Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Protein Sci ; 33(9): e5111, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39150051

RESUMEN

Hypercholesterolemia, characterized by elevated low-density lipoprotein (LDL) cholesterol levels, is a significant risk factor for cardiovascular disease. Proprotein convertase subtilisin/kexin type 9 (PCSK9) plays a crucial role in cholesterol metabolism by regulating LDL receptor degradation, making it a therapeutic target for mitigating hypercholesterolemia-associated risks. In this context, we aimed to engineer human H ferritin as a scaffold to present 24 copies of a PCSK9-targeting domain. The rationale behind this protein nanoparticle design was to disrupt the PCSK9-LDL receptor interaction, thereby attenuating the PCSK9-mediated impairment of LDL cholesterol clearance. The N-terminal sequence of human H ferritin was engineered to incorporate a 13-amino acid linear peptide (Pep2-8), which was previously identified as the smallest PCSK9 inhibitor. Exploiting the quaternary structure of ferritin, engineered nanoparticles were designed to display 24 copies of the targeting peptide on their surface, enabling a multivalent binding effect. Extensive biochemical characterization confirmed precise control over nanoparticle size and morphology, alongside robust PCSK9-binding affinity (KD in the high picomolar range). Subsequent efficacy assessments employing the HepG2 liver cell line demonstrated the ability of engineered ferritin's ability to disrupt PCSK9-LDL receptor interaction, thereby promoting LDL receptor recycling on cell surfaces and consequently enhancing LDL uptake. Our findings highlight the potential of ferritin-based platforms as versatile tools for targeting PCSK9 in the management of hypercholesterolemia. This study not only contributes to the advancement of ferritin-based therapeutics but also offers valuable insights into novel strategies for treating cardiovascular diseases.


Asunto(s)
LDL-Colesterol , Nanopartículas , Proproteína Convertasa 9 , Receptores de LDL , Humanos , Proproteína Convertasa 9/metabolismo , Proproteína Convertasa 9/química , Proproteína Convertasa 9/genética , Receptores de LDL/metabolismo , Receptores de LDL/química , Nanopartículas/química , LDL-Colesterol/metabolismo , Inhibidores de PCSK9/farmacología , Inhibidores de PCSK9/química , Ferritinas/química , Ferritinas/metabolismo , Unión Proteica
2.
J Med Chem ; 65(23): 15513-15539, 2022 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-36446632

RESUMEN

The proprotein convertase subtilisin/kexin-type 9 (PCSK9) binds to low-density lipoprotein receptors (LDLR), thereby trafficking them to lysosomes upon endocytosis and enhancing intracellular degradation to prevent their recycling. As a result, the levels of circulating LDL cholesterol (LDL-C) increase, which is a prominent risk factor for developing atherosclerotic cardiovascular diseases (ASCVD). Thus, PCSK9 has become a promising therapeutic target that offers a fertile testing ground for new drug modalities to regulate plasma LDL-C levels to prevent ASCVD. In this review, we have discussed the role of PCSK9 in lipid metabolism and briefly summarized the current clinical status of modalities targeting PCSK9. In particular, a detailed overview of peptide-based PCSK9 inhibitors is presented, which emphasizes their structural features and design, therapeutic effects on patients, and preclinical cardiovascular disease (CVD) models, along with PCSK9 modulation mechanisms. As a promising alternative to monoclonal antibodies (mAbs) for managing LDL-C, anti-PCSK9 peptides are emerging as a prospective next generation therapy.


Asunto(s)
Hipercolesterolemia , Inhibidores de PCSK9 , Humanos , LDL-Colesterol/química , LDL-Colesterol/metabolismo , Inhibidores de PCSK9/química , Inhibidores de PCSK9/farmacología , Proproteína Convertasa 9/efectos de los fármacos , Hipercolesterolemia/tratamiento farmacológico
3.
J Med Chem ; 64(22): 16770-16800, 2021 11 25.
Artículo en Inglés | MEDLINE | ID: mdl-34704436

RESUMEN

Proprotein convertase subtilisin-like/kexin type 9 (PCSK9) is a key regulator of plasma LDL-cholesterol (LDL-C) and a clinically validated target for the treatment of hypercholesterolemia and coronary artery disease. Starting from second-generation lead structures such as 2, we were able to refine these structures to obtain extremely potent bi- and tricyclic PCSK9 inhibitor peptides. Optimized molecules such as 44 demonstrated sufficient oral bioavailability to maintain therapeutic levels in rats and cynomolgus monkeys after dosing with an enabled formulation. We demonstrated target engagement and LDL lowering in cynomolgus monkeys essentially identical to those observed with the clinically approved, parenterally dosed antibodies. These molecules represent the first report of highly potent and orally bioavailable macrocyclic peptide PCSK9 inhibitors with overall profiles favorable for potential development as once-daily oral lipid-lowering agents. In this manuscript, we detail the design criteria and multiparameter optimization of this novel series of PCSK9 inhibitors.


Asunto(s)
Inhibidores de PCSK9/farmacología , Péptidos Cíclicos/farmacología , Administración Oral , Animales , Disponibilidad Biológica , Cristalografía por Rayos X , Macaca fascicularis , Estructura Molecular , Inhibidores de PCSK9/química , Inhibidores de PCSK9/farmacocinética , Péptidos Cíclicos/química , Péptidos Cíclicos/farmacocinética , Ratas , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...