Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.312
Filtrar
1.
Sci Rep ; 14(1): 10832, 2024 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-38734755

RESUMEN

Sodium-glucose co-transporters type 2 inhibitors (SLGT2i) are highly effective in controlling type 2 diabetes, but reported beneficial cardiovascular effects suggest broader actions on insulin resistance. Weight loss may be initially explained by glycosuria-induced net caloric output and secondary volumetric reduction, but its maintenance could be due to loss of visceral fat mass. Structured ultrasound (US) imaging of abdominal adipose tissue ("eco-obesity") is a recently described methodology used to measure 5 consecutive layers of abdominal fat, not assessable by DEXA or CT scan: superficial subcutaneous (SS), deep subcutaneous (DS), preperitoneal (PP), omental (Om) and right perirenal (RK). PP, Om and RK are predictors of metabolic syndrome (MS) with defined cut-off points. To assess the effect of SLGT2i on every fat depot we enrolled 29 patients with type 2 Diabetes (HbA1c 6.5-9%) and Obesity (IMC > 30 kg/m2) in an open-label, randomized, phase IV trial (EudraCT: 2019-000979-16): the Omendapa trial. Diabetes was diagnosed < 12 months before randomization and all patients were treatment naïve. 14 patients were treated with metformin alone (cohort A) and 15 were treated with metformin + dapaglifozin (cohort B). Anthropometric measures and laboratory tests for glucose, lipid profile, insulin, HOMA, leptin, ultrasensitive-CRP and microalbuminuria (MAL) were done at baseline, 3rd and 6th months. At 6th month, weight loss was -5.5 ± 5.2 kg (5.7% from initial weight) in cohort A and -8.4 ± 4.4 kg (8.6%) in cohort B. Abdominal circumference showed a -2.7 ± 3.1 cm and -5.4 ± 2.5 cm reduction, respectively (p = 0.011). Both Metformin alone (-19.4 ± 20.1 mm; -21.7%) or combined with Dapaglifozin (-20.5 ± 19.4 mm; -21.8%) induced significant Om fat reduction. 13.3% of cohort A patients and 21.4% of cohort's B reached Om thickness below the cut-off for MS criteria. RK fat loss was significantly greater in cohort B group compared to cohort A, at both kidneys. Only in the Met + Dapa group, we observed correlations between Om fat with leptin/CRP/MAL and RK fat with HOMA-IR. US is a useful clinical tool to assess ectopic fat depots. Both Metformin and Dapaglifozin induce fat loss in layers involved with MS but combined treatment is particularly effective in perirenal fat layer reduction. Perirenal fat should be considered as a potential target for cardiovascular dapaglifozin beneficial effects.


Asunto(s)
Compuestos de Bencidrilo , Diabetes Mellitus Tipo 2 , Glucósidos , Metformina , Obesidad , Humanos , Metformina/uso terapéutico , Metformina/farmacología , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/metabolismo , Glucósidos/uso terapéutico , Glucósidos/farmacología , Femenino , Masculino , Obesidad/tratamiento farmacológico , Obesidad/complicaciones , Persona de Mediana Edad , Compuestos de Bencidrilo/uso terapéutico , Compuestos de Bencidrilo/farmacología , Inhibidores del Cotransportador de Sodio-Glucosa 2/uso terapéutico , Inhibidores del Cotransportador de Sodio-Glucosa 2/farmacología , Hipoglucemiantes/uso terapéutico , Hipoglucemiantes/farmacología , Anciano , Quimioterapia Combinada , Adulto
2.
J Med Life ; 17(1): 57-62, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38737651

RESUMEN

Heart failure (HF) remains a significant problem for healthcare systems, requiring the use of intervention and multimodal management strategies. We aimed to assess the short-term effect of empagliflozin (EMPA) and metformin on cardiac function parameters, including ventricular dimension-hypertrophy, septal thickness, ejection fraction (EF), and N-terminal pro-brain natriuretic peptide (NT-proBNP) levels in patients with HF and mildly reduced EF. A case-control study included 60 newly diagnosed patients with HF. Patients were divided into two groups: Group E received standard HF treatment (carvedilol, bumetanide, sacubitril-valsartan, spironolactone) plus EMPA 10 mg daily, and Group M received standard HF treatment plus metformin 500 mg daily. After three months of treatment, Group E had a significantly higher EF than Group M compared to initial measurements (a change of 9.2% versus 6.1%, respectively). We found similar results in the left ventricular end-systolic dimension (LVESD), with mean reductions of 0.72 mm for Group E and 0.23 mm for Group M. Regarding cardiac indicators, the level of NT-proBNP was considerably decreased in both groups. However, the reduction was significantly greater in group E than in group M compared to the initial level (mean reduction: 719.9 vs. 973.6, respectively). When combined with quadruple anti-heart failure therapy, metformin enhanced several echocardiographic parameters, showing effects similar to those of EMPA when used in the same treatment regimen. However, the benefits of EMPA were more pronounced, particularly regarding improvements in EF and LVESD.


Asunto(s)
Compuestos de Bencidrilo , Glucósidos , Insuficiencia Cardíaca , Metformina , Volumen Sistólico , Humanos , Insuficiencia Cardíaca/tratamiento farmacológico , Insuficiencia Cardíaca/fisiopatología , Compuestos de Bencidrilo/uso terapéutico , Compuestos de Bencidrilo/farmacología , Glucósidos/uso terapéutico , Glucósidos/farmacología , Metformina/uso terapéutico , Metformina/farmacología , Volumen Sistólico/efectos de los fármacos , Masculino , Femenino , Estudios de Casos y Controles , Persona de Mediana Edad , Anciano , Péptido Natriurético Encefálico/sangre , Fragmentos de Péptidos/sangre , Ecocardiografía , Inhibidores del Cotransportador de Sodio-Glucosa 2/uso terapéutico , Inhibidores del Cotransportador de Sodio-Glucosa 2/farmacología
3.
Int J Mol Sci ; 25(9)2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38732178

RESUMEN

Some of the most common conditions affecting people are kidney diseases. Among them, we distinguish chronic kidney disease and acute kidney injury. Both entities pose serious health risks, so new drugs are still being sought to treat and prevent them. In recent years, such a role has begun to be assigned to sodium-glucose cotransporter-2 (SGLT2) inhibitors. They increase the amount of glucose excreted in the urine. For this reason, they are currently used as a first-line drug in type 2 diabetes mellitus. Due to their demonstrated cardioprotective effect, they are also used in heart failure treatment. As for the renal effects of SGLT2 inhibitors, they reduce intraglomerular pressure and decrease albuminuria. This results in a slower decline in glomelular filtration rate (GFR) in patients with kidney disease. In addition, these drugs have anti-inflammatory and antifibrotic effects. In the following article, we review the evidence for the effectiveness of this group of drugs in kidney disease and their nephroprotective effect. Further research is still needed, but meta-analyses indicate SGLT2 inhibitors' efficacy in kidney disease, especially the one caused by diabetes. Development of new drugs and clinical trials on specific patient subgroups will further refine their nephroprotective effects.


Asunto(s)
Diabetes Mellitus Tipo 2 , Inhibidores del Cotransportador de Sodio-Glucosa 2 , Humanos , Inhibidores del Cotransportador de Sodio-Glucosa 2/uso terapéutico , Inhibidores del Cotransportador de Sodio-Glucosa 2/farmacología , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Insuficiencia Renal Crónica/tratamiento farmacológico , Insuficiencia Renal Crónica/metabolismo , Tasa de Filtración Glomerular/efectos de los fármacos , Enfermedades Renales/tratamiento farmacológico , Animales
4.
Oncol Res ; 32(5): 817-830, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38686050

RESUMEN

Cancer frequently develops resistance to the majority of chemotherapy treatments. This study aimed to examine the synergistic cytotoxic and antitumor effects of SGLT2 inhibitors, specifically Canagliflozin (CAN), Dapagliflozin (DAP), Empagliflozin (EMP), and Doxorubicin (DOX), using in vitro experimentation. The precise combination of CAN+DOX has been found to greatly enhance the cytotoxic effects of doxorubicin (DOX) in MCF-7 cells. Interestingly, it was shown that cancer cells exhibit an increased demand for glucose and ATP in order to support their growth. Notably, when these medications were combined with DOX, there was a considerable inhibition of glucose consumption, as well as reductions in intracellular ATP and lactate levels. Moreover, this effect was found to be dependent on the dosages of the drugs. In addition to effectively inhibiting the cell cycle, the combination of CAN+DOX induces substantial modifications in both cell cycle and apoptotic gene expression. This work represents the initial report on the beneficial impact of SGLT2 inhibitor medications, namely CAN, DAP, and EMP, on the responsiveness to the anticancer properties of DOX. The underlying molecular mechanisms potentially involve the suppression of the function of SGLT2.


Asunto(s)
Apoptosis , Neoplasias de la Mama , Doxorrubicina , Inhibidores del Cotransportador de Sodio-Glucosa 2 , Femenino , Humanos , Apoptosis/efectos de los fármacos , Apoptosis/genética , Compuestos de Bencidrilo/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Canagliflozina/farmacología , Ciclo Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Doxorrubicina/farmacología , Resistencia a Antineoplásicos/efectos de los fármacos , Sinergismo Farmacológico , Glucosa/metabolismo , Glucósidos/farmacología , Células MCF-7 , Transportador 2 de Sodio-Glucosa/metabolismo , Inhibidores del Cotransportador de Sodio-Glucosa 2/farmacología
5.
Mitochondrion ; 76: 101878, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38599300

RESUMEN

Mitochondrial volume is maintained through the permeability of the inner mitochondrial membrane by a specific aquaporin and the osmotic balance between the mitochondrial matrix and cellular cytoplasm. Various electrolytes, such as calcium and hydrogen ions, potassium, and sodium, as well as other osmotic substances, affect the swelling of mitochondria. Intracellular glucose levels may also affect mitochondrial swelling, although the relationship between mitochondrial ion homeostasis and intracellular glucose is poorly understood. This article reviews what is currently known about how the Sodium-Glucose transporter (SGLT) may impact mitochondrial sodium (Na+) homeostasis. SGLTs regulate intracellular glucose and sodium levels and, therefore, interfere with mitochondrial ion homeostasis because mitochondrial Na+ is closely linked to cytoplasmic calcium and sodium dynamics. Recently, a large amount of data has been available on the effects of SGLT2 inhibitors on mitochondria in different cell types, including renal proximal tubule cells, endothelial cells, mesangial cells, podocytes, neuronal cells, and cardiac cells. The current evidence suggests that SGLT inhibitors (SGLTi) may affect mitochondrial dynamics regarding intracellular Sodium and hydrogen ions. Although the regulation of mitochondrial ion channels by SGLTs is still in its infancy, the evidence accumulated thus far of the effect of SGLTi on mitochondrial functions certainly will foster further research in this direction.


Asunto(s)
Mitocondrias , Mitocondrias/metabolismo , Humanos , Animales , Sodio/metabolismo , Transportador 2 de Sodio-Glucosa/metabolismo , Glucosa/metabolismo , Inhibidores del Cotransportador de Sodio-Glucosa 2/farmacología , Homeostasis
6.
J Am Coll Cardiol ; 83(15): 1386-1398, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38599715

RESUMEN

BACKGROUND: Sodium-glucose cotransporter 2 inhibitors are believed to improve cardiac outcomes due to their osmotic diuretic potential. OBJECTIVES: The goal of this study was to test the hypothesis that vasopressin-driven urine concentration overrides the osmotic diuretic effect of glucosuria induced by dapagliflozin treatment. METHODS: DAPA-Shuttle1 (Hepato-renal Regulation of Water Conservation in Heart Failure Patients With SGLT-2 Inhibitor Treatment) was a single-center, double-blind, randomized, placebo-controlled trial, in which patients with chronic heart failure NYHA functional classes I/II and reduced ejection fraction were randomly assigned to receive dapagliflozin 10 mg daily or placebo (1:1) for 4 weeks. The primary endpoint was change from baseline in urine osmolyte concentration. Secondary endpoints included changes in copeptin levels and solute free water clearance. RESULTS: Thirty-three randomized, sodium-glucose cotransporter 2 inhibitor-naïve participants completed the study, 29 of whom (placebo: n = 14; dapagliflozin: n = 15) provided accurate 24-hour urine collections (mean age 59 ± 14 years; left ventricular ejection fraction 31% ± 9%). Dapagliflozin treatment led to an isolated increase in urine glucose excretion by 3.3 mmol/kg/d (95% CI: 2.51-4.04; P < 0.0001) within 48 hours (early) which persisted after 4 weeks (late; 2.7 mmol/kg/d [95% CI: 1.98-3.51]; P < 0.0001). Dapagliflozin treatment increased serum copeptin early (5.5 pmol/L [95% CI: 0.45-10.5]; P < 0.05) and late (7.8 pmol/L [95% CI: 2.77-12.81]; P < 0.01), leading to proportional reductions in free water clearance (early: -9.1 mL/kg/d [95% CI: -14 to -4.12; P < 0.001]; late: -11.0 mL/kg/d [95% CI: -15.94 to -6.07; P < 0.0001]) and elevated urine concentrations (late: 134 mmol/L [95% CI: 39.28-229.12]; P < 0.01). Therefore, urine volume did not significantly increase with dapagliflozin (mean difference early: 2.8 mL/kg/d [95% CI: -1.97 to 7.48; P = 0.25]; mean difference late: 0.9 mL/kg/d [95% CI: -3.83 to 5.62]; P = 0.70). CONCLUSIONS: Physiological-adaptive water conservation eliminated the expected osmotic diuretic potential of dapagliflozin and thereby prevented a glucose-driven increase in urine volume of approximately 10 mL/kg/d · 75 kg = 750 mL/kg/d. (Hepato-renal Regulation of Water Conservation in Heart Failure Patients With SGLT-2 Inhibitor Treatment [DAPA-Shuttle1]; NCT04080518).


Asunto(s)
Compuestos de Bencidrilo , Conservación de los Recursos Hídricos , Diuresis , Glucósidos , Insuficiencia Cardíaca , Inhibidores del Cotransportador de Sodio-Glucosa 2 , Anciano , Humanos , Persona de Mediana Edad , Diuréticos Osmóticos/farmacología , Diuréticos Osmóticos/uso terapéutico , Transportador 2 de Sodio-Glucosa , Inhibidores del Cotransportador de Sodio-Glucosa 2/farmacología , Volumen Sistólico , Función Ventricular Izquierda , Agua
8.
Ned Tijdschr Geneeskd ; 1682024 Apr 11.
Artículo en Holandés | MEDLINE | ID: mdl-38602004

RESUMEN

Sodium-glucose cotransporter 2 inhibitors (SGLT2 inhibitors) have gained prominence in the treatment of diabetes mellitus type 2, heart failure, and chronic kidney disease. However, concerns arise for frail older adults, given their underrepresentation in trials and heightened susceptibility to adverse drug events. This review summarizes the clinical effects of SGLT2 inhibitors in older adults with frailty. SGLT2 inhibitors seem to exhibit consistent cardiovascular benefits irrespective of age. As such, these drugs can be beneficial for older adults with 'cardiovascular frailty': in other words, cardiovascular multimorbidity. However, in the current data there is a lack of focus on the broader definition of frailty, which also includes functional status and self-dependence. Also, some research suggest that adverse events, such as volume depletion and genitourinary infections, are more common in the frail older population. Therefore, until more data is available, SGLT2 inhibitors should be prescribed with caution in older adults living with frailty.


Asunto(s)
Diabetes Mellitus Tipo 2 , Fragilidad , Inhibidores del Cotransportador de Sodio-Glucosa 2 , Anciano , Humanos , Enfermedades Cardiovasculares/tratamiento farmacológico , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/epidemiología , Anciano Frágil , Glucosa/uso terapéutico , Hipoglucemiantes/efectos adversos , Inhibidores del Cotransportador de Sodio-Glucosa 2/farmacología , Inhibidores del Cotransportador de Sodio-Glucosa 2/uso terapéutico
9.
Am J Physiol Cell Physiol ; 326(4): C1272-C1290, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38602847

RESUMEN

Sodium-glucose cotransporter, type 2 inhibitors (SGLT2i) are emerging as the gold standard for treatment of type 2 diabetes (T2D) with renal protective benefits independent of glucose lowering. We took a high-level approach to evaluate the effects of the SGLT2i, empagliflozin (EMPA) on renal metabolism and function in a prediabetic model of metabolic syndrome. Male and female 12-wk-old TallyHo (TH) mice, and their closest genetic lean strain (Swiss-Webster, SW) were treated with a high-milk-fat diet (HMFD) plus/minus EMPA (@0.01%) for 12-wk. Kidney weights and glomerular filtration rate were slightly increased by EMPA in the TH mice. Glomerular feature analysis by unsupervised clustering revealed sexually dimorphic clustering, and one unique cluster relating to EMPA. Periodic acid Schiff (PAS) positive areas, reflecting basement membranes and mesangium were slightly reduced by EMPA. Phasor-fluorescent life-time imaging (FLIM) of free-to-protein bound NADH in cortex showed a marginally greater reliance on oxidative phosphorylation with EMPA. Overall, net urine sodium, glucose, and albumin were slightly increased by EMPA. In TH, EMPA reduced the sodium phosphate cotransporter, type 2 (NaPi-2), but increased sodium hydrogen exchanger, type 3 (NHE3). These changes were absent or blunted in SW. EMPA led to changes in urine exosomal microRNA profile including, in females, enhanced levels of miRs 27a-3p, 190a-5p, and 196b-5p. Network analysis revealed "cancer pathways" and "FOXO signaling" as the major regulated pathways. Overall, EMPA treatment to prediabetic mice with limited renal disease resulted in modifications in renal metabolism, structure, and transport, which may preclude and underlie protection against kidney disease with developing T2D.NEW & NOTEWORTHY Renal protection afforded by sodium glucose transporter, type 2 inhibitors (SGLT2i), e.g., empagliflozin (EMPA) involves complex intertwined mechanisms. Using a novel mouse model of obesity with insulin resistance, the TallyHo/Jng (TH) mouse on a high-milk-fat diet (HMFD), we found subtle changes in metabolism including altered regulation of sodium transporters that line the renal tubule. New potential epigenetic determinants of metabolic changes relating to FOXO and cancer signaling pathways were elucidated from an altered urine exosomal microRNA signature.


Asunto(s)
Compuestos de Bencidrilo , Diabetes Mellitus Tipo 2 , Glucósidos , Enfermedades Renales , MicroARNs , Neoplasias , Estado Prediabético , Inhibidores del Cotransportador de Sodio-Glucosa 2 , Masculino , Femenino , Ratones , Animales , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Estado Prediabético/tratamiento farmacológico , Inhibidores del Cotransportador de Sodio-Glucosa 2/farmacología , Riñón , Glucosa/farmacología , MicroARNs/farmacología , Sodio
13.
Front Biosci (Landmark Ed) ; 29(4): 145, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38682194

RESUMEN

Sodium-glucose cotransporters 2 (SGLT2) are high-capacity, low-affinity transporters, expressed mainly in the early portion of the proximal renal tube, mediating up to 90% of renal glucose uptake, while SGLT1 receptors are found mainly in the small intestine, facilitating glucose absorption. SGLT2 inhibitors (SGLT2i) originally emerged as agents for the treatment of type 2 diabetes mellitus; however, they soon demonstrated remarkable cardio- and renoprotective actions that led to their licensed use for the treatment of heart failure and chronic kidney disease, regardless of the diabetic status. Cardiovascular remodelling represents an umbrella term that encompasses changes that occur in the cardiovascular system, from the molecular and cellular level, to tissue and organs after local injury, chronic stress, or pressure. SGLT modulation has been shown to positively affect many of these molecular and cellular changes observed during pathological remodelling. Among the different pathophysiological mechanisms that contribute to adverse remodelling, various stem and progenitor cells have been shown to be involved, through alterations in their number or function. Recent studies have examined the effects of SGLT2i on stem and progenitor cell populations and more specifically on endothelial progenitor cells (EPCs). Although some found no significant effect, others showed that SGLT2i can modulate the morphology and function of EPCs. These preliminary observations of the effect of SGLT2i on EPCs may be responsible for some of the beneficial effects of gliflozins on pathological remodelling and, by extension, on cardiovascular disease. The purpose of this narrative review is to critically discuss recent evidence on the cardioprotective effects of SGLT2is, in the context of cardiac remodelling.


Asunto(s)
Inhibidores del Cotransportador de Sodio-Glucosa 2 , Humanos , Inhibidores del Cotransportador de Sodio-Glucosa 2/farmacología , Células Madre/efectos de los fármacos , Células Madre/metabolismo , Animales , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Remodelación Ventricular/efectos de los fármacos , Sistema Cardiovascular/efectos de los fármacos , Transportador 2 de Sodio-Glucosa/metabolismo , Transportador 2 de Sodio-Glucosa/genética , Enfermedades Cardiovasculares/metabolismo , Enfermedades Cardiovasculares/tratamiento farmacológico , Enfermedades Cardiovasculares/fisiopatología , Insuficiencia Cardíaca/tratamiento farmacológico , Insuficiencia Cardíaca/fisiopatología , Insuficiencia Cardíaca/metabolismo
14.
Biomed Pharmacother ; 174: 116505, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38574614

RESUMEN

Pulmonary arterial hypertension (PAH) was a devastating disease characterized by artery remodeling, ultimately resulting in right heart failure. The aim of this study was to investigate the effects of canagliflozin (CANA), a sodium-glucose cotransporter 2 inhibitor (SGLT2i) with mild SGLT1 inhibitory effects, on rats with PAH, as well as its direct impact on pulmonary arterial smooth muscle cells (PASMCs). PAH rats were induced by injection of monocrotaline (MCT) (40 mg/kg), followed by four weeks of treatment with CANA (30 mg/kg/day) or saline alone. Pulmonary artery and right ventricular (RV) remodeling and dysfunction in PAH were alleviated with CANA, as assessed by echocardiography. Hemodynamic parameters and structural of pulmonary arteriole, including vascular wall thickness and wall area, were reduced by CANA. RV hypertrophy index, cardiomyocyte hypertrophy, and fibrosis were decreased with CANA treatment. PASMCs proliferation was inhibited by CANA under stimulation by platelet-derived growth factor (PDGF)-BB or hypoxia. Activation of AMP kinase (AMPK) was induced by CANA treatment in cultured PASMCs in a time- and concentration-dependent manner. These effects of CANA were attenuated when treatment with compound C, an AMPK inhibitor. Abundant expression of SGLT1 was observed in PASMCs and pulmonary arteries, while SGLT2 expression was undetectable. SGLT1 increased in response to PDGF-BB or hypoxia stimulation, while PASMCs proliferation was inhibited and beneficial effects of CANA were counteracted by knockdown of SGLT1. Our research demonstrated for the first time that CANA inhibited the proliferation of PASMCs by regulating SGLT1/AMPK signaling and thus exerted an anti-proliferative effect on MCT-induced PAH.


Asunto(s)
Canagliflozina , Proliferación Celular , Miocitos del Músculo Liso , Hipertensión Arterial Pulmonar , Remodelación Vascular , Animales , Ratas , Proteínas Quinasas Activadas por AMP/efectos de los fármacos , Proteínas Quinasas Activadas por AMP/metabolismo , Canagliflozina/farmacología , Proliferación Celular/efectos de los fármacos , Hipertensión Pulmonar/inducido químicamente , Hipertensión Pulmonar/patología , Hipertensión Pulmonar/tratamiento farmacológico , Hipertensión Pulmonar/metabolismo , Monocrotalina/efectos adversos , Miocitos del Músculo Liso/efectos de los fármacos , Miocitos del Músculo Liso/patología , Miocitos del Músculo Liso/metabolismo , Hipertensión Arterial Pulmonar/tratamiento farmacológico , Hipertensión Arterial Pulmonar/patología , Hipertensión Arterial Pulmonar/metabolismo , Hipertensión Arterial Pulmonar/inducido químicamente , Arteria Pulmonar/efectos de los fármacos , Arteria Pulmonar/patología , Arteria Pulmonar/metabolismo , Ratas Sprague-Dawley , Transducción de Señal/efectos de los fármacos , Transportador 1 de Sodio-Glucosa/efectos de los fármacos , Transportador 1 de Sodio-Glucosa/metabolismo , Inhibidores del Cotransportador de Sodio-Glucosa 2/farmacología , Remodelación Vascular/efectos de los fármacos
15.
Expert Opin Drug Metab Toxicol ; 20(4): 175-179, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38594810

RESUMEN

INTRODUCTION: Over the last few years, there has been a substantial increase in the data available about the benefits of sodium-glucose cotransporter-2 (SGLT2) inhibitors and glucagon-like peptide-1 receptor agonists (GLP-1 RAs) in improving cardiovascular and renal outcomes in patients with type 2 diabetes (T2D). Very little new information is available for the other groups of glucose-lowering drugs. AREAS COVERED: This brief report summarizes the recent information about the respective benefits of the two newer groups of glucose-lowering drugs and the effects on cardiovascular risk factors that may be involved in these benefits. The articles reviewed were identified by a Medline search. EXPERT OPINION: Recent guidelines recommend SGLT2 inhibitors or GLP-1 RAs with proven cardiovascular disease benefits as potential first line treatment for patients with T2D and established atherosclerotic cardiovascular disease (ASCVD) or those with high risk of ASCVD or with chronic kidney disease or heart failure. Both groups of drugs have been shown to reduce major adverse cardiovascular events, but the mechanisms vary between them. SGLT2 inhibitors are preferred for the treatment and prevention of heart failure and chronic kidney disease, whereas GLP-1 RAs are more effective in reducing body weight and improving glycemic control in patients with T2D.


Asunto(s)
Enfermedades Cardiovasculares , Diabetes Mellitus Tipo 2 , Receptor del Péptido 1 Similar al Glucagón , Hipoglucemiantes , Inhibidores del Cotransportador de Sodio-Glucosa 2 , Humanos , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/fisiopatología , Inhibidores del Cotransportador de Sodio-Glucosa 2/farmacología , Inhibidores del Cotransportador de Sodio-Glucosa 2/administración & dosificación , Enfermedades Cardiovasculares/prevención & control , Enfermedades Cardiovasculares/etiología , Hipoglucemiantes/farmacología , Hipoglucemiantes/administración & dosificación , Receptor del Péptido 1 Similar al Glucagón/agonistas , Factores de Riesgo de Enfermedad Cardiaca , Glucemia/efectos de los fármacos , Glucemia/metabolismo , Guías de Práctica Clínica como Asunto , Insuficiencia Renal Crónica/tratamiento farmacológico , Insuficiencia Renal Crónica/complicaciones , Insuficiencia Renal Crónica/fisiopatología
16.
Paediatr Drugs ; 26(3): 229-243, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38635113

RESUMEN

INTRODUCTION: In adults, sodium-glucose cotransporter type 2 inhibitors have revolutionised the treatment of type 2 diabetes mellitus, heart failure, and chronic kidney disease. OBJECTIVE: We aimed to review information on compassionate use, clinical pharmacology, efficacy, and safety of dapagliflozin and empagliflozin in children. METHODS: We conducted a systematic review of published clinical trials, case reports, and observational studies in Medline, Excerpta Medica, and Web of Science databases from inception to September 2023. For the two randomised controlled trials on type 2 diabetes mellitus (T2DM), we implemented a meta-analysis on the primary outcome (mean difference in glycosylated haemoglobin [HbA1c] between intervention and placebo groups). Review Manager (RevMan), version 5.4.1, was used for this purpose. RESULTS: Thirty-five articles (nine case reports, ten case series, one prospective non-controlled trial, four controlled randomised trials, two surveys, six pharmacokinetic studies, and three pharmacovigilance studies) were selected, in which 415 children were exposed to either dapagliflozin or empagliflozin: 189 diabetic patients (mean age 14.7 ± 2.9 years), 32 children with glycogen storage disease type Ib (GSD Ib), glucose-6-phosphatase catalytic subunit 3 (G6PC3) deficiency, or severe congenital neutropenia type 4 (8.5 ± 5.1 years), 47 children with kidney disease or heart failure (11.2 ± 6.1 years), 84 patients in pharmacokinetic studies (15.1 ± 2.3 years), and 63 patients in toxicological series. The effect of dapagliflozin and empagliflozin in T2DM was demonstrated by HbA1c reduction in two randomised trials among a total of 177 adolescents, with a mean HbA1c difference of -0.82% (95% confidence interval -1.34 to -0.29) as compared to placebo (no heterogeneity, I2 = 0%). Dosage ranged between 5 and 20 mg (mean 11.4 ± 3.7) once daily for dapagliflozin and between 5 and 25 mg (mean 15.4 ± 7.4) once daily for empagliflozin. Among the paediatric cases of GSD Ib, empagliflozin 0.1-1.3 mg/kg/day improved neutropenia, infections, and gastrointestinal health. Dapagliflozin (mean dosage 6.9 ± 5.2 mg once daily) was well-tolerated in children with chronic kidney disease and heart failure. Side effects were generally mild, the most frequent being hypoglycaemia in children with GSD Ib (33% of patients) or T2DM (14% of patients) on concomitant hypoglycaemic drugs. Diabetic ketoacidosis is rare in children. CONCLUSION: Early evidence suggests that dapagliflozin and empagliflozin are well tolerated in children. A clinical pharmacology rationale currently exists only for adolescents with diabetes mellitus. PROSPERO REGISTRATION NUMBER: CRD42023438162.


Asunto(s)
Compuestos de Bencidrilo , Diabetes Mellitus Tipo 2 , Glucósidos , Compuestos de Bencidrilo/uso terapéutico , Compuestos de Bencidrilo/efectos adversos , Compuestos de Bencidrilo/farmacocinética , Humanos , Glucósidos/uso terapéutico , Glucósidos/efectos adversos , Glucósidos/farmacocinética , Glucósidos/farmacología , Glucósidos/administración & dosificación , Niño , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Inhibidores del Cotransportador de Sodio-Glucosa 2/uso terapéutico , Inhibidores del Cotransportador de Sodio-Glucosa 2/efectos adversos , Inhibidores del Cotransportador de Sodio-Glucosa 2/farmacología , Adolescente
17.
J Labelled Comp Radiopharm ; 67(5): 180-185, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38605481

RESUMEN

Velagliflozin is the active ingredient of the first oral liquid medication approved by the Food and Drug Administration for the treatment of diabetes in cats. This compound belongs to the known class of sodium-glucose cotransporter 2 inhibitors approved to treat diabetes in human. Here, we report the detailed synthesis of velagliflozin labeled with carbon 14 and carbon 13.


Asunto(s)
Isótopos de Carbono , Radioisótopos de Carbono , Radioisótopos de Carbono/química , Isótopos de Carbono/química , Técnicas de Química Sintética , Glucósidos/síntesis química , Glucósidos/química , Glucósidos/farmacología , Inhibidores del Cotransportador de Sodio-Glucosa 2/síntesis química , Inhibidores del Cotransportador de Sodio-Glucosa 2/química , Inhibidores del Cotransportador de Sodio-Glucosa 2/farmacología , Compuestos de Bencidrilo
18.
Vet Med Sci ; 10(3): e1454, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38686463

RESUMEN

BACKGROUND: Sodium-glucose cotransporter-2 (SGLT2) inhibitors are a novel class of anti-hyperglycaemic agents. OBJECTIVE: This study aimed to evaluate the safety and the adjuvant glycaemic control effect of an SGLT2 inhibitor, DWP16001, in diabetic dogs receiving insulin treatment. METHODS: Nineteen diabetic dogs receiving insulin treatment (NPH, porcine lente and glargine insulin) were divided into two groups according to dosing frequency: DWP TOD group (n = 10) and DWP SID group (n = 9). In the DWP TOD group, 0.025 mg/kg of DWP16001 was administered once every 3 days, whereas, in the DWP SID group, 0.025 mg/kg of DWP16001 was administered once a day. Food intake was maintained during the trial period. Hypoglycaemia, ketoacidosis or unexpected life-threatening reactions were assessed as adverse effects before and after DWP16001 administration. We compared insulin requirement reduction and blood glucose level control between two groups. RESULTS: No specific adverse effects were observed during the clinical trial, and haematological parameter remained unchanged. Moreover, the fasting glucose levels and daily insulin dose in the DWP TOD group were lower than the pre-administration values, but not significantly different for 8 weeks. Systolic blood pressure, fructosamine and insulin dose decreased significantly in the DWP SID group compared to the DWP TOD group at 8 weeks (p < 0.05) without affecting food consumption. Among these patients, 10 patients were monitored while receiving DWP16001 for 12 months (DWP TOD group n = 5, DWP SID group n = 5). The fasting glucose and fructosamine levels and daily insulin dose were reduced in both groups at 12 months compared with those before receiving DWP16001. CONCLUSION: When DWP16001, an SGLT2 inhibitor, was supplied to dogs with type 1 diabetes, no adverse effects were observed, and it was confirmed that the administered insulin dose can be reduced in controlling blood glucose.


Asunto(s)
Benzofuranos , Enfermedades de los Perros , Hipoglucemiantes , Insulina , Inhibidores del Cotransportador de Sodio-Glucosa 2 , Animales , Perros , Proyectos Piloto , Inhibidores del Cotransportador de Sodio-Glucosa 2/administración & dosificación , Inhibidores del Cotransportador de Sodio-Glucosa 2/farmacología , Enfermedades de los Perros/tratamiento farmacológico , Masculino , Femenino , Hipoglucemiantes/administración & dosificación , Quimioterapia Combinada/veterinaria , Diabetes Mellitus/tratamiento farmacológico , Diabetes Mellitus/veterinaria
19.
Curr Probl Cardiol ; 49(6): 102563, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38599557

RESUMEN

Sodium-glucose co-transporter 2 (SGLT2) inhibitors have emerged as a novel category of blood glucose-lowering drugs in clinical recommendations for a wide range of diseases. SGLT2 inhibitors are promising anti-inflammatory agents by acting either indirectly via improving metabolism and reducing stress conditions or via direct modulation of inflammatory signaling pathways. The SGLT2 inhibitors empagliflozin and dapagliflozin better vascular function and avert vascular aging by decreasing the reactive oxygen species (ROS) content and increasing nitric oxide bioavailability, respectively. It was discovered that ipragliflozin has the ability to prevent dysfunction of the endothelium, and this effect was connected with oxidative stress. According to published data, SGLT2 inhibitors may delay vascular aging and arrest the development of endothelial dysfunction in animal models of type 2 diabetes (T2D) by reducing inflammation, oxidative stress, and glucose toxicity and increasing the survival of hyperglycemic endothelial cells. The adenosine monophosphate-activated protein kinase (AMPK) molecule plays a vital role in the regulation of bioenergy metabolism and is pivotal in our understanding of diabetes mellitus and other metabolic disorders. It has been hypothesized that SGLT2 inhibitors may indirectly affect AMPK to reduce mammalian target of rapamycin (mTOR) activity. Numerous studies have demonstrated that SGLT2 inhibitors can activate AMPK by restoring the AMP/ATP balance in favor of AMP, which is assumed to be the mechanism by which these medications have positive effects on the cardiac structure and microvessel.


Asunto(s)
Diabetes Mellitus Tipo 2 , Transducción de Señal , Inhibidores del Cotransportador de Sodio-Glucosa 2 , Inhibidores del Cotransportador de Sodio-Glucosa 2/farmacología , Inhibidores del Cotransportador de Sodio-Glucosa 2/uso terapéutico , Humanos , Transducción de Señal/efectos de los fármacos , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Animales , Enfermedades Cardiovasculares/metabolismo , Enfermedades Cardiovasculares/prevención & control , Inflamación/metabolismo , Inflamación/tratamiento farmacológico , Estrés Oxidativo/efectos de los fármacos , Glucósidos/uso terapéutico , Glucósidos/farmacología , Transportador 2 de Sodio-Glucosa/metabolismo , Compuestos de Bencidrilo/uso terapéutico , Compuestos de Bencidrilo/farmacología
20.
Biomed Pharmacother ; 174: 116520, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38581924

RESUMEN

A combination of liver and heart dysfunction worsens the prognosis of human survival. The aim of this study was to investigate whether empagliflozin (a sodium-glucose transporter-2 inhibitor) has beneficial effects not only on cardiac and renal function but also on hepatic function. Adult (6-month-old) male spontaneously hypertensive rats (SHR) were fed a high-fat diet (60% fat) for four months to induce hepatic steatosis and mild heart failure. For the last two months, the rats were treated with empagliflozin (empa, 10 mg.kg-1.day-1 in the drinking water). Renal function and oral glucose tolerance test were analyzed in control (n=8), high-fat diet (SHR+HF, n=10), and empagliflozin-treated (SHR+HF+empa, n=9) SHR throughout the study. Metabolic parameters and echocardiography were evaluated at the end of the experiment. High-fat diet feeding increased body weight and visceral adiposity, liver triglyceride and cholesterol concentrations, and worsened glucose tolerance. Although the high-fat diet did not affect renal function, it significantly worsened cardiac function in a subset of SHR rats. Empagliflozin reduced body weight gain but not visceral fat deposition. It also improved glucose sensitivity and several metabolic parameters (plasma insulin, uric acid, and HDL cholesterol). In the liver, empagliflozin reduced ectopic lipid accumulation, lipoperoxidation, inflammation and pro-inflammatory HETEs, while increasing anti-inflammatory EETs. In addition, empagliflozin improved cardiac function (systolic, diastolic and pumping) independent of blood pressure. The results of our study suggest that hepatoprotection plays a decisive role in the beneficial effects of empagliflozin in preventing the progression of cardiac dysfunction induced by high-fat diet feeding.


Asunto(s)
Compuestos de Bencidrilo , Dieta Alta en Grasa , Glucósidos , Hígado , Ratas Endogámicas SHR , Inhibidores del Cotransportador de Sodio-Glucosa 2 , Animales , Glucósidos/farmacología , Compuestos de Bencidrilo/farmacología , Masculino , Dieta Alta en Grasa/efectos adversos , Hígado/efectos de los fármacos , Hígado/metabolismo , Hígado/patología , Ratas , Inhibidores del Cotransportador de Sodio-Glucosa 2/farmacología , Cardiotónicos/farmacología , Presión Sanguínea/efectos de los fármacos , Riñón/efectos de los fármacos , Riñón/metabolismo , Riñón/patología , Hígado Graso/prevención & control , Hígado Graso/tratamiento farmacológico , Glucemia/metabolismo , Glucemia/efectos de los fármacos , Sustancias Protectoras/farmacología , Hipertensión/tratamiento farmacológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA