Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 340
Filtrar
1.
Bioorg Med Chem ; 106: 117733, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38704960

RESUMEN

Development of selective or dual proteasome subunit inhibitors based on syringolin B as a scaffold is described. We focused our efforts on a structure-activity relationship study of inhibitors with various substituents at the 3-position of the macrolactam moiety of syringolin B analogue to evaluate whether this would be sufficient to confer subunit selectivity by using sets of analogues with hydrophobic, basic and acidic substituents, which were designed to target Met45, Glu53 and Arg45 embedded in the S1 subsite, respectively. The structure-activity relationship study using systematic analogues provided insight into the origin of the subunit-selective inhibitory activity. This strategy would be sufficient to confer subunit selectivity regarding ß5 and ß2 subunits.


Asunto(s)
Complejo de la Endopetidasa Proteasomal , Inhibidores de Proteasoma , Relación Estructura-Actividad , Complejo de la Endopetidasa Proteasomal/metabolismo , Complejo de la Endopetidasa Proteasomal/química , Inhibidores de Proteasoma/farmacología , Inhibidores de Proteasoma/química , Inhibidores de Proteasoma/síntesis química , Humanos , Péptidos Cíclicos/química , Péptidos Cíclicos/farmacología , Subunidades de Proteína/antagonistas & inhibidores , Subunidades de Proteína/metabolismo , Subunidades de Proteína/química , Estructura Molecular
2.
J Med Chem ; 67(9): 7146-7157, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38636481

RESUMEN

Previously, we demonstrated that linear peptide epoxyketones targeting the immunoproteasome (iP) could ameliorate cognitive deficits in mouse models of Alzheimer's disease (AD) independently of amyloid deposition. We also reported the first iP-targeting macrocyclic peptide epoxyketones, which exhibit improved metabolic stability compared with their linear counterparts. Here, we prepared additional macrocyclic peptide epoxyketones and compared them with existing macrocyclic iP inhibitors by assessing Caco2 cell-based permeability and microsomal stability, providing the four best macrocyclic iP inhibitors. We then evaluated the four compounds using the Ames test and the potency assays in BV2 cells, selecting compound 5 as our AD drug lead. When 5 was administered intravenously (40 mg/kg) or orally (150 mg/kg) into healthy BALB/c mice, we observed considerable iP inhibition in the mouse brain, indicating good blood-brain barrier permeability and target engagement. Combined results suggest that 5 is a promising AD drug lead that may need further investigation.


Asunto(s)
Enfermedad de Alzheimer , Barrera Hematoencefálica , Encéfalo , Ratones Endogámicos BALB C , Animales , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Humanos , Barrera Hematoencefálica/metabolismo , Ratones , Células CACO-2 , Encéfalo/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Permeabilidad , Péptidos Cíclicos/química , Péptidos Cíclicos/farmacología , Péptidos Cíclicos/farmacocinética , Inhibidores de Proteasoma/farmacología , Inhibidores de Proteasoma/química , Compuestos Macrocíclicos/química , Compuestos Macrocíclicos/farmacología , Compuestos Macrocíclicos/farmacocinética , Cetonas/química , Cetonas/farmacología , Relación Estructura-Actividad
3.
Eur J Med Chem ; 271: 116435, 2024 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-38648728

RESUMEN

Multiple myeloma (MM), a cancer of plasma cells, is the second most common hematological malignancy which is characterized by aberrant plasma cells infiltration in the bone marrow and complex heterogeneous cytogenetic abnormalities. Over the past two decades, novel treatment strategies such as proteasome inhibitors, immunomodulators, and monoclonal antibodies have significantly improved the relative survival rate of MM patients. However, the development of drug resistance results in the majority of MM patients suffering from relapse, limited treatment options and uncontrolled disease progression after relapse. There are urgent needs to develop and explore novel MM treatment strategies to overcome drug resistance and improve efficacy. Here, we review the recent small molecule therapeutic strategies for MM, and introduce potential new targets and corresponding modulators in detail. In addition, this paper also summarizes the progress of multi-target inhibitor therapy and protein degradation technology in the treatment of MM.


Asunto(s)
Antineoplásicos , Resistencia a Antineoplásicos , Mieloma Múltiple , Bibliotecas de Moléculas Pequeñas , Mieloma Múltiple/tratamiento farmacológico , Mieloma Múltiple/patología , Humanos , Resistencia a Antineoplásicos/efectos de los fármacos , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/uso terapéutico , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/farmacología , Inhibidores de Proteasoma/farmacología , Inhibidores de Proteasoma/química , Inhibidores de Proteasoma/uso terapéutico , Estructura Molecular
4.
Nat Commun ; 14(1): 8302, 2023 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-38097652

RESUMEN

The proteasome of the malaria parasite Plasmodium falciparum (Pf20S) is an advantageous drug target because its inhibition kills P. falciparum in multiple stages of its life cycle and synergizes with artemisinins. We recently developed a macrocyclic peptide, TDI-8304, that is highly selective for Pf20S over human proteasomes and is potent in vitro and in vivo against P. falciparum. A mutation in the Pf20S ß6 subunit, A117D, confers resistance to TDI-8304, yet enhances both enzyme inhibition and anti-parasite activity of a tripeptide vinyl sulfone ß2 inhibitor, WLW-vs. Here we present the high-resolution cryo-EM structures of Pf20S with TDI-8304, of human constitutive proteasome with TDI-8304, and of Pf20Sß6A117D with WLW-vs that give insights into the species selectivity of TDI-8304, resistance to it, and the collateral sensitivity associated with resistance, including that TDI-8304 binds ß2 and ß5 in wild type Pf20S as well as WLW-vs binds ß2 and ß5 in Pf20Sß6A117D. We further show that TDI-8304 kills P. falciparum as quickly as chloroquine and artemisinin and is active against P. cynomolgi at the liver stage. This increases interest in using these structures to facilitate the development of Pf20S inhibitors that target multiple proteasome subunits and limit the emergence of resistance.


Asunto(s)
Antimaláricos , Malaria Falciparum , Humanos , Plasmodium falciparum/genética , Inhibidores de Proteasoma/farmacología , Inhibidores de Proteasoma/química , Complejo de la Endopetidasa Proteasomal/metabolismo , Sensibilidad Colateral al uso de Fármacos , Malaria Falciparum/tratamiento farmacológico , Malaria Falciparum/parasitología , Antimaláricos/farmacología , Antimaláricos/química , Resistencia a Medicamentos/genética , Proteínas Protozoarias/genética
5.
Int J Mol Sci ; 24(13)2023 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-37445688

RESUMEN

Immunoproteasome inhibition is a promising strategy for the treatment of hematological malignancies, autoimmune diseases, and inflammatory diseases. The design of non-covalent inhibitors of the immunoproteasome ß1i/ß5i catalytic subunits could be a novel approach to avoid the drawbacks of the known covalent inhibitors, such as toxicity due to off-target binding. In this work, we report the biological evaluation of thirty-four compounds selected from a commercially available collection. These hit compounds are the outcomes of a virtual screening strategy including a dynamic pharmacophore modeling approach onto the ß1i subunit and a pharmacophore/docking approach onto the ß5i subunit. The computational studies were first followed by in vitro enzymatic assays at 100 µM. Only compounds capable of inhibiting the enzymatic activity by more than 50% were characterized in detail using Tian continuous assays, determining the dissociation constant (Ki) of the non-covalent complex where Ki is also the measure of the binding affinity. Seven out of thirty-four hits showed to inhibit ß1i and/or ß5i subunit. Compound 3 is the most active on the ß1i subunit with Ki = 11.84 ± 1.63 µM, and compound 17 showed Ki = 12.50 ± 0.77 µM on the ß5i subunit. Compound 2 showed inhibitory activity on both subunits (Ki = 12.53 ± 0.18 and Ki = 31.95 ± 0.81 on the ß1i subunit and ß5i subunit, respectively). The induced fit docking analysis revealed interactions with Thr1 and Phe31 of ß1i subunit and that represent new key residues as reported in our previous work. Onto ß5i subunit, it interacts with the key residues Thr1, Thr21, and Tyr169. This last hit compound identified represents an interesting starting point for further optimization of ß1i/ß5i dual inhibitors of the immunoproteasome.


Asunto(s)
Enfermedades Autoinmunes , Inhibidores de Proteasoma , Humanos , Inhibidores de Proteasoma/farmacología , Inhibidores de Proteasoma/química , Dominio Catalítico , Fagocitosis , Técnicas In Vitro , Complejo de la Endopetidasa Proteasomal/metabolismo
6.
Bioorg Chem ; 138: 106626, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37295239

RESUMEN

Peptides have limitations as active pharmaceutical agents due to rapid hydrolysis by proteases and poor cell permeability. To overcome these limitations, a series of peptidyl proteasome inhibitors embedded with four-membered heterocycles were designed to enhance their metabolic stabilities. All synthesized compounds were screened for their inhibitory activities against human 20S proteasome, and 12 target compounds displayed potent efficacy with IC50 values lower than 20 nM. Additionally, these compounds exhibited strong anti-proliferative activities against multiple myeloma (MM) cell lines (MM1S: 72, IC50 = 4.86 ± 1.34 nM; RPMI-8226: 67, IC50 = 12.32 ± 1.44). Metabolic stability assessments of SGF, SIF, plasma and blood were conducted, and the representative compound 73 revealed long half-lives (Plasma: T1/2 = 533 min; Blood: T1/2 > 1000 min) and good proteasome inhibitory activity in vivo. These results suggest that compound 73 serve as a lead compound for the development of more novel proteasome inhibitors.


Asunto(s)
Antineoplásicos , Neoplasias , Humanos , Inhibidores de Proteasoma/farmacología , Inhibidores de Proteasoma/química , Antineoplásicos/farmacología , Antineoplásicos/química , Relación Estructura-Actividad , Diseño de Fármacos , Complejo de la Endopetidasa Proteasomal/metabolismo , Proliferación Celular , Línea Celular Tumoral
7.
J Mater Chem B ; 11(25): 5870-5881, 2023 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-37306738

RESUMEN

We investigate the structure and dynamics of a zinc oxide nanocarrier loaded with Carfilzomib, an epoxyketone proteasome inhibitor developed for treating multiple myeloma. We demonstrate that, even though both bare and functionalized zinc oxide supports have been used for drug delivery, their interactions with the reactive functional groups of the ligands could be detrimental. This is because pharmacophores like α',ß'-epoxyketones should preserve the groups required for the drug activity and be capable of leaving the vehicle at the target site. Earlier studies showed that even when ZnO is functionalized with oleic acid surfactants, the drug could reach parts of the surface and remain stably adsorbed. Herein, we have used reactive molecular dynamics simulations and quantum chemistry calculations to explore the potential interactions of the Carfilzomib functional groups with the typical surfaces of ZnO supports. We have found that Carfilzomib can adsorb on the (0001)Zn-terminated polar surface through the carbonyl oxygens and the epoxyketone moiety. These strong connections could prevent the drug release and induce the epoxy ring opening with its consequential inactivation. Therefore, regulating the dosage to maintain the desired level of drug bioavailability is paramount. These findings emphasize the need for appropriate carrier functionalizations to efficiently entrap, transport, and release the cargo at the target sites and the crucial role played by predictive/descriptive computational techniques to complement and drive experiments to the most appropriate selections of the materials to optimize drug delivery.


Asunto(s)
Simulación de Dinámica Molecular , Óxido de Zinc , Farmacóforo , Teoría Funcional de la Densidad , Inhibidores de Proteasoma/química
8.
Cell Chem Biol ; 30(5): 415-417, 2023 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-37207629

RESUMEN

In this issue of Cell Chemical Biology, Zhan et al. report dual-pharmacophore molecules ("artezomibs"), combining an artemisinin and proteasome inhibitor that exhibit potent activity against both wild-type and drug-resistant malarial parasites.1 This study indicates that artezomibs offer a promising approach to combat drug resistance encountered by current antimalarial therapies.


Asunto(s)
Antimaláricos , Antimaláricos/química , Complejo de la Endopetidasa Proteasomal , Resistencia a Medicamentos , Inhibidores de Proteasoma/farmacología , Inhibidores de Proteasoma/química
9.
Cell Chem Biol ; 30(5): 470-485.e6, 2023 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-36963402

RESUMEN

The Plasmodium falciparum proteasome constitutes a promising antimalarial target, with multiple chemotypes potently and selectively inhibiting parasite proliferation and synergizing with the first-line artemisinin drugs, including against artemisinin-resistant parasites. We compared resistance profiles of vinyl sulfone, epoxyketone, macrocyclic peptide, and asparagine ethylenediamine inhibitors and report that the vinyl sulfones were potent even against mutant parasites resistant to other proteasome inhibitors and did not readily select for resistance, particularly WLL that displays covalent and irreversible binding to the catalytic ß2 and ß5 proteasome subunits. We also observed instances of collateral hypersensitivity, whereby resistance to one inhibitor could sensitize parasites to distinct chemotypes. Proteasome selectivity was confirmed using CRISPR/Cas9-edited mutant and conditional knockdown parasites. Molecular modeling of proteasome mutations suggested spatial contraction of the ß5 P1 binding pocket, compromising compound binding. Dual targeting of P. falciparum proteasome subunits using covalent inhibitors provides a potential strategy for restoring artemisinin activity and combating the spread of drug-resistant malaria.


Asunto(s)
Antimaláricos , Artemisininas , Malaria Falciparum , Plasmodium , Humanos , Antimaláricos/farmacología , Antimaláricos/química , Complejo de la Endopetidasa Proteasomal/metabolismo , Plasmodium/metabolismo , Artemisininas/química , Malaria Falciparum/tratamiento farmacológico , Malaria Falciparum/parasitología , Inhibidores de Proteasoma/farmacología , Inhibidores de Proteasoma/química
10.
Chem Biol Drug Des ; 101(6): 1283-1298, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36762979

RESUMEN

A series of novel noncovalent glycine/ß-alanine anilide derivatives possessing 2-chloronaphthoquinone structure as a pharmacophoric unit were designed, synthesized, and evaluated for their antiproliferative and antiproteasomal activities against MCF-7 cell line, in vitro. According to biological activity results, all the target compounds showed antiproliferative activity in the range of IC50  = 7.10 ± 0.10-41.08 ± 0.14 µM and most of them exhibited inhibitory efficacy with varying ratios against the three catalytic subunits (ß1, ß2, and ß5) presenting caspase-like (C-L), trypsin-like (T-L) and chymotrypsin-like (ChT-L) activities of proteasome. The antiproteasomal activity evaluations revealed that compounds preferentially inhibited the ß5 subunit compared with ß1 and ß2 subunits of the proteasome. Among the compounds, compounds 7 and 9 showed the highest antiproliferative activity with an IC50 value of 7.10 ± 0.10 and 7.43 ± 0.25 µM, respectively. Additionally, compound 7 displayed comparable potency to PI-083 lead compound in terms of ß5 antiproteasomal activity with an inhibition percentage of 34.67 at 10 µM. This compound showed an IC50 value of 32.30 ± 0.45 µM against ß5 subunit. Furthermore, molecular modeling studies of the most active compound 7 revealed key interactions with ß5 subunit. The results suggest that this class of compounds may be beneficial for the development of new potent proteasome inhibitors.


Asunto(s)
Antineoplásicos , Naftoquinonas , Inhibidores de Proteasoma/farmacología , Inhibidores de Proteasoma/química , Complejo de la Endopetidasa Proteasomal , Glicina/farmacología , Naftoquinonas/farmacología , Naftoquinonas/química , beta-Alanina/farmacología , Anilidas/farmacología , Relación Estructura-Actividad , Estructura Molecular , Proliferación Celular , Antineoplásicos/farmacología
11.
Eur J Med Chem ; 250: 115187, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36806958

RESUMEN

Multiple myeloma (MM), the second most common hematological malignancy, is a disease characterized by a clonal expansion of malignant plasma cells that accumulate in the bone marrow. Ixazomib citrate was the first commercially available oral proteasome inhibitor for the treatment of MM. However, it immediately hydrolyzed into the active form on exposure to aqueous solution and so it was a pseudo prodrug. Herein, a series of dipeptide boronic acid esters as novel oral proteasome inhibitors were designed, synthesized and biologically investigated for the inhibition of the ß5 subunit of 20S proteasome. Based on the enzymatic results, structure-activity relationships (SAR) were discussed in detail. Some potent compounds were further evaluated to inhibit the proliferation of MM cell line RPMI-8226. The results showed that some compounds were active against RPMI-8226 with IC50 values of less than 10 nM. The solution stability showed that ixazomib citrate was completely hydrolyzed to its active form ixazomib within 2 min in the simulated gastric juice. However, among the screened compounds, prodrug 18u was stable enough in simulated gastric juice and simulated intestinal juice, and its hydrolysis rate was 59.7% and 3.6% after 2 h, respectively. In addition, 18u exhibited good microsome stabilities and pharmacokinetic properties and displayed strong antiproliferative activity against the RPMI-8226 cell line (5.6 nM). Furthermore, compound 18u exhibited strong in vivo anticancer efficacy in human MM (RPMI-8226) xenograft mouse model.


Asunto(s)
Antineoplásicos , Mieloma Múltiple , Profármacos , Humanos , Ratones , Animales , Inhibidores de Proteasoma/farmacología , Inhibidores de Proteasoma/química , Ácidos Borónicos/química , Mieloma Múltiple/tratamiento farmacológico , Mieloma Múltiple/patología , Profármacos/farmacología , Profármacos/uso terapéutico , Dipéptidos/farmacología , Dipéptidos/química , Complejo de la Endopetidasa Proteasomal/metabolismo , Citratos/uso terapéutico , Antineoplásicos/química , Línea Celular Tumoral
12.
J Med Chem ; 66(2): 1484-1508, 2023 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-36630286

RESUMEN

With increasing reports of resistance to artemisinins and artemisinin-combination therapies, targeting the Plasmodium proteasome is a promising strategy for antimalarial development. We recently reported a highly selective Plasmodium falciparum proteasome inhibitor with anti-malarial activity in the humanized mouse model. To balance the permeability of the series of macrocycles with other drug-like properties, we conducted further structure-activity relationship studies on a biphenyl ether-tethered macrocyclic scaffold. Extensive SAR studies around the P1, P3, and P5 groups and peptide backbone identified compound TDI-8414. TDI-8414 showed nanomolar antiparasitic activity, no toxicity to HepG2 cells, high selectivity against the Plasmodium proteasome over the human constitutive proteasome and immunoproteasome, improved solubility and PAMPA permeability, and enhanced metabolic stability in microsomes and plasma of both humans and mice.


Asunto(s)
Antimaláricos , Plasmodium , Humanos , Animales , Ratones , Antimaláricos/farmacología , Antimaláricos/química , Complejo de la Endopetidasa Proteasomal/metabolismo , Relación Estructura-Actividad , Plasmodium falciparum/metabolismo , Inhibidores de Proteasoma/farmacología , Inhibidores de Proteasoma/química
13.
J Med Chem ; 66(2): 1172-1185, 2023 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-36608337

RESUMEN

We describe our discovery and development of potent and highly selective inhibitors of human constitutive proteasome chymotryptic activity (ß5c). Structure-activity relationship studies of the novel class of inhibitors focused on optimization of N-cap, C-cap, and side chain of the chemophore asparagine. Compound 32 is the most potent and selective ß5c inhibitor in this study. A docking study provides a structure rationale for potency and selectivity. Kinetic studies show a reversible and noncompetitive inhibition mechanism. It enters the cells to engage the proteasome target, potently and selectively kills multiple myeloma cells, and does so by synergizing with a ß5i-selective inhibitor.


Asunto(s)
Asparagina , Complejo de la Endopetidasa Proteasomal , Humanos , Complejo de la Endopetidasa Proteasomal/metabolismo , Cinética , Relación Estructura-Actividad , Inhibidores de Proteasoma/farmacología , Inhibidores de Proteasoma/química
14.
Chemistry ; 29(20): e202203958, 2023 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-36617500

RESUMEN

Here, we present remarkable epoxyketone-based proteasome inhibitors with low nanomolar in vitro potency for blood-stage Plasmodium falciparum and low cytotoxicity for human cells. Our best compound has more than 2,000-fold greater selectivity for erythrocytic-stage P. falciparum over HepG2 and H460 cells, which is largely driven by the accommodation of the parasite proteasome for a D-amino acid in the P3 position and the preference for a difluorobenzyl group in the P1 position. We isolated the proteasome from P. falciparum cell extracts and determined that the best compound is 171-fold more potent at inhibiting the ß5 subunit of P. falciparum proteasome when compared to the same subunit of the human constitutive proteasome. These compounds also significantly reduce parasitemia in a P. berghei mouse infection model and prolong survival of animals by an average of 6 days. The current epoxyketone inhibitors are ideal starting compounds for orally bioavailable anti-malarial drugs.


Asunto(s)
Antimaláricos , Plasmodium , Ratones , Animales , Humanos , Inhibidores de Proteasoma/química , Complejo de la Endopetidasa Proteasomal/química , Plasmodium falciparum , Antimaláricos/farmacología
15.
Nucleic Acids Res ; 51(3): 1488-1499, 2023 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-36718812

RESUMEN

Advances in DNA sequencing technology and bioinformatics have revealed the enormous potential of microbes to produce structurally complex specialized metabolites with diverse uses in medicine and agriculture. However, these molecules typically require structural modification to optimize them for application, which can be difficult using synthetic chemistry. Bioengineering offers a complementary approach to structural modification but is often hampered by genetic intractability and requires a thorough understanding of biosynthetic gene function. Expression of specialized metabolite biosynthetic gene clusters (BGCs) in heterologous hosts can surmount these problems. However, current approaches to BGC cloning and manipulation are inefficient, lack fidelity, and can be prohibitively expensive. Here, we report a yeast-based platform that exploits transformation-associated recombination (TAR) for high efficiency capture and parallelized manipulation of BGCs. As a proof of concept, we clone, heterologously express and genetically analyze BGCs for the structurally related nonribosomal peptides eponemycin and TMC-86A, clarifying remaining ambiguities in the biosynthesis of these important proteasome inhibitors. Our results show that the eponemycin BGC also directs the production of TMC-86A and reveal contrasting mechanisms for initiating the assembly of these two metabolites. Moreover, our data shed light on the mechanisms for biosynthesis and incorporation of 4,5-dehydro-l-leucine (dhL), an unusual nonproteinogenic amino acid incorporated into both TMC-86A and eponemycin.


Asunto(s)
Inhibidores de Proteasoma , Saccharomyces cerevisiae , Inhibidores de Proteasoma/química , Inhibidores de Proteasoma/metabolismo , Secuencia de Bases , Saccharomyces cerevisiae/genética , Familia de Multigenes
16.
Int J Mol Sci ; 23(21)2022 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-36361848

RESUMEN

The insurgence of drug resistance in treating Multiple Myeloma (MM) still represents a major hamper in finding effective treatments, although over the past decades new classes of drugs, such as proteasome inhibitors and immunomodulatory drugs, have been discovered. Recently, our research team, within a Nature-Aided Drug Discovery project, isolated from Hibiscus Sabdariffa L. calyces the secondary metabolite called Hib-ester which possesses antiproliferative properties against human multiple myeloma RPMI 8226 cells, reduces migration and cell invasion and inhibits proteasome without neurotoxic effects. In the present study, we explored the chemical spaces of the hit compound Hib-ester. We explored the structure-activity relationships (SAR), and we optimized the scaffold through sequentially modifying Hib-ester subunits. Compound screening was performed based on cytotoxicity against the RPMI 8226 cells to assess the potential efficacy toward human MM. The ability of the most effective molecules to inhibit the proteasome was evaluated and the binding mode of the most promising compounds in the proteasome chymotrypsin binding pocket was deciphered through molecular modeling simulations. Compounds 13 and 14 are more potent than Hib-ester, demonstrating that our strategy was suitable for the identification of a novel chemotype for developing possible drug candidates and hopefully widening the drug armamentarium against MM.


Asunto(s)
Antineoplásicos , Mieloma Múltiple , Humanos , Mieloma Múltiple/tratamiento farmacológico , Complejo de la Endopetidasa Proteasomal/metabolismo , Línea Celular Tumoral , Inhibidores de Proteasoma/farmacología , Inhibidores de Proteasoma/química , Ésteres , Antineoplásicos/uso terapéutico
17.
Antimicrob Agents Chemother ; 66(10): e0081722, 2022 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-36094216

RESUMEN

The proteasome is a promising target for antimalarial chemotherapy. We assessed ex vivo susceptibilities of fresh Plasmodium falciparum isolates from eastern Uganda to seven proteasome inhibitors: two asparagine ethylenediamines, two macrocyclic peptides, and three peptide boronates; five had median IC50 values <100 nM. TDI8304, a macrocylic peptide lead compound with drug-like properties, had a median IC50 of 16 nM. Sequencing genes encoding the ß2 and ß5 catalytic proteasome subunits, the predicted targets of the inhibitors, and five additional proteasome subunits, identified two mutations in ß2 (I204T, S214F), three mutations in ß5 (V2I, A142S, D150E), and three mutations in other subunits. The ß2 S214F mutation was associated with decreased susceptibility to two peptide boronates, with IC50s of 181 nM and 2635 nM against mutant versus 62 nM and 477 nM against wild type parasites for MMV1579506 and MMV1794229, respectively, although significance could not be formally assessed due to the small number of mutant parasites with available data. The other ß2 and ß5 mutations and mutations in other subunits were not associated with susceptibility to tested compounds. Against culture-adapted Ugandan isolates, two asparagine ethylenediamines and the peptide proteasome inhibitors WLW-vinyl sulfone and WLL-vinyl sulfone (which were not studied ex vivo) demonstrated low nM activity, without decreased activity against ß2 S214F mutant parasites. Overall, proteasome inhibitors had potent activity against P. falciparum isolates circulating in Uganda, and genetic variation in proteasome targets was uncommon.


Asunto(s)
Antimaláricos , Plasmodium falciparum , Inhibidores de Proteasoma , Humanos , Antimaláricos/farmacología , Antimaláricos/química , Asparagina , Resistencia a Medicamentos/genética , Etilenodiaminas/farmacología , Malaria Falciparum/tratamiento farmacológico , Malaria Falciparum/parasitología , Péptidos/farmacología , Plasmodium falciparum/efectos de los fármacos , Plasmodium falciparum/genética , Complejo de la Endopetidasa Proteasomal/genética , Inhibidores de Proteasoma/química , Inhibidores de Proteasoma/farmacología , Uganda
18.
J Med Chem ; 65(16): 11058-11065, 2022 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-35926511

RESUMEN

Tuberculosis is caused by the bacterium Mycobacterium tuberculosis (Mtb) and is ranked as the second killer infectious disease after COVID-19. Proteasome accessory factor A (PafA) is considered an attractive target because of its low sequence conservation in humans and its role in virulence. In this study, we designed a mutant of Mtb PafA that enabled large-scale purification of active PafA. Using a devised high-throughput screening assay, two PafA inhibitors were discovered. ST1926 inhibited Mtb PafA by binding in the Pup binding groove, but it was less active against Corynebacterium glutamicum PafA because the ST1926-binding residues are not conserved. Bithionol bound to the conserved ATP-binding pocket, thereby, inhibits PafA in an ATP-competitive manner. Both ST1926 and bithionol inhibited the growth of an attenuated Mtb strain (H37Ra) at micromolar concentrations. Our work thus provides new tools for tuberculosis research and a foundation for future PafA-targeted drug development for treating tuberculosis.


Asunto(s)
Mycobacterium tuberculosis , Inhibidores de Proteasoma , Adenosina Trifosfato/metabolismo , Proteínas Bacterianas/metabolismo , Bitionol/metabolismo , Mycobacterium tuberculosis/efectos de los fármacos , Complejo de la Endopetidasa Proteasomal/metabolismo , Inhibidores de Proteasoma/química , Inhibidores de Proteasoma/farmacología
19.
Molecules ; 27(7)2022 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-35408660

RESUMEN

Obesity is the most common nutritional disorder in the developed world and is associated with important comorbidities. Pancreatic lipase (PL) inhibitors play a key role in the metabolism of human fat. A series of novel epoxyketones peptide derivatives were investigated for their pancreatic lipase inhibitory activity. The epoxyketone moiety is a well-known reactive electrophile group that has been used as part of proteasome inhibitors in cancer therapy, and it is widely believed that these are very selective for targeting the proteasome active site. Here we investigated various peptide derivatives with an epoxide warhead for their anti-lipase activity. The assessment of these novel epoxyketones was performed by an in-house method that we developed for rapid screening and identification of lipase inhibitors using GC-FID. Herein, we present a novel anti-lipase pharmacophore based on epoxyketone peptide derivatives that showed potent anti-lipase activity. Many of these derivatives had comparable or more potent activity than the clinically used lipase inhibitors such as orlistat. In addition, the lipase appears to be inhibited by a wide range of epoxyketone analogues regardless of the configuration of the epoxide in the epoxyketone moiety. The presented data in this study shows the first example of the use of epoxyketone peptides as novel lipase inhibitors.


Asunto(s)
Péptidos , Inhibidores de Proteasoma , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Compuestos Epoxi/farmacología , Humanos , Lipasa , Péptidos/química , Péptidos/farmacología , Complejo de la Endopetidasa Proteasomal/química , Inhibidores de Proteasoma/química
20.
Eur J Med Chem ; 234: 114252, 2022 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-35286927

RESUMEN

A series of N, C-capped di- and tripeptides were designed as selective immunoproteasome inhibitors based on the known inhibitor 4-CA. Forty-eight new compounds were synthesized and evaluated, and the structure-activity relationship (SAR) of this compound class as ß5i selective inhibitors were explored. Most of these compounds showed significant inhibition against the ß5i subunit of the immunoproteasome and the most potent ß5i inhibitor (15) showed an IC50 of 0.94 nM. A selective ß5i inhibitor (54) with over 500-fold ß5i/ß5c selectivity was identified. Three of the inhibitors were found to selectively inhibit ß5i and ß5c, and showed no noticeable inhibition against the other four subunits. Six inhibitors with significant inhibitory activity against the HCT-116 cells were recognized, and the most active inhibitors, 14 and 50, showed IC50 values of 0.46 µM and 0.16 µM, respectively. Some selective ß5i inhibitors exhibited significant inhibitory effects on the release of the cytokines TNF-α and IL-6. The results not only afford effective chemical tools to elucidate the relationships between subunit selectivity and pharmacological profiles, but also offer useful clues for further optimization and development of selective immunoproteasome inhibitors.


Asunto(s)
Complejo de la Endopetidasa Proteasomal , Inhibidores de Proteasoma , Complejo de la Endopetidasa Proteasomal/metabolismo , Inhibidores de Proteasoma/química , Inhibidores de Proteasoma/farmacología , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA