Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.051
Filtrar
1.
Int J Mol Sci ; 25(10)2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38791158

RESUMEN

Triple-negative breast cancer (TNBC) remains the most lethal subtype of breast cancer, characterized by poor response rates to current chemotherapies and a lack of additional effective treatment options. While approximately 30% of patients respond well to anthracycline- and taxane-based standard-of-care chemotherapy regimens, the majority of patients experience limited improvements in clinical outcomes, highlighting the critical need for strategies to enhance the effectiveness of anthracycline/taxane-based chemotherapy in TNBC. In this study, we report on the potential of a DNA-PK inhibitor, peposertib, to improve the effectiveness of topoisomerase II (TOPO II) inhibitors, particularly anthracyclines, in TNBC. Our in vitro studies demonstrate the synergistic antiproliferative activity of peposertib in combination with doxorubicin, epirubicin and etoposide in multiple TNBC cell lines. Downstream analysis revealed the induction of ATM-dependent compensatory signaling and p53 pathway activation under combination treatment. These in vitro findings were substantiated by pronounced anti-tumor effects observed in mice bearing subcutaneously implanted tumors. We established a well-tolerated preclinical treatment regimen combining peposertib with pegylated liposomal doxorubicin (PLD) and demonstrated strong anti-tumor efficacy in cell-line-derived and patient-derived TNBC xenograft models in vivo. Taken together, our findings provide evidence that co-treatment with peposertib has the potential to enhance the efficacy of anthracycline/TOPO II-based chemotherapies, and it provides a promising strategy to improve treatment outcomes for TNBC patients.


Asunto(s)
Doxorrubicina , Sinergismo Farmacológico , Inhibidores de Topoisomerasa II , Neoplasias de la Mama Triple Negativas , Ensayos Antitumor por Modelo de Xenoinjerto , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/metabolismo , Neoplasias de la Mama Triple Negativas/patología , Humanos , Animales , Femenino , Ratones , Inhibidores de Topoisomerasa II/farmacología , Inhibidores de Topoisomerasa II/uso terapéutico , Línea Celular Tumoral , Doxorrubicina/farmacología , Doxorrubicina/uso terapéutico , Doxorrubicina/análogos & derivados , Proteína Quinasa Activada por ADN/antagonistas & inhibidores , Proteína Quinasa Activada por ADN/metabolismo , Sulfonas/farmacología , Proliferación Celular/efectos de los fármacos , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Polietilenglicoles/farmacología , Etopósido/farmacología , Etopósido/uso terapéutico , ADN-Topoisomerasas de Tipo II/metabolismo , Epirrubicina/farmacología
2.
Biomed Pharmacother ; 175: 116676, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38772152

RESUMEN

The molecular nanomachine, human DNA topoisomerase IIα, plays a crucial role in replication, transcription, and recombination by catalyzing topological changes in the DNA, rendering it an optimal target for cancer chemotherapy. Current clinical topoisomerase II poisons often cause secondary tumors as side effects due to the accumulation of double-strand breaks in the DNA, spurring the development of catalytic inhibitors. Here, we used a dynamic pharmacophore approach to develop catalytic inhibitors targeting the ATP binding site of human DNA topoisomerase IIα. Our screening of a library of nature-inspired compounds led to the discovery of a class of 3-(imidazol-2-yl) morpholines as potent catalytic inhibitors that bind to the ATPase domain. Further experimental and computational studies identified hit compound 17, which exhibited selectivity against the human DNA topoisomerase IIα versus human protein kinases, cytotoxicity against several human cancer cells, and did not induce DNA double-strand breaks, making it distinct from clinical topoisomerase II poisons. This study integrates an innovative natural product-inspired chemistry and successful implementation of a molecular design strategy that incorporates a dynamic component of ligand-target molecular recognition, with comprehensive experimental characterization leading to hit compounds with potential impact on the development of more efficient chemotherapies.


Asunto(s)
ADN-Topoisomerasas de Tipo II , Inhibidores de Topoisomerasa II , Humanos , ADN-Topoisomerasas de Tipo II/metabolismo , Inhibidores de Topoisomerasa II/farmacología , Inhibidores de Topoisomerasa II/química , Línea Celular Tumoral , Descubrimiento de Drogas/métodos , Antineoplásicos/farmacología , Antineoplásicos/química , Simulación del Acoplamiento Molecular , Relación Estructura-Actividad , Imidazoles/farmacología , Imidazoles/química , Roturas del ADN de Doble Cadena/efectos de los fármacos , Antígenos de Neoplasias/metabolismo
3.
Artículo en Inglés | MEDLINE | ID: mdl-38776787

RESUMEN

DNA gyrase and topoisomerase IV play significant role in maintaining the correct structure of DNA during replication and they have been identified as validated targets in antibacterial drug discovery. Inadequate pharmacokinetic properties are responsible for many failures during drug discovery and their estimation in the early phase of this process maximizes the chance of getting useful drug candidates. Passive gastrointestinal absorption of a selected group of thirteen dual DNA gyrase and topoisomerase IV inhibitors was estimated using two in vitro tests - parallel artificial membrane permeability assay (PAMPA) and biopartitioning micellar chromatography (BMC). Due to good correlation between obtained results, passive gastrointestinal absorption of remaining ten compounds was estimated using only BMC. With this experimental setup, it was possible to identify compounds with high values of retention factors (k) and highest expected passive gastrointestinal absorption, and compounds with low values of k for which low passive gastrointestinal absorption is predicted. Quantitative structure-retention relationship (QSRR) modelling was performed by creating multiple linear regression (MLR), partial least squares (PLS) and support vector machines (SVM) models. Descriptors with the highest influence on retention factor were identified and their interpretation can be used for the design of new compounds with improved passive gastrointestinal absorption.


Asunto(s)
Absorción Gastrointestinal , Relación Estructura-Actividad Cuantitativa , Inhibidores de Topoisomerasa II , Inhibidores de Topoisomerasa II/química , Inhibidores de Topoisomerasa II/farmacocinética , Micelas , Modelos Lineales , Membranas Artificiales , Girasa de ADN/metabolismo , Girasa de ADN/química , Humanos , Topoisomerasa de ADN IV/metabolismo , Topoisomerasa de ADN IV/antagonistas & inhibidores , Topoisomerasa de ADN IV/química
4.
Bioorg Chem ; 147: 107314, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38581967

RESUMEN

The identification of novel 4-hydroxy-2-quinolone-3-carboxamide antibacterials with improved properties is of great value for the control of antibiotic resistance. In this study, a series of N-heteroaryl-substituted 4-hydroxy-2-quinolone-3-carboxamides were developed using the bioisosteric replacement strategy. As a result of our research, we discovered the two most potent GyrB inhibitors (WBX7 and WBX18), with IC50 values of 0.816 µM and 0.137 µM, respectively. Additional antibacterial activity screening indicated that WBX18 possesses the best antibacterial activity against MRSA, VISA, and VRE strains, with MIC values rangingbetween0.5and 2 µg/mL, which was 2 to over 32 times more potent than that of vancomycin. In vitro safety and metabolic stability, as well as in vivo pharmacokinetics assessments revealed that WBX18 is non-toxic to HUVEC and HepG2, metabolically stable in plasma and liver microsomes (mouse), and displays favorable in vivo pharmacokinetic properties. Finally, docking studies combined with molecular dynamic simulation showed that WBX18 could stably fit in the active site cavity of GyrB.


Asunto(s)
Antibacterianos , Girasa de ADN , Pruebas de Sensibilidad Microbiana , Inhibidores de Topoisomerasa II , Antibacterianos/farmacología , Antibacterianos/química , Antibacterianos/síntesis química , Humanos , Girasa de ADN/metabolismo , Inhibidores de Topoisomerasa II/farmacología , Inhibidores de Topoisomerasa II/química , Inhibidores de Topoisomerasa II/síntesis química , Relación Estructura-Actividad , Animales , Estructura Molecular , Relación Dosis-Respuesta a Droga , Ratones , Células Hep G2 , Simulación del Acoplamiento Molecular , Microsomas Hepáticos/metabolismo , Microsomas Hepáticos/química
5.
ACS Infect Dis ; 10(4): 1097-1115, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38564341

RESUMEN

Beyond their requisite functions in many critical DNA processes, the bacterial type II topoisomerases, gyrase and topoisomerase IV, are the targets of fluoroquinolone antibacterials. These drugs act by stabilizing gyrase/topoisomerase IV-generated DNA strand breaks and by robbing the cell of the catalytic activities of these essential enzymes. Since their clinical approval in the mid-1980s, fluoroquinolones have been used to treat a broad spectrum of infectious diseases and are listed among the five "highest priority" critically important antimicrobial classes by the World Health Organization. Unfortunately, the widespread use of fluoroquinolones has been accompanied by a rise in target-mediated resistance caused by specific mutations in gyrase and topoisomerase IV, which has curtailed the medical efficacy of this drug class. As a result, efforts are underway to identify novel antibacterials that target the bacterial type II topoisomerases. Several new classes of gyrase/topoisomerase IV-targeted antibacterials have emerged, including novel bacterial topoisomerase inhibitors, Mycobacterium tuberculosis gyrase inhibitors, triazaacenaphthylenes, spiropyrimidinetriones, and thiophenes. Phase III clinical trials that utilized two members of these classes, gepotidacin (triazaacenaphthylene) and zoliflodacin (spiropyrimidinetrione), have been completed with positive outcomes, underscoring the potential of these compounds to become the first new classes of antibacterials introduced into the clinic in decades. Because gyrase and topoisomerase IV are validated targets for established and emerging antibacterials, this review will describe the catalytic mechanism and cellular activities of the bacterial type II topoisomerases, their interactions with fluoroquinolones, the mechanism of target-mediated fluoroquinolone resistance, and the actions of novel antibacterials against wild-type and fluoroquinolone-resistant gyrase and topoisomerase IV.


Asunto(s)
Topoisomerasa de ADN IV , Mycobacterium tuberculosis , Topoisomerasa de ADN IV/genética , Fluoroquinolonas/farmacología , Girasa de ADN/genética , Girasa de ADN/metabolismo , Inhibidores de Topoisomerasa II/farmacología , Antibacterianos/farmacología , Antibacterianos/metabolismo , ADN/metabolismo , Mycobacterium tuberculosis/genética
6.
Cell Rep ; 43(4): 114053, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38578824

RESUMEN

In the search for much-needed new antibacterial chemical matter, a myriad of compounds have been reported in academic and pharmaceutical screening endeavors. Only a small fraction of these, however, are characterized with respect to mechanism of action (MOA). Here, we describe a pipeline that categorizes transcriptional responses to antibiotics and provides hypotheses for MOA. 3D-printed imaging hardware PFIboxes) profiles responses of Escherichia coli promoter-GFP fusions to more than 100 antibiotics. Notably, metergoline, a semi-synthetic ergot alkaloid, mimics a DNA replication inhibitor. In vitro supercoiling assays confirm this prediction, and a potent analog thereof (MLEB-1934) inhibits growth at 0.25 µg/mL and is highly active against quinolone-resistant strains of methicillin-resistant Staphylococcus aureus. Spontaneous suppressor mutants map to a seldom explored allosteric binding pocket, suggesting a mechanism distinct from DNA gyrase inhibitors used in the clinic. In all, the work highlights the potential of this platform to rapidly assess MOA of new antibacterial compounds.


Asunto(s)
Antibacterianos , Girasa de ADN , Escherichia coli , Inhibidores de Topoisomerasa II , Inhibidores de Topoisomerasa II/farmacología , Girasa de ADN/metabolismo , Girasa de ADN/genética , Antibacterianos/farmacología , Escherichia coli/efectos de los fármacos , Escherichia coli/genética , Escherichia coli/metabolismo , Transcripción Genética/efectos de los fármacos , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Staphylococcus aureus Resistente a Meticilina/genética , Pruebas de Sensibilidad Microbiana
7.
Sci Rep ; 14(1): 9150, 2024 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-38644364

RESUMEN

Oral malignancies continue to have severe morbidity with less than 50% long-term survival despite the advancement in the available therapies. There is a persisting demand for new approaches to establish more efficient strategies for their treatment. In this regard, the human topoisomerase II (topoII) enzyme is a validated chemotherapeutics target, as topoII regulates vital cellular processes such as DNA replication, transcription, recombination, and chromosome segregation in cells. TopoII inhibitors are currently used to treat some neoplasms such as breast and small cells lung carcinomas. Additionally, topoII inhibitors are under investigation for the treatment of other cancer types, including oral cancer. Here, we report the therapeutic effect of a tetrahydroquinazoline derivative (named ARN21934) that preferentially inhibits the alpha isoform of human topoII. The treatment efficacy of ARN21934 has been evaluated in 2D cell cultures, 3D in vitro systems, and in chick chorioallantoic membrane cancer models. Overall, this work paves the way for further preclinical developments of ARN21934 and possibly other topoII alpha inhibitors of this promising chemical class as a new chemotherapeutic approach for the treatment of oral neoplasms.


Asunto(s)
ADN-Topoisomerasas de Tipo II , Carcinoma de Células Escamosas de Cabeza y Cuello , Inhibidores de Topoisomerasa II , Humanos , ADN-Topoisomerasas de Tipo II/metabolismo , Inhibidores de Topoisomerasa II/farmacología , Inhibidores de Topoisomerasa II/uso terapéutico , Carcinoma de Células Escamosas de Cabeza y Cuello/tratamiento farmacológico , Carcinoma de Células Escamosas de Cabeza y Cuello/patología , Línea Celular Tumoral , Animales , Quinazolinas/farmacología , Quinazolinas/uso terapéutico , Proliferación Celular/efectos de los fármacos , Neoplasias de Cabeza y Cuello/tratamiento farmacológico , Neoplasias de Cabeza y Cuello/patología , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Embrión de Pollo
8.
J Enzyme Inhib Med Chem ; 39(1): 2311818, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38488131

RESUMEN

In this article, a new series of 2-((3,5-disubstituted-2-thioxo-imidazol-1-yl)imino)acenaphthylen-1(2H)-ones were synthesized. Imidazole-2-thione with acenaphthylen-one gave a hybrid scaffold that integrated key structural elements essential for DNA damage via direct DNA intercalation and inhibition of the topoisomerase II enzyme. All the synthesized compounds were screened to detect their DNA damage using a terbium fluorescent probe. Results demonstrated that 4-phenyl-imidazoles 5b and 5e in addition to 4-(4-chlorophenyl)imidazoles 5h and 5j would induce detectable potent damage in ctDNA. The four most potent compounds as DNA intercalators were further evaluated for their antiproliferative activity against HepG2, MCF-7 and HCT-116 utilizing the MTT assay. The highest anticancer activity was recorded with compounds 5b and 5h against the breast cancer cell line MCF-7 which were 1.5- and 3- folds more active than doxorubicin, respectively. Therefore, imidazole-2-thione tethered acenaphthylenone derivatives can be considered as promising scaffold for the development of effective dual DNA intercalators and topoisomerase II inhibitors.


Asunto(s)
Antineoplásicos , Inhibidores de Topoisomerasa II , Inhibidores de Topoisomerasa II/farmacología , Inhibidores de Topoisomerasa II/química , Relación Estructura-Actividad , Sustancias Intercalantes/farmacología , Tionas/farmacología , Antineoplásicos/farmacología , Antineoplásicos/química , Línea Celular Tumoral , Imidazoles/farmacología , ADN , Apoptosis , Simulación del Acoplamiento Molecular , ADN-Topoisomerasas de Tipo II/metabolismo , Proliferación Celular
9.
Bioorg Chem ; 146: 107300, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38522391

RESUMEN

In the present study, an intermediate namely 2-(3-bromopropylamino)-3-chloronaphthalene-1,4-dione was initially synthesized via the nucleophilic addition-elimination reaction between 2,3-dichloro-1,4-naphthoquinone and 3-bromo-1-aminopropane. Then a coupling reaction between the intermediate and piperazine derivatives yielded a number of 1,4-naphthoquinone derivatives. Spectroscopic analysis successfully characterized the products that were obtained in good yields. In vitro antibacterial properties of the compounds were examined against different bacterial strains. In vitro antibacterial properties of the compounds were examined against the bacterial strains S. Aureus, E. Faecalis, E. Coli and P. Aeruginosa. While compound 9 was found to be effective against all bacterial strains used, compound 12 was active against three strains and compounds 10 and 11 were effective against the two. None of the compounds are effective against C. albicans strain. In silico molecular docking studies revealed that all compounds had docking scores comparable to the antibacterial drugs ciprofloxacin and gentamicin and might be considered as DNA gyrase B inhibitors. Molecular dynamics simulations were also conducted for a better understanding of the stability and the selected docked complexes. Additionally, the drug similarity of the synthesized compounds and ADMET characteristics were examined in conjunction with the antibiotic ciprofloxacin, and drug potentials were then evaluated. Compatible predictions were found with the drug similarity and ADMET parameters.


Asunto(s)
Escherichia coli , Naftoquinonas , Staphylococcus aureus , Simulación del Acoplamiento Molecular , Antibacterianos/química , Ciprofloxacina/farmacología , Bacterias , Inhibidores de Topoisomerasa II/farmacología , Pruebas de Sensibilidad Microbiana
10.
J Clin Invest ; 134(10)2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38451729

RESUMEN

Development of effective strategies to manage the inevitable acquired resistance to osimertinib, a third-generation EGFR inhibitor for the treatment of EGFR-mutant (EGFRm) non-small cell lung cancer (NSCLC), is urgently needed. This study reports that DNA topoisomerase II (Topo II) inhibitors, doxorubicin and etoposide, synergistically decreased cell survival, with enhanced induction of DNA damage and apoptosis in osimertinib-resistant cells; suppressed the growth of osimertinib-resistant tumors; and delayed the emergence of osimertinib-acquired resistance. Mechanistically, osimertinib decreased Topo IIα levels in EGFRm NSCLC cells by facilitating FBXW7-mediated proteasomal degradation, resulting in induction of DNA damage; these effects were lost in osimertinib-resistant cell lines that possess elevated levels of Topo IIα. Increased Topo IIα levels were also detected in the majority of tissue samples from patients with NSCLC after relapse from EGFR tyrosine kinase inhibitor treatment. Enforced expression of an ectopic TOP2A gene in sensitive EGFRm NSCLC cells conferred resistance to osimertinib, whereas knockdown of TOP2A in osimertinib-resistant cell lines restored their susceptibility to osimertinib-induced DNA damage and apoptosis. Together, these results reveal an essential role of Topo IIα inhibition in mediating the therapeutic efficacy of osimertinib against EGFRm NSCLC, providing scientific rationale for targeting Topo II to manage acquired resistance to osimertinib.


Asunto(s)
Acrilamidas , Compuestos de Anilina , Carcinoma de Pulmón de Células no Pequeñas , ADN-Topoisomerasas de Tipo II , Resistencia a Antineoplásicos , Receptores ErbB , Neoplasias Pulmonares , Inhibidores de Topoisomerasa II , Humanos , Acrilamidas/farmacología , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/enzimología , Compuestos de Anilina/farmacología , Receptores ErbB/genética , Receptores ErbB/antagonistas & inhibidores , Receptores ErbB/metabolismo , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/enzimología , Neoplasias Pulmonares/metabolismo , ADN-Topoisomerasas de Tipo II/genética , ADN-Topoisomerasas de Tipo II/metabolismo , Línea Celular Tumoral , Inhibidores de Topoisomerasa II/farmacología , Resistencia a Antineoplásicos/genética , Resistencia a Antineoplásicos/efectos de los fármacos , Animales , Ratones , Mutación , Proteínas de Unión a Poli-ADP-Ribosa/genética , Proteínas de Unión a Poli-ADP-Ribosa/metabolismo , Proteínas de Unión a Poli-ADP-Ribosa/antagonistas & inhibidores , Sinergismo Farmacológico , Daño del ADN , Piperazinas/farmacología , Etopósido/farmacología , Ensayos Antitumor por Modelo de Xenoinjerto
11.
Bioorg Chem ; 145: 107223, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38387399

RESUMEN

Herein, we envisioned the design and synthesis of novel pyrazolopyrimidines (confirmed by elemental analysis, 1H and 13C NMR, and mass spectra) as multitarget-directed drug candidates acting as EGFR/TOPO II inhibitors, DNA intercalators, and apoptosis inducers. The target diphenyl-tethered pyrazolopyrimidines were synthesized starting from the reaction of phenyl hydrazine and ethoxymethylenemalononitrile to give aminopyrazole-carbonitrile 2. The latter hydrolysis with NaOH and subsequent reaction with 4-chlorobenzaldhyde afforded the corresponding pyrazolo[3,4-d]pyrimidin-4-ol 4. Chlorination of 4 with POCl3 and sequential reaction with different amines afforded the target compounds in good yields (up to 73 %). The growth inhibition % of the new derivatives (6a-m) was investigated against different cancer and normal cells and the IC50 values of the most promising candidates were estimated for HNO97, MDA-MB-468, FaDu, and HeLa cancer cells. The frontier derivatives (6a, 6i, 6k, 6l, and 6m) were pursued for their EGFR inhibitory activity. Compound 6l decreased EGFR protein concentration by a 6.10-fold change, compared to imatinib as a reference standard. On the other side, compounds (6a, 6i, 6k, 6l, and 6m) underwent topoisomerase II (TOPO II) inhibitory assay. In particular, compounds 6a and 6l exhibited IC50s of 17.89 and 19.39 µM, respectively, surpassing etoposide with IC50 of 20.82 µM. Besides, the DNA fragmentation images described the great potential of both candidates 6a and 6l in inducing DNA degradation at lower concentrations compared to etoposide and doxorubicin. Moreover, compound 6l, with the most promising EGFR/TOPO II inhibition and DNA intercalation, was selected for further investigation for its apoptosis induction ability by measuring caspases 3, 7, 8, and 9, Bax, p53, MMP2, MMP9, and BCL-2 proteins. Additionally, molecular docking was used to explain the SAR results based on the differences in the molecular features of the investigated congeners and the target receptors' topology.


Asunto(s)
Antineoplásicos , Compuestos de Bifenilo , Humanos , Estructura Molecular , Relación Estructura-Actividad , Simulación del Acoplamiento Molecular , Antineoplásicos/química , Etopósido/farmacología , ADN-Topoisomerasas de Tipo II/metabolismo , Proliferación Celular , Inhibidores de Topoisomerasa II , Apoptosis , Receptores ErbB/metabolismo , ADN , Ensayos de Selección de Medicamentos Antitumorales
12.
PLoS Genet ; 20(2): e1011164, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38416769

RESUMEN

TOP2 inhibitors (TOP2i) are effective drugs for breast cancer treatment. However, they can cause cardiotoxicity in some women. The most widely used TOP2i include anthracyclines (AC) Doxorubicin (DOX), Daunorubicin (DNR), Epirubicin (EPI), and the anthraquinone Mitoxantrone (MTX). It is unclear whether women would experience the same adverse effects from all drugs in this class, or if specific drugs would be preferable for certain individuals based on their cardiotoxicity risk profile. To investigate this, we studied the effects of treatment of DOX, DNR, EPI, MTX, and an unrelated monoclonal antibody Trastuzumab (TRZ) on iPSC-derived cardiomyocytes (iPSC-CMs) from six healthy females. All TOP2i induce cell death at concentrations observed in cancer patient serum, while TRZ does not. A sub-lethal dose of all TOP2i induces limited cellular stress but affects calcium handling, a function critical for cardiomyocyte contraction. TOP2i induce thousands of gene expression changes over time, giving rise to four distinct gene expression response signatures, denoted as TOP2i early-acute, early-sustained, and late response genes, and non-response genes. There is no drug- or AC-specific signature. TOP2i early response genes are enriched in chromatin regulators, which mediate AC sensitivity across breast cancer patients. However, there is increased transcriptional variability between individuals following AC treatments. To investigate potential genetic effects on response variability, we first identified a reported set of expression quantitative trait loci (eQTLs) uncovered following DOX treatment in iPSC-CMs. Indeed, DOX response eQTLs are enriched in genes that respond to all TOP2i. Next, we identified 38 genes in loci associated with AC toxicity by GWAS or TWAS. Two thirds of the genes that respond to at least one TOP2i, respond to all ACs with the same direction of effect. Our data demonstrate that TOP2i induce thousands of shared gene expression changes in cardiomyocytes, including genes near SNPs associated with inter-individual variation in response to DOX treatment and AC-induced cardiotoxicity.


Asunto(s)
Antraciclinas , Cardiotoxicidad , Humanos , Femenino , Antraciclinas/efectos adversos , Antraciclinas/metabolismo , Cardiotoxicidad/genética , Cardiotoxicidad/metabolismo , Antibióticos Antineoplásicos/efectos adversos , Antibióticos Antineoplásicos/metabolismo , Inhibidores de Topoisomerasa II/metabolismo , Inhibidores de Topoisomerasa II/farmacología , Doxorrubicina/efectos adversos , Doxorrubicina/metabolismo , Mitoxantrona/efectos adversos , Mitoxantrona/metabolismo , Miocitos Cardíacos/metabolismo , Daunorrubicina/metabolismo , Daunorrubicina/farmacología , Epirrubicina/metabolismo , Epirrubicina/farmacología , ADN-Topoisomerasas de Tipo II/genética , Expresión Génica
13.
Bioorg Chem ; 144: 107158, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38301427

RESUMEN

A new series of pyranopyrazole-based derivatives were designed and synthesized. The synthesized compounds were assessed for their cytotoxic efficacy against A549 human lung carcinoma and MCF-7 human breast carcinoma cell lines. Three compounds (1b, 4b, and 7b) exhibited 1.3- to 2.3-fold more antiproliferative activity than that of doxorubicin against the A549 cell line. In comparison to doxorubicin, compounds 1d and 3b were 4.1- and 1.04-fold, respectively more powerful against MCF-7 cancer cells. All the synthesized compounds were found to be more selective toward A549 cancer cells than the normal human fibroblast BJ cells. Of interest, compounds 1b and 7b exhibited promising cytotoxicity and SIs of 27.72 and 25.30, respectively, towards A549 cancer cells, higher than that of doxorubicin (SI 4.81). The most potent compounds 1b, 1d, 3b, 4b, and 7b were then subjected to in vitro Topo II inhibition assay. They showed IC50 values in the range of 2.07 to 8.86 µM. Of particular interest, compound 7b (IC50 = 2.07 µM), exhibited higher Topo II inhibitory activity than that of doxorubicin (IC50 = 2.56 µM). The significant Topo II inhibition of compound 7b was explained by molecular docking simulations into the Topo II active site. Compound 7b halted the cell cycle in the S phase in A549 cancer cells. It induced total apoptosis and necrosis of 20.73- and 4-fold, respectively, greater than the control. This evidence was supported by a 3.59-fold increase in the level of apoptotic caspase-9 and a remarkable elevation of the Bax/BCL-2 ratio. The physiochemical parameters of compound 7b were aligned with Lipinski's rule of five.


Asunto(s)
Antineoplásicos , Inhibidores de Topoisomerasa II , Humanos , Estructura Molecular , Relación Estructura-Actividad , Línea Celular Tumoral , Simulación del Acoplamiento Molecular , Antineoplásicos/química , Doxorrubicina/farmacología , Apoptosis , Proliferación Celular , Ensayos de Selección de Medicamentos Antitumorales
14.
Nucleic Acids Res ; 52(8): 4151-4166, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38340348

RESUMEN

In cancer therapy, DNA intercalators are mainly known for their capacity to kill cells by inducing DNA damage. Recently, several DNA intercalators have attracted much interest given their ability to inhibit RNA Polymerase I transcription (BMH-21), evict histones (Aclarubicin) or induce chromatin trapping of FACT (Curaxin CBL0137). Interestingly, these DNA intercalators lack the capacity to induce DNA damage while still retaining cytotoxic effects and stabilize p53. Herein, we report that these DNA intercalators impact chromatin biology by interfering with the chromatin stability of RNA polymerases I, II and III. These three compounds have the capacity to induce degradation of RNA polymerase II and they simultaneously enable the trapping of Topoisomerases TOP2A and TOP2B on the chromatin. In addition, BMH-21 also acts as a catalytic inhibitor of Topoisomerase II, resembling Aclarubicin. Moreover, BMH-21 induces chromatin trapping of the histone chaperone FACT and propels accumulation of Z-DNA and histone eviction, similarly to Aclarubicin and CBL0137. These DNA intercalators have a cumulative impact on general transcription machinery by inducing accumulation of topological defects and impacting nuclear chromatin. Therefore, their cytotoxic capabilities may be the result of compounding deleterious effects on chromatin homeostasis.


Asunto(s)
Cromatina , ADN-Topoisomerasas de Tipo II , Sustancias Intercalantes , ARN Polimerasa II , Humanos , Antígenos de Neoplasias/metabolismo , Antígenos de Neoplasias/genética , Carbazoles , Cromatina/metabolismo , Dicetopiperazinas , ADN/metabolismo , ADN/química , Daño del ADN , ADN-Topoisomerasas de Tipo II/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas del Grupo de Alta Movilidad/metabolismo , Proteínas del Grupo de Alta Movilidad/genética , Histonas/metabolismo , Sustancias Intercalantes/farmacología , Sustancias Intercalantes/química , Proteínas de Unión a Poli-ADP-Ribosa/metabolismo , Proteínas de Unión a Poli-ADP-Ribosa/genética , ARN Polimerasa I/metabolismo , ARN Polimerasa I/antagonistas & inhibidores , ARN Polimerasa II/metabolismo , ARN Polimerasa III/metabolismo , Inhibidores de Topoisomerasa II/farmacología , Transcripción Genética/efectos de los fármacos , Factores de Elongación Transcripcional/metabolismo , Factores de Elongación Transcripcional/genética , Aclarubicina/farmacología
15.
Eur J Med Chem ; 265: 116107, 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38171147

RESUMEN

Unique benzopyridone cyanoacetates (BCs) as new type of promising broad-spectrum antibacterial candidates were discovered with large potential to combat the lethal multidrug-resistant bacterial infections. Many prepared BCs showed broad antibacterial spectrum with low MIC values against the tested strains. Some highly active BCs exhibited rapid sterilization capacity, low resistant trend and good predictive pharmacokinetic properties. Furthermore, the highly active sodium BCs (NaBCs) displayed low hemolysis and cytotoxicity, and especially octyl NaBC 5g also showed in vivo potent anti-infective potential and appreciable pharmacokinetic profiles. A series of preliminary mechanistic explorations indicated that these active BCs could effectively eliminate bacterial biofilm and destroy membrane integrity, thus resulting in the leakage of bacterial cytoplasm. Moreover, their unique structures might further bind to intracellular DNA, DNA gyrase and topoisomerase IV through various direct noncovalent interactions to hinder bacterial reproduction. Meanwhile, the active BCs also induced bacterial oxidative stress and metabolic disturbance, thereby accelerating bacterial apoptosis. These results provided a bright hope for benzopyridone cyanoacetates as potential novel multitargeting broad-spectrum antibacterial candidates to conquer drug resistance.


Asunto(s)
Antibacterianos , Inhibidores de Topoisomerasa II , Antibacterianos/farmacología , Antibacterianos/química , Bacterias , Girasa de ADN/metabolismo , Topoisomerasa de ADN IV , Pruebas de Sensibilidad Microbiana , Inhibidores de Topoisomerasa II/farmacología , Piridonas/química , Piridonas/farmacología , Nitrilos/química , Nitrilos/farmacología
16.
J Enzyme Inhib Med Chem ; 39(1): 2302920, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38221785

RESUMEN

Human DNA topoisomerases are essential for crucial cellular processes, including DNA replication, transcription, chromatin condensation, and maintenance of its structure. One of the significant strategies employed in cancer treatment involves the inhibition of a specific type of topoisomerase, known as topoisomerase II (Topo II). Carbazole derivatives, recognised for their varied biological activities, have recently become a significant focus in oncological research. This study assesses the efficacy of three symmetrically substituted carbazole derivatives: 2,7-Di(2-furyl)-9H-carbazole (27a), 3,6-Di(2-furyl)-9H-carbazole (36a), and 3,6-Di(2-thienyl)-9H-carbazole (36b) - as anticancer agents. Among investigated carbazole derivatives, compound 3,6-di(2-furyl)-9H-carbazole bearing two furan moieties emerged as a novel catalytic inhibitor of Topo II. Notably, 3,6-di(2-furyl)-9H-carbazole effectively selectively inhibited the relaxation and decatenation activities of Topo IIα, with minimal effects on the IIß isoform. These findings underscore the potential of compound 3,6-Di(2-furyl)-9H-carbazole as a promising lead candidate warranting further investigation in the realm of anticancer drug development.


Asunto(s)
Antineoplásicos , Inhibidores de Topoisomerasa II , Humanos , Inhibidores de Topoisomerasa II/farmacología , Inhibidores de Topoisomerasa II/química , Antineoplásicos/farmacología , Antineoplásicos/química , Carbazoles/farmacología , Carbazoles/química , ADN-Topoisomerasas de Tipo II , Apoptosis
17.
Eur J Med Chem ; 265: 116103, 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38176358

RESUMEN

In our pursuit of developing novel analogs of anthracyclines with enhanced antitumor efficacy and safety, we have designed a synthesis scheme for 4,11-dihydroxy-5,10-dioxocyclopenta[b]anthracene-2-carboxamides. These newly synthesized compounds exhibit remarkable antiproliferative potency against various mammalian tumor cell lines, including those expressing activated mechanisms of multidrug resistance. The structure of the diamine moiety in the carboxamide side chain emerges as a critical determinant for anticancer activity and interaction with key targets such as DNA, topoisomerase 1, and ROS induction. Notably, the introduced modification to the doxorubicin structure results in significantly increased lipophilicity, cellular uptake, and preferential distribution in lysosomes. Consequently, while maintaining an impact on anthracyclines targets, these novel derivatives also demonstrate the potential to induce cytotoxicity through pathways associated with lysosomes. In summary, derivatives of cyclic diamines, particularly 3-aminopyrrolidine, can be considered a superior choice compared to aminosugars for incorporation into natural and semi-synthetic anthracyclines or new anthraquinone derivatives, aiming to circumvent efflux-mediated drug resistance.


Asunto(s)
Antineoplásicos , Animales , Antineoplásicos/química , Antraquinonas/química , Ciclopentanos , Ensayos de Selección de Medicamentos Antitumorales , Antibióticos Antineoplásicos/farmacología , Antraciclinas , Inhibidores de Topoisomerasa II/farmacología , Relación Estructura-Actividad , Mamíferos/metabolismo
18.
J Mol Model ; 30(1): 22, 2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38170229

RESUMEN

CONTEXT: It is well known that antibiotic resistance is a major health hazard. To eradicate antibiotic-resistant bacterial infections, it is essential to find a novel antibacterial agent. Hence, in this study, a quantitative structure-activity relationship (QSAR) model was developed using 43 DNA gyrase inhibitors, and 700 natural compounds were screened for their antibacterial properties. Based on molecular docking and absorption, distribution, metabolism, excretion, and toxicity (ADMET) studies, the top three leads viz., apigenin-4'-glucoside, 8-deoxygartanin, and cryptodorine were selected and structurally optimized using density functional theory (DFT) studies. The optimized structures were redocked, and molecular dynamic (MD) simulations were performed. Binding energies were calculated by molecular mechanics/Poisson-Boltzmann surface area solvation (MM-PBSA). Based on the above studies, apigenin-4'-glucoside was identified as a potent antibacterial lead. Further in vitro confirmation studies were performed using the plant Lawsonia inermis containing apigenin-4'-glucoside to confirm the antibacterial activity. METHODS: For QSAR modeling, 2D descriptors were calculated by PaDEL-Descriptors v2.21 software, and the model was developed using the DTClab QSAR tool. Docking was performed using PyRx v0.8 software. ORCA v5.0.1 computational package was used to optimize the structures. The job type used in optimization was equilibrium structure search using the DFT hybrid functional ORCA method B3LYP. The basis set was 6-311G (3df, 3pd) plus four polarization functions for all atoms. Accurate docking was performed for optimized leads using the iGEMDOCK v2.1 tool with a genetic algorithm by 10 solutions each of 80 generations. Molecular dynamic simulations were performed using GROMACS 2020.04 software with CHARMM36 all-atom force field.


Asunto(s)
Simulación de Dinámica Molecular , Relación Estructura-Actividad Cuantitativa , Simulación del Acoplamiento Molecular , Inhibidores de Topoisomerasa II/química , Inhibidores de Topoisomerasa II/farmacología , Apigenina/farmacología , Antibacterianos/farmacología , Girasa de ADN/química
19.
Chemistry ; 30(19): e202303796, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38217886

RESUMEN

Cystobactamids are aromatic oligoamides that exert their natural antibacterial properties by inhibition of bacterial gyrases. Such aromatic oligoamides were proposed to inhibit α-helix-mediated protein-protein interactions and may serve for specific recognition of DNA. Based on this suggestion, we designed new derivatives that have duplicated cystobactamid triarene units as model systems to decipher the specific binding mode of cystobactamids to double stranded DNA. Solution NMR analyses revealed that natural cystobactamids as well as their elongated analogues show an overall bent shape at their central aliphatic unit, with an average CX-CY-CZ angle of ~110 degrees. Our finding is corroborated by the target-bound structure of close analogues, as established by cryo-EM very recently. Cystobactamid CN-861-2 binds directly to the bacterial gyrase with an affinity of 9 µM, and also exhibits DNA-binding properties with specificity for AT-rich DNA. Elongation/dimerization of the triarene subunit of native cystobactamids is demonstrated to lead to an increase in DNA binding affinity. This implies that cystobactamids' gyrase inhibitory activity necessitates not just interaction with the gyrase itself, but also with DNA via their triarene unit.


Asunto(s)
Antibacterianos , Bacterias , Antibacterianos/farmacología , Antibacterianos/química , Amidas/química , ADN , Inhibidores de Topoisomerasa II/farmacología , Inhibidores de Topoisomerasa II/química
20.
Angew Chem Int Ed Engl ; 63(17): e202317187, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38231130

RESUMEN

DNA topoisomerases are attractive targets for anticancer agents. Dual topoisomerase I/II inhibitors are particularly appealing due to their reduced rates of resistance. A number of therapeutically relevant topoisomerase inhibitors are bacterial natural products. Mining the untapped chemical diversity encoded by soil microbiomes presents an opportunity to identify additional natural topoisomerase inhibitors. Here we couple metagenome mining, bioinformatic structure prediction algorithms, and chemical synthesis to produce the dual topoisomerase inhibitor tapcin. Tapcin is a mixed p-aminobenzoic acid (PABA)-thiazole with a rare tri-thiazole substructure and picomolar antiproliferative activity. Tapcin reduced colorectal adenocarcinoma HT-29 cell proliferation and tumor volume in mouse hollow fiber and xenograft models, respectively. In both studies it showed similar activity to the clinically used topoisomerase I inhibitor irinotecan. The study suggests that the interrogation of soil microbiomes using synthetic bioinformatic natural product methods has the potential to be a rewarding strategy for identifying potent, biomedically relevant, antiproliferative agents.


Asunto(s)
Antineoplásicos , Productos Biológicos , Humanos , Ratones , Animales , Inhibidores de Topoisomerasa I/farmacología , Inhibidores de Topoisomerasa II/química , Inhibidores de Topoisomerasa II/farmacología , ADN-Topoisomerasas de Tipo I/metabolismo , Productos Biológicos/farmacología , ADN-Topoisomerasas de Tipo II/metabolismo , Antineoplásicos/farmacología , Antineoplásicos/química , Biología Computacional , Suelo , Tiazoles , Línea Celular Tumoral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA