RESUMEN
The prefrontal cortex (PFC) plays an important role in social behavior and is sensitive to stressful circumstances. Challenging life conditions might change PFC function and put individuals at risk for maladaptive social behavior. The excitation-inhibition (EI) balance of prefrontal neurons appears to play a crucial role in this process. Here, we examined how a challenging life condition in C57BL/6JolaHsd mice, i.e. group-housing 6 mice in a complex environment for 10 days in adulthood, changes the EI-balance of infralimbic prefrontal neurons in layer 2/3, compared to standard pair-housing. Slices were prepared from "undisturbed" mice, i.e. the first mouse taken from the cage, or mice taken â¼15â¯min later, who were mildly aroused after removal of the first mouse. We observed a housing-condition by arousal-state interaction, with in the complex housing group an elevated EI-balance in undisturbed and reduced EI-balance in mildly aroused animals, while no differences were observed in standard housed animals. The change was explained by a shift in mIPSC and mEPSC frequency, while amplitudes remained unaffected. Female mice showed no housing-by-state interaction, but a main effect of housing was found for mIPSCs, with a higher frequency in complex- versus standard-housed females. No effects were observed in males who were complex-housed from a young age onwards. Explorative investigations support a potential mediating role of corticosterone in housing effects on the EI-balance of males. We argue that taking the arousal state of individuals into account is necessary to better understand the consequences of exposure to challenging life conditions for prefrontal function.
Asunto(s)
Vivienda para Animales , Ratones Endogámicos C57BL , Corteza Prefrontal , Animales , Corteza Prefrontal/fisiología , Masculino , Femenino , Ratones , Neuronas/fisiología , Inhibición Neural/fisiología , Nivel de Alerta/fisiología , Estrés Psicológico/fisiopatología , Estrés Psicológico/metabolismoRESUMEN
OBJECTIVES: The objective of this study was to investigate whether residual inhibition (RI), which provides information on the relationship between tinnitus and increased spontaneous activity in the auditory system, is a predictor for the success of sound enrichment treatment. DESIGN: Tinnitus patients were divided into two groups based on whether RI was achieved (RI+) or not (RI-). All participants underwent sound enrichment. Psychosomatic measures (for tinnitus severity, discomfort, attention deficit and sleep difficulties), Tinnitus Handicap Inventory (THI), minimum masking level (MML), and tinnitus loudness level (TLL) results were compared before and at 1, 3, and 6 months after treatment. STUDY SAMPLE: Sixty-seven chronic tinnitus patients were divided into two groups based on whether RI was achieved (RI+) or not (RI-). There were 38 patients in the RI+ group and 29 in the RI- group. RESULTS: There was a statistically significant difference between the groups in psychosomatic measures, THI, MML and TLL scores at the post-treatment 6 months after treatment (p <.05). There was a statistically significant decrease in psychosomatic measures, THI, MML and TLL scores during the treatment period in the RI+ group, but not in the RI- group. CONCLUSION: RI may predict the prognosis of tinnitus treatments used in clinics to reduce the spontaneous firing rate of neurons in the central auditory system, and that RI positivity may be a predictor of treatment success in sound enrichment.
Asunto(s)
Acúfeno , Acúfeno/terapia , Acúfeno/fisiopatología , Humanos , Masculino , Femenino , Persona de Mediana Edad , Adulto , Resultado del Tratamiento , Estimulación Acústica/métodos , Inhibición Neural/fisiología , Anciano , Sonido , Enmascaramiento Perceptual/fisiologíaRESUMEN
The present study uses electron microscopy to document ultrastructural characteristics of hippocampal GABAergic inhibitory synapses under resting and stimulated conditions in three experimental systems. Synaptic profiles were sampled from stratum pyramidale and radiatum of the CA1 region from (1) perfusion fixed mouse brains, (2) immersion fixed rat organotypic slice cultures, and from (3) rat dissociated hippocampal cultures of mixed cell types. Synapses were stimulated in the brain by a 5 min delay in perfusion fixation to trigger an ischemia-like excitatory condition, and by treating the two culture systems with 90 mM high K+ for 2-3 min to depolarize the neurons. Upon such stimulation conditions, the presynaptic terminals of the inhibitory synapses exhibited similar structural changes to those seen in glutamatergic excitatory synapses, with depletion of synaptic vesicles, increase of clathrin-coated vesicles and appearance of synaptic spinules. However, in contrast to excitatory synapses, no structural differences were detected in the postsynaptic compartment of the inhibitory synapses upon stimulation. There were no changes in the appearance of material associated with the postsynaptic membrane or the length and curvature of the membrane. Also no change was detected in the labeling density of gephyrin, a GABAergic synaptic marker, lining the postsynaptic membrane. Furthermore, virtually all inhibitory synaptic clefts remained rigidly apposed, unlike in the case of excitatory synapses where ~ 20-30% of cleft edges were open upon stimulation, presumably to facilitate the clearance of neurotransmitters from the cleft. The fact that no open clefts were induced in inhibitory synapses upon stimulation suggests that inhibitory input may not need to be toned down under these conditions. On the other hand, similar to excitatory synapse, EGTA (a calcium chelator) induced open clefts in ~ 18% of inhibitory synaptic cleft edges, presumably disrupting similar calcium-dependent trans-synaptic bridges in both types of synapses.
Asunto(s)
Hipocampo , Sinapsis , Animales , Sinapsis/ultraestructura , Hipocampo/ultraestructura , Ratones , Ratas , Vesículas Sinápticas/ultraestructura , Vesículas Sinápticas/metabolismo , Ratones Endogámicos C57BL , Inhibición Neural/fisiología , Terminales Presinápticos/ultraestructura , Terminales Presinápticos/fisiología , Ratas Sprague-Dawley , Proteínas de la MembranaRESUMEN
The anterior cingulate cortex (ACC) is one of the critical brain areas for processing noxious information. Previous studies showed that peripheral nerve injury induced broad changes in the ACC, contributing to pain hypersensitivity. The neurons in layer 3 (L3) of the ACC receive the inputs from the mediodorsal thalamus (MD) and form the feedforward inhibition (FFI) microcircuits. The effects of peripheral nerve injury on the MD-driven FFI in L3 of ACC are unknown. In our study, we record the enhanced excitatory synaptic transmissions from the MD to L3 of the ACC in mice with common peroneal nerve ligation, affecting FFI. Chemogenetically activating the MD-to-ACC projections induces pain sensitivity and place aversion in naive mice. Furthermore, chemogenetically inactivating MD-to-ACC projections decreases pain sensitivity and promotes place preference in nerve-injured mice. Our results indicate that the peripheral nerve injury changes the MD-to-ACC projections, contributing to pain hypersensitivity and aversion.
Asunto(s)
Giro del Cíngulo , Traumatismos de los Nervios Periféricos , Animales , Giro del Cíngulo/fisiopatología , Traumatismos de los Nervios Periféricos/fisiopatología , Ratones , Masculino , Ratones Endogámicos C57BL , Inhibición Neural , Neuronas/fisiología , Nervio Peroneo/lesiones , Nervio Peroneo/fisiopatología , Tálamo/fisiopatologíaRESUMEN
The fruit fly Drosophila melanogaster has emerged as a key model organism in neuroscience, in large part due to the concentration of collaboratively generated molecular, genetic and digital resources available for it. Here we complement the approximately 140,000 neuron FlyWire whole-brain connectome1 with a systematic and hierarchical annotation of neuronal classes, cell types and developmental units (hemilineages). Of 8,453 annotated cell types, 3,643 were previously proposed in the partial hemibrain connectome2, and 4,581 are new types, mostly from brain regions outside the hemibrain subvolume. Although nearly all hemibrain neurons could be matched morphologically in FlyWire, about one-third of cell types proposed for the hemibrain could not be reliably reidentified. We therefore propose a new definition of cell type as groups of cells that are each quantitatively more similar to cells in a different brain than to any other cell in the same brain, and we validate this definition through joint analysis of FlyWire and hemibrain connectomes. Further analysis defined simple heuristics for the reliability of connections between brains, revealed broad stereotypy and occasional variability in neuron count and connectivity, and provided evidence for functional homeostasis in the mushroom body through adjustments of the absolute amount of excitatory input while maintaining the excitation/inhibition ratio. Our work defines a consensus cell type atlas for the fly brain and provides both an intellectual framework and open-source toolchain for brain-scale comparative connectomics.
Asunto(s)
Encéfalo , Conectoma , Curaduría de Datos , Drosophila melanogaster , Neuronas , Animales , Femenino , Masculino , Encéfalo/citología , Encéfalo/fisiología , Curaduría de Datos/métodos , Drosophila melanogaster/citología , Drosophila melanogaster/fisiología , Cuerpos Pedunculados/citología , Cuerpos Pedunculados/fisiología , Neuronas/citología , Neuronas/fisiología , Neuronas/clasificación , Reproducibilidad de los Resultados , Atlas como Asunto , Heurística , Inhibición NeuralRESUMEN
Inhibitory interneurons are pivotal components of cortical circuits. Beyond providing inhibition, they have been proposed to coordinate the firing of excitatory neurons within cell assemblies. While the roles of specific interneuron subtypes have been extensively studied, their influence on pyramidal cell synchrony in vivo remains elusive. Employing an all-optical approach in mice, we simultaneously recorded hippocampal interneurons and pyramidal cells and probed the network influence of individual interneurons using optogenetics. We demonstrate that CA1 interneurons form a functionally interconnected network that promotes synchrony through disinhibition during awake immobility, while preserving endogenous cell assemblies. Our network model underscores the importance of both cell assemblies and dense, unspecific interneuron connectivity in explaining our experimental findings, suggesting that interneurons may operate not only via division of labor but also through concerted activity.
Asunto(s)
Hipocampo , Interneuronas , Optogenética , Células Piramidales , Animales , Interneuronas/fisiología , Células Piramidales/fisiología , Ratones , Hipocampo/fisiología , Red Nerviosa/fisiología , Inhibición Neural/fisiología , Región CA1 Hipocampal/fisiología , Región CA1 Hipocampal/citología , Potenciales de Acción/fisiología , Masculino , Ratones Endogámicos C57BLRESUMEN
Memory consolidation assimilates recent experiences into long-term memory. This process requires the replay of learned sequences, although the content of these sequences remains controversial. Recent work has shown that the statistics of replay deviate from those of experience: stimuli that are experientially salient may be either recruited or suppressed from sharp-wave ripples. In this study, we found that this phenomenon can be explained parsimoniously and biologically plausibly by a Hebbian spike-time-dependent plasticity rule at inhibitory synapses. Using models at three levels of abstraction-leaky integrate-and-fire, biophysically detailed and abstract binary-we show that this rule enables efficient generalization, and we make specific predictions about the consequences of intact and perturbed inhibitory dynamics for network dynamics and cognition. Finally, we use optogenetics to artificially implant non-generalizable representations into the network in awake behaving mice, and we find that these representations also accumulate inhibition during sharp-wave ripples, experimentally validating a major prediction of our model. Our work outlines a potential direct link between the synaptic and cognitive levels of memory consolidation, with implications for both normal learning and neurological disease.
Asunto(s)
Hipocampo , Plasticidad Neuronal , Animales , Plasticidad Neuronal/fisiología , Hipocampo/fisiología , Ratones , Modelos Neurológicos , Masculino , Inhibición Neural/fisiología , Ratones Endogámicos C57BL , Generalización Psicológica/fisiología , Consolidación de la Memoria/fisiología , Optogenética , Sinapsis/fisiología , Potenciales de Acción/fisiologíaRESUMEN
We demonstrate a model of chirp-velocity sensitivity in the inferior colliculus (IC) that retains the tuning to amplitude modulation (AM) that was established in earlier models. The mechanism of velocity sensitivity is sequence detection by octopus cells of the posteroventral cochlear nucleus, which have been proposed in physiological studies to respond preferentially to the order of arrival of cross-frequency inputs of different amplitudes. Model architecture is based on coincidence detection of a combination of excitatory and inhibitory inputs. Chirp-sensitivity of the IC output is largely controlled by the strength and timing of the chirp-sensitive octopus-cell inhibitory input. AM tuning is controlled by inhibition and excitation that are tuned to the same frequency. We present several example neurons that demonstrate the feasibility of the model in simulating realistic chirp-sensitivity and AM tuning for a wide range of characteristic frequencies. Additionally, we explore the systematic impact of varying parameters on model responses. The proposed model can be used to assess the contribution of IC chirp-velocity sensitivity to responses to complex sounds, such as speech.
Asunto(s)
Estimulación Acústica , Simulación por Computador , Colículos Inferiores , Modelos Neurológicos , Neuronas , Colículos Inferiores/fisiología , Neuronas/fisiología , Animales , Percepción Auditiva/fisiología , Vías Auditivas/fisiología , Potenciales de Acción/fisiología , Inhibición Neural/fisiologíaRESUMEN
The brainstem is a hub for sensorimotor integration, which mediates crucial innate behaviors. This brain region is characterized by a rich population of GABAergic inhibitory neurons, required for the proper expression of these innate behaviors. However, what roles these inhibitory neurons play in innate behaviors and how they function are still not fully understood. Here, we show that inhibitory neurons in the nucleus of the optic tract and dorsal-terminal nuclei (NOT-DTN) of the mouse can modulate the innate eye movement optokinetic reflex (OKR) by shaping the tuning properties of excitatory NOT-DTN neurons. Specifically, we demonstrate that although these inhibitory neurons do not directly induce OKR, they enhance the visual feature selectivity of OKR behavior, which is mediated by the activity of excitatory NOT-DTN neurons. Moreover, consistent with the sharpening role of inhibitory neurons in OKR behavior, they have broader tuning relative to excitatory neurons. Last, we demonstrate that inhibitory NOT-DTN neurons directly provide synaptic inhibition to nearby excitatory neurons and sharpen their tuning in a sustained manner, accounting for the enhanced feature selectivity of OKR behavior. In summary, our findings uncover a fundamental principle underlying the computational role of inhibitory neurons in brainstem sensorimotor circuits.
Asunto(s)
Tronco Encefálico , Animales , Ratones , Tronco Encefálico/fisiología , Masculino , Neuronas/fisiología , Movimientos Oculares/fisiología , Ratones Endogámicos C57BL , Neuronas GABAérgicas/fisiología , Femenino , Inhibición Neural/fisiologíaRESUMEN
Background. Tremor is a cardinal symptom of Parkinson's disease (PD) that manifests itself through complex oscillatory activity across multiple neuronal populations. According to the finger-dimmer-switch (FDS) theory, tremor is triggered by transient pathological activity in the basal ganglia-thalamo-cortical (BTC) network (the finger) and transitions into an oscillatory form within the inner circuitry of the thalamus (the switch). The cerebello-thalamo-cortical (CTC) network (the dimmer) is then involved in sustaining and amplifying tremor amplitude. In this study, we aimed to investigate the generation and progression dynamics of PD tremor oscillations by developing a comprehensive and interacting FDS model that transitions sequentially from healthy to PD to tremor and then to tremor-off state.Methods.We constructed a computational model consisting of 700 neurons in 11 regions of BTC, CTC, and thalamic networks. Transition from healthy to PD state was simulated through modulating dopaminergic synaptic connections; and further from PD to tremor and tremor-off by modulating projections between the thalamic reticular nucleus (TRN), anterior ventrolateral nucleus (VLa), and posterior ventrolateral nucleus (VLp).Results.Sustained oscillations in the frequency range of PD tremor emerged in thalamic VLp (5 Hz) and cerebellar dentate nucleus (3 Hz). Increasing self-inhibition in the thalamus through dopaminergic modulation significantly decreased tremor amplitude.Conclusion/Significance.Our results confirm the mechanistic power of the FDS theory in describing the PD tremor phenomenon and emphasize the role of dopaminergic modulation on thalamic self-inhibition. These insights pave the way for novel therapeutic strategies aimed at reducing the tremor by strengthening thalamic self-inhibition, particularly in dopamine-resistant patients.
Asunto(s)
Dopamina , Modelos Neurológicos , Enfermedad de Parkinson , Tálamo , Temblor , Enfermedad de Parkinson/fisiopatología , Humanos , Tálamo/fisiopatología , Temblor/fisiopatología , Dopamina/metabolismo , Red Nerviosa/fisiopatología , Vías Nerviosas/fisiopatología , Inhibición Neural/fisiología , Dedos/fisiología , Cerebelo/fisiopatología , Ganglios Basales/fisiopatología , Corteza Cerebral/fisiopatologíaRESUMEN
The ability to perform intricate movements is crucial for human motor function. The neural mechanisms underlying precision and power grips are incompletely understood. Corticospinal output from M1 is thought to be modulated by GABAA-ergic intracortical networks within M1. The objective of our study was to investigate the contribution of M1 intracortical inhibition to fine motor control using adaptive threshold hunting (ATH) with paired-pulse TMS during pinch and grasp. We hypothesized that short-interval intracortical inhibition (SICI) could be assessed during voluntary activation and that corticomotor excitability and SICI modulation would be greater during pinch than grasp, reflecting corticospinal control. Seventeen healthy participants performed gradual pinch and grasp tasks. Using ATH, paired-pulse TMS was applied in the anterior-posterior current direction to measure MEP latencies, corticomotor excitability, and SICI. MEP latencies indicated that the procedure preferentially targeted late I-waves. In terms of corticomotor excitability, there was no difference in the TMS intensity required to reach the MEP target during pinch and grasp. Greater inhibition was found during pinch than during grasp. ATH with paired-pulse TMS permits investigation of intracortical inhibitory networks and their modulation during the performance of dexterous motor tasks revealing a greater modulation of GABAA-ergic inhibition contributing to SICI during pinch compared with grasp. NEW & NOTEWORTHY Primary motor cortex intracortical inhibition was investigated during dexterous manual task performance using adaptive threshold hunting. Motor cortex intracortical inhibition was uniquely modulated during pinching versus grasping tasks.
Asunto(s)
Potenciales Evocados Motores , Fuerza de la Mano , Corteza Motora , Inhibición Neural , Estimulación Magnética Transcraneal , Humanos , Corteza Motora/fisiología , Masculino , Femenino , Adulto , Potenciales Evocados Motores/fisiología , Inhibición Neural/fisiología , Fuerza de la Mano/fisiología , Adulto Joven , Destreza Motora/fisiología , Desempeño Psicomotor/fisiologíaRESUMEN
Paired-pulse transcranial magnetic stimulation is a valuable tool for investigating inhibitory mechanisms in motor cortex. We recently demonstrated its use in measuring cortical inhibition in visual cortex, using an approach in which participants trace the size of phosphenes elicited by stimulation to occipital cortex. Here, we investigate age-related differences in primary visual cortical inhibition and the relationship between primary visual cortical inhibition and local GABA+ in the same region, estimated using magnetic resonance spectroscopy. GABA+ was estimated in 28 young (18 to 28 years) and 47 older adults (65 to 84 years); a subset (19 young, 18 older) also completed a paired-pulse transcranial magnetic stimulation session, which assessed visual cortical inhibition. The paired-pulse transcranial magnetic stimulation measure of inhibition was significantly lower in older adults. Uncorrected GABA+ in primary visual cortex was also significantly lower in older adults, while measures of GABA+ that were corrected for the tissue composition of the magnetic resonance spectroscopy voxel were unchanged with age. Furthermore, paired-pulse transcranial magnetic stimulation-measured inhibition and magnetic resonance spectroscopy-measured tissue-corrected GABA+ were significantly positively correlated. These findings are consistent with an age-related decline in cortical inhibition in visual cortex and suggest paired-pulse transcranial magnetic stimulation effects in visual cortex are driven by GABAergic mechanisms, as has been demonstrated in motor cortex.
Asunto(s)
Envejecimiento , Espectroscopía de Resonancia Magnética , Inhibición Neural , Estimulación Magnética Transcraneal , Corteza Visual , Ácido gamma-Aminobutírico , Humanos , Estimulación Magnética Transcraneal/métodos , Adulto , Anciano , Masculino , Femenino , Adulto Joven , Espectroscopía de Resonancia Magnética/métodos , Inhibición Neural/fisiología , Ácido gamma-Aminobutírico/metabolismo , Anciano de 80 o más Años , Adolescente , Envejecimiento/fisiología , Corteza Visual/fisiología , Corteza Visual/diagnóstico por imagenRESUMEN
Reciprocal inhibition (RI) between leg muscles is crucial for smooth movement. Pedaling is a rhythmic movement that can increase RI in healthy individuals. Transcutaneous spinal cord stimulation (tSCS) stimulates spinal neural circuits by targeting the afferent fibers. Pedaling with simultaneous tSCS may modulate the plasticity of the spinal neural circuit and alter neural activity based on movement and muscle engagement. This study investigated the RI changes after pedaling and tSCS and determined the phase of pedaling in which tSCS should be applied for optimal RI modulation in healthy individuals. Eleven subjects underwent three interventions: pedaling combined with tSCS during the early phase of lower extension (phase 1), pedaling combined with tSCS during the late phase of lower flexion (phase 4) of the pedaling cycle, and pedaling combined with sham tSCS. The RI from the tibialis anterior to the soleus muscle was assessed before, immediately after, 15 min, and 30 min after the intervention. RI increased immediately after phase 4 and pedaling combined with sham tSCS, whereas no changes were observed after phase 1. These results demonstrate that tSCS modulates RI changes induced by pedaling in a stimulus phase-dependent manner in healthy individuals. However, the mechanism involved in this intervention needs to be explored to achieve higher efficacy.
Asunto(s)
Músculo Esquelético , Estimulación de la Médula Espinal , Humanos , Masculino , Adulto , Adulto Joven , Femenino , Estimulación de la Médula Espinal/métodos , Músculo Esquelético/fisiología , Inhibición Neural/fisiología , Médula Espinal/fisiología , Electromiografía , Ciclismo/fisiologíaRESUMEN
Cerebellar brain inhibition (CBI) is an inhibitory output from the cerebellum to the primary motor cortex, which is decreased in early motor learning. Transcranial random noise stimulation (tRNS) is a noninvasive brain stimulation to induce brain plastic changes; however, the effects of cerebellar tRNS on CBI and motor learning have not been investigated yet to our knowledge. In this study, whether cerebellar tRNS decreases CBI and improves motor learning was examined, and pupil diameter was measured to examine physiological changes due to the effect of tRNS on motor learning. Thirty-four healthy subjects were assigned to either the cerebellar tRNS group or the Sham group. The subjects performed visuomotor tracking task with ten trials each in the early and late learning stages while receiving the stimulus intervention. CBI and motor evoked potentials were measured before the learning task, after the early learning stage, and after the late learning stage, and pupil diameter was measured during the task. There was no change in CBI in both groups. No group differences in motor learning rates were observed at any learning stages. Pupil diameter was smaller in the late learning stage than in the early learning stage in both groups. The cerebellar tRNS was suggested not to induce changes in CBI and improvement in motor learning, and it did not affect pupil diameter.
Asunto(s)
Cerebelo , Potenciales Evocados Motores , Aprendizaje , Desempeño Psicomotor , Pupila , Estimulación Transcraneal de Corriente Directa , Humanos , Masculino , Femenino , Pupila/fisiología , Cerebelo/fisiología , Aprendizaje/fisiología , Adulto Joven , Adulto , Potenciales Evocados Motores/fisiología , Desempeño Psicomotor/fisiología , Inhibición Neural/fisiología , Corteza Motora/fisiologíaRESUMEN
Adolescent inhibition of thalamocortical projections from postnatal days P20 to 50 leads to long-lasting deficits in prefrontal cortex function and cognition in the adult mouse. While this suggests a role of thalamic activity in prefrontal cortex maturation, it is unclear how inhibition of these projections affects prefrontal circuitry during adolescence. Here, we used chemogenetic tools to inhibit thalamoprefrontal projections in male/female mice from P20 to P35 and measured synaptic inputs to prefrontal pyramidal neurons by layer (either II/III or V/VI) and projection target (mediodorsal thalamus (MD), nucleus accumbens (NAc), or callosal prefrontal projections) 24â h later using slice physiology. We found a decrease in the frequency of excitatory and inhibitory currents in layer II/III NAc and layer V/VI MD-projecting neurons while layer V/VI NAc-projecting neurons showed an increase in the amplitude of excitatory and inhibitory currents. Regarding cortical projections, the frequency of inhibitory but not excitatory currents was enhanced in contralateral mPFC-projecting neurons. Notably, despite these complex changes in individual levels of excitation and inhibition, the overall balance between excitation and inhibition in each cell was only altered in the contralateral mPFC projections. This finding suggests homeostatic regulation occurs within subcortically but not intracortical callosal-projecting neurons. Increased inhibition of intraprefrontal connectivity may therefore be particularly important for prefrontal cortex circuit maturation. Finally, we observed cognitive deficits in the adult mouse using this narrowed window of thalamocortical inhibition.
Asunto(s)
Inhibición Neural , Vías Nerviosas , Corteza Prefrontal , Tálamo , Animales , Corteza Prefrontal/fisiología , Vías Nerviosas/fisiología , Masculino , Femenino , Ratones , Inhibición Neural/fisiología , Tálamo/fisiología , Ratones Endogámicos C57BL , Núcleo Accumbens/fisiología , Células Piramidales/fisiología , Potenciales Postsinápticos Inhibidores/fisiología , Potenciales Postsinápticos Excitadores/fisiologíaRESUMEN
BACKGROUND: Ovarian hormones influence the propensity for short-term plasticity induced by repetitive transcranial magnetic stimulation (rTMS). Estradiol appears to enhance the propensity for neural plasticity. It is currently unknown how progesterone influences short-term plasticity induced by rTMS. OBJECTIVE: The present research investigates whether the luteal versus follicular phase of the menstrual cycle influence short-term plasticity induced by intermittent theta-burst stimulation (iTBS). We tested the hypothesis that iTBS would increase motor evoked potentials (MEPs) during the follicular phase. Further, we explored the effects of the luteal phase on iTBS-induced neural plasticity. METHOD: Twenty-nine adult females participated in a placebo-controlled study that delivered real and sham iTBS to the left primary motor cortex in separate sessions corresponding to the follicular phase (real iTBS), luteal phase (real iTBS), and a randomly selected day (sham iTBS). Outcomes included corticospinal excitability as measured by the amplitude of MEPs and short-interval intracortical inhibition (SICI) recorded from the right first dorsal interosseous muscle before and following iTBS (612 pulses). RESULTS: MEP amplitude was increased following real iTBS during the follicular condition. No significant changes in MEP amplitude were observed during the luteal or sham visits. SICI was unchanged by iTBS irrespective of menstrual phase. CONCLUSION: These findings suggest women experience a variable propensity for iTBS-induced short-term plasticity across the menstrual cycle. This information is important for designing studies aiming to induce plasticity via rTMS in women.
Asunto(s)
Potenciales Evocados Motores , Ciclo Menstrual , Corteza Motora , Plasticidad Neuronal , Estimulación Magnética Transcraneal , Humanos , Femenino , Plasticidad Neuronal/fisiología , Potenciales Evocados Motores/fisiología , Adulto , Corteza Motora/fisiología , Adulto Joven , Ciclo Menstrual/fisiología , Electromiografía , Ritmo Teta/fisiología , Inhibición Neural/fisiologíaRESUMEN
Although previous studies have observed increased global network integration during tasks in persons with mild cognitive impairment (MCI), the association between this integration and actual task performance has remained unexplored. Understanding this link is crucial for uncovering the underlying mechanism behind these changes in network integration and their potential role in MCI. Here, to find such a link, we investigated brain network integration derived from electroencephalography recordings during a visual motion discrimination task in older adults with MCI and those with normal cognition. We focused on a critical period just before stimulus presentation, which is known to be important for task performance. Our results revealed that during this period, MCI patients exhibited increased network integration compared to controls. Interestingly, increased integration was associated with worse task performance in the MCI group, suggesting it was not beneficial. No such association was found in the control group. Notably, this difference existed despite similar overall task performance between the groups. This suboptimal integration pattern during the cognitive task might reflect network de-differentiation due to disinhibition in MCI patients. Collectively, our study highlights the potential of analysing network integration during tasks to identify cognitive impairment and suggest a distinct role for network integration in MCI patients compared with healthy controls.
Asunto(s)
Disfunción Cognitiva , Humanos , Disfunción Cognitiva/fisiopatología , Anciano , Masculino , Femenino , Electroencefalografía/métodos , Encéfalo/fisiopatología , Encéfalo/fisiología , Red Nerviosa/fisiopatología , Cognición/fisiología , Persona de Mediana Edad , Inhibición Neural/fisiología , Percepción de Movimiento/fisiología , Anciano de 80 o más AñosRESUMEN
Several studies suggest that hearing loss results in changes in the balance between inhibition and excitation in the inferior colliculus (IC). The IC is an integral nucleus within the auditory brainstem. The majority of ascending pathways from the lateral lemniscus (LL), superior olivary complex (SOC), and cochlear nucleus (CN) synapse in the IC before projecting to the thalamus and cortex. Many of these ascending projections provide inhibitory innervation to neurons within the IC. However, the nature and the distribution of this inhibitory input have only been partially elucidated in the rat. The inhibitory neurotransmitter, gamma aminobutyric acid (GABA), from the ventral nucleus of the lateral lemniscus (VNLL), provides the primary inhibitory input to the IC of the rat with GABA from other lemniscal and SOC nuclei providing lesser, but prominent innervation. There is evidence that hearing related conditions can result in dysfunction of IC neurons. These changes may be mediated in part by changes in GABA inputs to IC neurons. We have previously used gene micro-arrays in a study of deafness-related changes in gene expression in the IC and found significant changes in GAD as well as the GABA transporters and GABA receptors (Holt 2005). This is consistent with reports of age and trauma related changes in GABA (Bledsoe et al., 1995; Mossop et al., 2000; Salvi et al., 2000). Ototoxic lesions of the cochlea produced a permanent threshold shift. The number, intensity, and density of GABA positive axon terminals in the IC were compared in normal hearing and deafened rats. While the number of GABA immunolabeled puncta was only minimally different between groups, the intensity of labeling was significantly reduced. The ultrastructural localization and distribution of labeling was also examined. In deafened animals, the number of immuno gold particles was reduced by 78 % in axodendritic and 82 % in axosomatic GABAergic puncta. The affected puncta were primarily associated with small IC neurons. These results suggest that reduced inhibition to IC neurons contribute to the increased neuronal excitability observed in the IC following noise or drug induced hearing loss. Whether these deafness diminished inhibitory inputs originate from intrinsic or extrinsic CNIC sources awaits further study.
Asunto(s)
Colículos Inferiores , Ratas Sprague-Dawley , Ácido gamma-Aminobutírico , Animales , Colículos Inferiores/metabolismo , Colículos Inferiores/patología , Ácido gamma-Aminobutírico/metabolismo , Pérdida Auditiva Provocada por Ruido/metabolismo , Pérdida Auditiva Provocada por Ruido/fisiopatología , Pérdida Auditiva Provocada por Ruido/patología , Ototoxicidad/metabolismo , Ototoxicidad/etiología , Masculino , Vías Auditivas/metabolismo , Vías Auditivas/patología , Vías Auditivas/fisiopatología , Modelos Animales de Enfermedad , Inmunohistoquímica , Ratas , Glutamato Descarboxilasa/metabolismo , Neuronas/metabolismo , Neuronas/patología , Inhibición NeuralRESUMEN
The maturation of cerebral cortical networks during early life involves a major reorganization of long-range axonal connections. In a recent study, Bragg-Gonzalo, Aguilera, et al. discovered that in mice, the interhemispheric connections sent by S1L4 callosal projection neurons are pruned via the tight control of their ipsilateral synaptic integration, which relies on the early activity of specific interneurons.