pigs, and the AquAdvantage salmon. Delays of 5 or 10 years in the commercialization of GE livestock beyond the normative 10-year GE product evaluation period were associated with billions of dollars in opportunity costs and reduced global food security.


Asunto(s)
Animales Modificados Genéticamente , Ingeniería Genética/legislación & jurisprudencia , Ingeniería Genética/veterinaria , Animales , Bovinos , Femenino , Ganado/genética , Mastitis Bovina/genética , Mastitis Bovina/prevención & control , Síndrome Respiratorio y de la Reproducción Porcina/genética , Síndrome Respiratorio y de la Reproducción Porcina/prevención & control , Salmón/genética , Salmón/crecimiento & desarrollo , Porcinos , Factores de Tiempo
8.
Theriogenology ; 150: 229-235, 2020 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-32000993

RESUMEN

Historically, genetic engineering in livestock proved to be challenging. Without stable embryonic stem cell lines to utilize, somatic cell nuclear transfer (SCNT) had to be employed to produce many of the genetically engineered (GE) livestock models. Through the genetic engineering of somatic cells followed by SCNT, GE livestock models could be generated carrying site-specific modifications. Although successful, only a few GE livestock models were generated because of low efficiency and associated birth defects. Recently, there have been major strides in the development of genome editing tools: Zinc-Finger Nucleases (ZFNs), Transcription activator-like effector nucleases (TALENS), and Clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated 9 (Cas9) system. These tools rely on the generation of a double strand DNA break, followed by one of two repair pathways: non-homologous end joining (NHEJ) or homology directed repair (HDR). Compared to the traditional approaches, these tools dramatically reduce time and effort needed to establish a GE animal. Another benefit of utilizing genome editing tools is the application of direct injection into developing embryos to induce targeted mutations, therefore, eliminating side effects associated with SCNT. Emerging technological advancements of genome editing systems have dramatically improved efficiency to generate GE livestock models for both biomedical and agricultural purposes. Although the efficiency of genome editing tools has revolutionized GE livestock production, improvements for safe and consistent application are desired. This review will provide an overview of genome editing techniques, as well as examples of GE livestock models for agricultural and biomedical purposes.


Asunto(s)
Animales Modificados Genéticamente , Edición Génica/veterinaria , Ingeniería Genética/veterinaria , Ganado/genética , Animales , Sistemas CRISPR-Cas
9.
Theriogenology ; 140: 33-43, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31425935

RESUMEN

We report for the first time, a comparison of two approaches for artificially induced triploidy in zebrafish (Danio rerio) using cold shock and heat shock treatments. Of the two methods, heat shock treatment proved more effective with a triploid production rate of 100% in particular females. Subsequently, triploid zebrafish larvae were used as recipients for intraperitoneal transplantation of ovarian and testicular cells originating from vas:EGFP strain in order to verify their suitability for surrogate reproduction. Production of donor-derived sperm was achieved in 23% of testicular cell recipients and 16% of ovarian cell recipients, indicating the suitability of triploids as surrogate hosts for germ cell transplantation. Success of the transplantation was confirmed by positive GFP signal detected in gonads of dissected fish and stripped sperm. Germline transmission was confirmed by fertilization tests followed by PCR analysis of embryos with GFP specific primers. Reproductive success of germline chimera triploids evaluated as fertilization rate and progeny development was comparable to control groups.


Asunto(s)
Ingeniería Genética/veterinaria , Células Germinativas/trasplante , Triploidía , Pez Cebra/genética , Animales , Cruzamiento/métodos , Femenino , Citometría de Flujo , Ingeniería Genética/métodos , Masculino , Temperatura
10.
Biol Reprod ; 101(1): 177-187, 2019 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-31095680

RESUMEN

Gene editing technologies, such as CRISPR-Cas9, have important applications in mammalian embryos for generating novel animal models in biomedical research and lines of livestock with enhanced production traits. However, the lack of methods for efficient introduction of gene editing reagents into zygotes of various species and the need for surgical embryo transfer in mice have been technical barriers of widespread use. Here, we described methodologies that overcome these limitations for embryos of mice, cattle, and pigs. Using mutation of the Nanos2 gene as a readout, we refined electroporation parameters with preassembled sgRNA-Cas9 RNPs for zygotes of all three species without the need for zona pellucida dissolution that led to high-efficiency INDEL edits. In addition, we optimized culture conditions to support maturation from zygote to the multicellular stage for all three species that generates embryos ready for transfer to produce gene-edited animals. Moreover, for mice, we devised a nonsurgical embryo transfer method that yields offspring at an efficiency comparable to conventional surgical approaches. Collectively, outcomes of these studies provide simplified pipelines for CRISPR-Cas9-based gene editing that are applicable in a variety of mammalian species.


Asunto(s)
Sistemas CRISPR-Cas/genética , Clonación de Organismos/métodos , Electroporación/métodos , Embrión de Mamíferos/citología , Edición Génica/métodos , Ingeniería Genética/métodos , Animales , Bovinos/embriología , Células Cultivadas , Clonación de Organismos/veterinaria , Electroporación/veterinaria , Técnicas de Cultivo de Embriones/métodos , Técnicas de Cultivo de Embriones/veterinaria , Transferencia de Embrión/métodos , Transferencia de Embrión/veterinaria , Embrión de Mamíferos/metabolismo , Femenino , Edición Génica/veterinaria , Técnicas de Transferencia de Gen/veterinaria , Ingeniería Genética/veterinaria , Masculino , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteínas de Unión al ARN/genética , Porcinos/embriología
11.
BMC Vet Res ; 15(1): 6, 2019 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-30606265

RESUMEN

BACKGROUND: Actinobacillus pleuropneumoniae is the causative agent of porcine pleuropneumonia and represents a major burden to the livestock industry. Virulence can largely be attributed to the secretion of a series of haemolytic toxins, which are highly immunogenic. A. pleuropneumoniae also encodes a cytoplasmic N-glycosylation system, which involves the modification of high molecular weight adhesins with glucose residues. Central to this process is the soluble N-glycosyl transferase, ngt, which is encoded in an operon with a subsequent glycosyl transferase, agt. Plasmid-borne recombinant expression of these genes in E. coli results in the production of a glucose polymer on peptides containing the appropriate acceptor sequon, NX(S/T). However to date, there is little evidence to suggest that such a glucose polymer is formed on its target peptides in A. pleuropneumoniae. Both the toxins and glycosylation system represent potential targets for the basis of a vaccine against A. pleuropneumoniae infection. RESULTS: In this study, we developed cytoplasmic glycoengineering to construct glycoconjugate vaccine candidates composed of soluble toxin fragments modified by glucose. We transferred ngt and agt to the chromosome of Escherichia coli in order to generate a native-like operon for glycoengineering. A single chromosomal copy of ngt and agt resulted in the glucosylation of toxin fragments by a short glycan, rather than a polymer. CONCLUSIONS: A vaccine candidate that combines toxin fragment with a conserved glycan offers a novel approach to generating epitopes important for both colonisation and disease progression.


Asunto(s)
Infecciones por Actinobacillus/veterinaria , Actinobacillus pleuropneumoniae/inmunología , Toxinas Bacterianas/inmunología , Vacunas Bacterianas/inmunología , Infecciones por Actinobacillus/inmunología , Infecciones por Actinobacillus/prevención & control , Animales , Escherichia coli/genética , Ingeniería Genética/métodos , Ingeniería Genética/veterinaria , Glicoconjugados/genética , Glicoconjugados/inmunología , Microorganismos Modificados Genéticamente/genética , Pleuroneumonía/inmunología , Pleuroneumonía/prevención & control , Pleuroneumonía/veterinaria , Porcinos , Enfermedades de los Porcinos/inmunología , Enfermedades de los Porcinos/microbiología , Enfermedades de los Porcinos/prevención & control , Vacunas Conjugadas/inmunología
12.
Vet Pathol ; 56(1): 24-32, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30381015

RESUMEN

There is a growing need to quantitate or "score" lesions in mouse models of human disease, for correlation with human disease and to establish their clinical relevance. Several standard semiquantitative scoring schemes have been adapted for nonneoplastic lesions; similarly, the pathologist must carefully select an approach to score mouse models of cancer. Genetically engineered mouse models with a continuum of precancerous and cancerous lesions and xenogeneic models of various derivations present unique challenges for the pathologist. Important considerations include experimental design, understanding of the human disease being modeled, standardized classification of lesions, and approaches for semiquantitative and/or quantitative scoring in the model being evaluated. Quantification should be considered for measuring the extent of neoplasia and expression of tumor biomarkers. Semiquantitative scoring schemes have been devised that include severity, frequency, and distribution of lesions. Although labor-intensive, scoring mouse models of cancer provides numerical data that enable statistical analysis and greater translational impact.


Asunto(s)
Ingeniería Genética/veterinaria , Neoplasias Experimentales/patología , Animales , Biomarcadores de Tumor , Modelos Animales de Enfermedad , Xenoinjertos , Humanos , Procesamiento de Imagen Asistido por Computador , Ratones
13.
Reprod Fertil Dev ; 32(2): 40-49, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32188556

RESUMEN

Traditionally, genetic engineering in the pig was a challenging task. Genetic engineering of somatic cells followed by somatic cell nuclear transfer (SCNT) could produce genetically engineered (GE) pigs carrying site-specific modifications. However, due to difficulties in engineering the genome of somatic cells and developmental defects associated with SCNT, a limited number of GE pig models were reported. Recent developments in genome-editing tools, such as zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs) and the clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated (Cas) 9 system, have markedly changed the effort and time required to produce GE pig models. The frequency of genetic engineering in somatic cells is now practical. In addition, SCNT is no longer essential in producing GE pigs carrying site-specific modifications, because direct injection of genome-editing systems into developing embryos introduces targeted modifications. To date, the CRISPR/Cas9 system is the most convenient, cost-effective, timely and commonly used genome-editing technology. Several applicable biomedical and agricultural pig models have been generated using the CRISPR/Cas9 system. Although the efficiency of genetic engineering has been markedly enhanced with the use of genome-editing systems, improvements are still needed to optimally use the emerging technology. Current and future advances in genome-editing strategies will have a monumental effect on pig models used in agriculture and biomedicine.


Asunto(s)
Agricultura/tendencias , Investigación Biomédica/tendencias , Sistemas CRISPR-Cas/genética , Edición Génica/veterinaria , Ingeniería Genética/veterinaria , Porcinos/genética , Agricultura/métodos , Animales , Animales Modificados Genéticamente , Investigación Biomédica/métodos , Edición Génica/métodos , Ingeniería Genética/métodos , Ingeniería Genética/tendencias , Mejoramiento Genético/métodos
14.
Rev Sci Tech ; 37(1): 97-112, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30209426

RESUMEN

For centuries, animal breeders have intentionally selected the parents of the next generation based on their concept of the 'ideal' animal. The dramatic differences seen in the appearance and productivity of different breeds show the power of such selection on DNA sequence variations. Unfortunately, the global furore over the use of modern biotechnologies to introduce desired genetic variations into animal breeding programmes, and the regulatory uncertainty associated with these recombinant DNA techniques, has effectively precluded the use of these technologies in food animal breeding programmes. Ironically, many of these early transgenic animal applications targeted traits that favoured sustainability, such as disease resistance and decreased environmental impact. As a consequence, transgenic animals have had little opportunity to affect global agriculture, and only a handful of pharmaceutical applications have been successfully commercialised. New developments in genome editing hold considerable promise for targeting traits that improve both animal health and welfare, and frequently involve no introduction of DNA sequences from other species. Nonetheless, future global regulation and public acceptance of such methods remain uncertain. Proposals to regulate genome-edited animals based solely on the process used to influence DNA sequence variations (i.e. intentional genome editing) and any potential attendant risks, with no counterbalancing consideration of the ensuing benefits or risks associated with conventional selection programmes, will potentially forestall the use of genome editing in animal breeding programmes. No activity can survive a risk-only evaluation, and there are considerable opportunity costs associated with preventing breeders' access to safe technologies in order to achieve genetic improvements in livestock populations.


Pendant des siècles, les éleveurs ont exercé une sélection des reproducteurs au sein de leurs troupeaux afin de donner naissance à de nouvelles générations d'animaux correspondant à leur conception de l'animal d'élevage « idéal ¼. Les différences d'aspect et de productivité constatées entre les différentes races démontrent l'importance des effets de cette sélection sur les mutations des séquences d'ADN. Malheureusement, l'indignation planétaire suscitée par le recours aux biotechnologies modernes pour introduire des traits d'amélioration génétique chez les animaux d'élevage et les incertitudes sur la réglementation applicable aux techniques de l'ADN recombiné ont eu pour effet d'exclure l'utilisation de ces technologies dans les programmes d'élevage d'animaux destinés à la consommation humaine. L'ironie de la chose est que la plupart des premières applications recourant aux animaux transgéniques visaient à introduire des traits favorisant un élevage durable, par exemple des traits induisant une résistance contre certaines maladies ou permettant de diminuer l'impact environnemental des élevages. En conséquence, les conditions n'étaient guère réunies pour que les animaux transgéniques contribuent à transformer l'agriculture mondiale et seules quelques rares applications pharmaceutiques, ont pu être mises au point et commercialisées avec succès. Les récents développements de l'édition génomique ouvrent des voies extrêmement prometteuses pour cibler des traits permettant d'améliorer la santé et le bien-être des animaux, très souvent sans qu'il soit nécessaire d'introduire des séquences d'ADN provenant d'autres espèces. Néanmoins, des incertitudes subsistent sur l'évolution de la réglementation mondiale en la matière et sur l'acceptation sociale de ces méthodes à l'avenir. On peut donc s'attendre à ce que l'utilisation de l'édition génomique dans les programmes de sélection animale sera devancée par des propositions visant à la réglementer ; ces propositions ne prendront en compte que le processus induisant une modification ciblée de séquences d'ADN et les risques potentiels qui lui sont associés, sans les contrebalancer par un examen des bénéfices apportés ni des risques inhérents aux programmes de sélection classiques. Aucune activité ne peut survivre à une évaluation basée exclusivement sur les risques ; par ailleurs, les coûts d'opportunité induits par le fait d'empêcher les éleveurs d'accéder à des technologies sûres pour améliorer le patrimoine génétique des populations d'animaux d'élevage sont considérables.


Durante siglos, los criadores de animales han seleccionado intencionadamente a los progenitores de la siguiente generación en función de su concepción de animal «idóneo¼. Las espectaculares diferencias de aspecto externo y productividad que se observan entre las distintas razas ponen de manifiesto el poder de esta selección ejercida sobre las variaciones de secuencias de ADN. Lamentablemente, el clamor mundial contra el empleo de las modernas biotecnologías para introducir las variaciones genéticas deseadas en los programas de producción animal, sumado a las incertidumbres reglamentarias existentes en torno a esas técnicas de ADN recombinante, han obstaculizado el uso eficaz de estas tecnologías en programas de cría selectiva de animales destinados a la producción alimentaria. Irónicamente, muchas de esas primeras aplicaciones de animales transgénicos tenían que ver con rasgos que favorecían la sostenibilidad, como la resistencia a enfermedades o la reducción del impacto ambiental. Como consecuencia, apenas ha habido ocasión de que los animales transgénicos influyan en la agricultura mundial y solo se han comercializado con éxito un puñado de aplicaciones farmacéuticas. Las últimas novedades surgidas en la edición genómica parecen bastante prometedoras para actuar sobre rasgos que mejoren tanto la salud como el bienestar de los animales, a menudo sin que ello requiera la introducción de secuencias de ADN de otras especies. Sin embargo, sigue reinando la incertidumbre acerca del grado de aceptación pública y la futura reglamentación de tales métodos a escala mundial. Lo más probable es que las propuestas de reglamentar la cuestión de los animales obtenidos por edición genómica atendiendo únicamente al proceso empleado para obtener variantes de secuencias de ADN (esto es, la edición genómica deliberada) y a los eventuales riesgos conexos (sin tener en cuenta, en contrapartida, los consiguientes beneficios o riesgos asociados a los programas de selección convencionales) desemboquen en la imposibilidad de aplicar la edición genómica a programas de cría selectiva de animales. No hay actividad alguna que pueda superar el filtro de una evaluación basada únicamente en el riesgo, y el hecho de impedir que los criadores accedan a tecnologías seguras para lograr la mejora genética de sus poblaciones de ganado entraña importantes costos de oportunidad.


Asunto(s)
Animales Modificados Genéticamente , Edición Génica/veterinaria , Ingeniería Genética/veterinaria , Crianza de Animales Domésticos/economía , Crianza de Animales Domésticos/legislación & jurisprudencia , Bienestar del Animal , Animales , Cruzamiento , Edición Génica/legislación & jurisprudencia , Ingeniería Genética/legislación & jurisprudencia , Genoma , Ganado/genética , Estados Unidos
15.
Pesqui. vet. bras ; 38(5): 883-888, May 2018. graf
Artículo en Inglés | LILACS, VETINDEX | ID: biblio-955401

RESUMEN

Theileria parva is the causative agent of East Coast Fever (ECF), a tick borne disease, which results in major economic losses in cattle. Major problems in dealing with this illness are the high cost of drugs, development of resistance, and absence of effective vaccines. Thus, exploiting new targets for cost effective and higher therapeutic value drugs are imperative. Glycolysis is the main pathway for generation of ATP in T. parva, given its development inside erythrocytes. Thus, the enzymes of this pathway may prove potential targets for designing new-generation anti-theilerials. Lactate dehydrogenase of T. parva (TpLDH) has the highest activity of all glycolytic enzymes and thus we selected this enzyme as the potential therapeutic target. Our study is the first to report the isolation, removal of introns through directed mutagenesis, and cloning of TpLDH and showing that amino acid insertions or deletions most notably corresponded to a 5-amino acid sequence (Asn-91A, Glu-91B, Glu-91C, Trp-91D, Asn-91E) between Ser-91 ve Arg-92 of the enzyme. This region is also present in other apicomplexan such as Babesia bovis, a pathogen of cattle and Plasmodium falciparum, a human pathogen. Providing as the attachment site for the enzyme inhibitors and not being present in LDH of respective hosts, we propose this site as an attractive drug target. The work here is expected to lead new studies on detailed structural and kinetic aspects of apicomplexan LDHs and development of new inhibitors.(AU)


Asunto(s)
Ingeniería Genética/veterinaria , Theileria parva/genética , Oxidorreductasas/análisis
16.
Reprod Domest Anim ; 52 Suppl 4: 39-47, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-29052327

RESUMEN

Genome modification at specific loci in livestock species was only achievable by performing homologous recombination in somatic cells followed by somatic cell nuclear transfer. The difficulty and inefficiency of this method have slowed down the multiple applications of genome modification in farm animals. The discovery of site-specific endonucleases has provided a different and more direct route for targeted mutagenesis, as these enzymes allow the ablation (KO) or insertion (KI) of specific genomic sequences on a single step, directly applied to zygotes. Clustered regularly interspaced short palindromic repeats (CRISPR), the last site-specific endonuclease to be developed, is a RNA-guided endonuclease, easy to engineer and direct to a given target site. This technology has been successfully applied to rabbits, swine, goats, sheep and cattle, situating genome editing in livestock species at an attainable distance, thereby empowering scientist to develop a myriad of applications. Genetically modified livestock animals can be used as biomodels to study human or livestock physiology and disease, as bioreactors to produce complex proteins, or as organ donors for transplantation. Specifically on livestock production, genome editing in farm animals may serve to improve productive genetic traits, to improve various animal products, to confer resistance to diseases or to minimize the environmental impact on farming. In this review, we provide an overview of the current methods for site-specific genome modification in livestock species, discuss potential and already developed applications of genome edition in farm animals and debate about the possibilities for approval of products derived from gene-edited animals for human consumption.


Asunto(s)
Animales Modificados Genéticamente , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Ganado/genética , Animales , Alimentos Modificados Genéticamente/normas , Edición Génica/métodos , Edición Génica/veterinaria , Ingeniería Genética/métodos , Ingeniería Genética/veterinaria , Genoma
17.
Vet Res ; 48(1): 40, 2017 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-28784184

RESUMEN

Introduction of novel inactivated oil-emulsion vaccines against different strains of prevailing and emerging low pathogenic avian influenza (LPAI) viruses is not an economically viable option for poultry. Engineering attenuated Salmonella Gallinarum (S. Gallinarum) vaccine delivering H5 LPAI antigens can be employed as a bivalent vaccine against fowl typhoid and LPAI viruses, while still offering economic viability and sero-surveillance capacity. In this study, we developed a JOL1814 bivalent vaccine candidate against LPAI virus infection and fowl typhoid by engineering the attenuated S. Gallinarum to deliver the globular head (HA1) domain of hemagglutinin protein from H5 LPAI virus through pMMP65 constitutive expression plasmid. The important feature of the developed JOL1814 was the delivery of the HA1 antigen to cytosol of peritoneal macrophages. Immunization of chickens with JOL1814 produced significant level of humoral, mucosal, cellular and IL-2, IL-4, IL-17 and IFN-γ cytokine immune response against H5 HA1 and S. Gallinarum antigens in the immunized chickens. Post-challenge, only the JOL1814 immunized chicken showed significantly faster clearance of H5N3 virus in oropharyngeal and cloacal swabs, and 90% survival rate against lethal challenge with a wild type S. Gallinarum. Furthermore, the JOL1814 immunized were differentiated from the H5N3 LPAI virus infected chickens by matrix (M2) gene-specific real-time PCR. In conclusion, the data from the present showed that the JOL1814 can be an effective bivalent vaccine candidate against H5N3 LPAI and fowl typhoid infection in poultry while still offering sero-surveillance property against H5 avian influenza virus.


Asunto(s)
Antígenos Virales/inmunología , Subtipo H5N8 del Virus de la Influenza A/inmunología , Vacunas contra la Influenza/uso terapéutico , Gripe Aviar/prevención & control , Enfermedades de las Aves de Corral/prevención & control , Salmonelosis Animal/prevención & control , Animales , Antígenos Virales/administración & dosificación , Pollos/inmunología , Pollos/microbiología , Pollos/virología , Ingeniería Genética/métodos , Ingeniería Genética/veterinaria , Vacunas contra la Influenza/inmunología , Gripe Aviar/inmunología , Gripe Aviar/virología , Enfermedades de las Aves de Corral/inmunología , Enfermedades de las Aves de Corral/microbiología , Enfermedades de las Aves de Corral/virología , Salmonella/inmunología , Salmonelosis Animal/inmunología , Salmonelosis Animal/microbiología , Vacunas Atenuadas/inmunología , Vacunas Atenuadas/uso terapéutico , Vacunas Sintéticas/inmunología , Vacunas Sintéticas/uso terapéutico
18.
Theriogenology ; 93: 1-6, 2017 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-28257857

RESUMEN

The development of transgenic technologies in the Cashmere goat (Capra hircus) has the potential to improve the quality of the meat and wool. The piggyBac (PB) transposon system is highly efficient and can be used to transpose specific target genes into the genome. Here, we developed a PB transposon system to produce transgenic Cashmere goat fetal fibroblasts (GFFs) with the enhanced green fluorescent protein (EGFP). We then used the genetically modified GFFs as nuclear donors to generate transgenic embryos by somatic cell nuclear transfer (SCNT). The embryos (n = 40) were implanted into female goats (n = 20). One transgenic kid that expressed EGFP throughout the surface features of its body was born. This result demonstrated the usefulness of PB transposon system in generating transgenic Cashmere goats.


Asunto(s)
Animales Modificados Genéticamente/genética , Ingeniería Genética/veterinaria , Cabras/genética , Animales , Animales Recién Nacidos/genética , ADN/análisis , Elementos Transponibles de ADN , Transferencia de Embrión , Femenino , Feto/citología , Fibroblastos , Ingeniería Genética/métodos , Proteínas Fluorescentes Verdes , Carne , Técnicas de Transferencia Nuclear/veterinaria , Embarazo , Transfección/veterinaria , Lana
19.
Theriogenology ; 91: 90-97, 2017 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-28215692

RESUMEN

Chicken is a dual-purpose animal important from both agricultural and medical aspects. Even though significant improvements have been made in chicken transgenesis technologies, chicken genome manipulation has not been widely used in developmental biology. This study was aimed to evaluate chicken egg white nuclease properties and thereof plausibility of devising an in vivo transfection technology without causing physical damage to the embryo. First, the nuclease activity of egg albumen was assessed. The egg white nucleases were strongly active in degrading DNA and RNA. The egg white DNase activity was comparable to commercially available DNase-I. Nuclease activities were also assessed after heating, proteinase K, or EDTA treatment. Unlike proteinase K, both heating and EDTA were noticeably effective for the nuclease inactivation. Simultaneous application of lipoplex form of DNA (1 µg pDB2: 3 µl Lipofectamine2000) and EDTA showed a synergistic effect in protection against egg white nucleases. Finally, we injected the lipoplexes with or without EDTA close to the embryo at day0, but outside the embryonic epiblast. Implementation of a scrutinized PCR assay indicated that transfection took place only when EDTA was complemented to the lipoplexes. The transfection rate of day4 embryos and the hatched chicks were 54.5 and 30.0%, respectively. EGFP expression was detected in two out of three transgenic chicks. In conclusion, this study provided a detail analysis of chicken egg albumen nuclease properties and suggested the feasibility of developing a puncture-free handmade technology for transfection of the chicken embryo.


Asunto(s)
Pollos/genética , Ingeniería Genética/veterinaria , Transfección/veterinaria , Animales , Animales Modificados Genéticamente , Embrión de Pollo , Desoxirribonucleasas/química , Ácido Edético/farmacología , Ingeniería Genética/métodos , Lípidos/farmacología , Ovalbúmina/química , Transfección/métodos
20.
Exp Anim ; 66(1): 1-16, 2017 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-27760894

RESUMEN

Reproductive engineering techniques are essential for assisted reproduction of animals and generation of genetically modified animals. They may also provide invaluable research models for understanding the mechanisms involved in the developmental and reproductive processes. At the RIKEN BioResource Center (BRC), I have sought to develop new reproductive engineering techniques, especially those related to cryopreservation, microinsemination (sperm injection), nuclear transfer, and generation of new stem cell lines and animals, hoping that they will support the present and future projects at BRC. I also want to combine our techniques with genetic and biochemical analyses to solve important biological questions. We expect that this strategy makes our research more unique and refined by providing deeper insights into the mechanisms that govern the reproductive and developmental systems in mammals. To make this strategy more effective, it is critical to work with experts in different scientific fields. I have enjoyed collaborations with about 100 world-recognized laboratories, and all our collaborations have been successful and fruitful. This review summarizes development of reproductive engineering techniques at BRC during these 15 years.


Asunto(s)
Animales Modificados Genéticamente , Ingeniería Genética/veterinaria , Técnicas Reproductivas , Animales , Criopreservación , Inseminación Artificial , Japón , Técnicas de Transferencia Nuclear , Trasplante de Células Madre
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA