Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 111
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 3977, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38730234

RESUMEN

Potent and selective inhibition of the structurally homologous proteases of coagulation poses challenges for drug development. Hematophagous organisms frequently accomplish this by fashioning peptide inhibitors combining exosite and active site binding motifs. Inspired by this biological strategy, we create several EXACT inhibitors targeting thrombin and factor Xa de novo by linking EXosite-binding aptamers with small molecule ACTive site inhibitors. The aptamer component within the EXACT inhibitor (1) synergizes with and enhances the potency of small-molecule active site inhibitors by many hundred-fold (2) can redirect an active site inhibitor's selectivity towards a different protease, and (3) enable efficient reversal of inhibition by an antidote that disrupts bivalent binding. One EXACT inhibitor, HD22-7A-DAB, demonstrates extraordinary anticoagulation activity, exhibiting great potential as a potent, rapid onset anticoagulant to support cardiovascular surgeries. Using this generalizable molecular engineering strategy, selective, potent, and rapidly reversible EXACT inhibitors can be created against many enzymes through simple oligonucleotide conjugation for numerous research and therapeutic applications.


Asunto(s)
Aptámeros de Nucleótidos , Dominio Catalítico , Hirudinas , Trombina , Humanos , Aptámeros de Nucleótidos/química , Aptámeros de Nucleótidos/farmacología , Trombina/antagonistas & inhibidores , Trombina/metabolismo , Trombina/química , Hirudinas/química , Hirudinas/farmacología , Anticoagulantes/farmacología , Anticoagulantes/química , Factor Xa/metabolismo , Factor Xa/química , Inhibidores del Factor Xa/química , Inhibidores del Factor Xa/farmacología , Animales , Sitios de Unión , Coagulación Sanguínea/efectos de los fármacos
2.
Molecules ; 28(9)2023 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-37175261

RESUMEN

Despite extensive research in the field of thrombotic diseases, the prevention of blood clots remains an important area of study. Therefore, the development of new anticoagulant drugs with better therapeutic profiles and fewer side effects to combat thrombus formation is still needed. Herein, we report the synthesis and evaluation of novel pyrroloquinolinedione-based rhodanine derivatives, which were chosen from 24 developed derivatives by docking as potential molecules to inhibit the clotting factors Xa and XIa. For the synthesis of new hybrid derivatives of pyrrolo[3,2,1-ij]quinoline-2-one, we used a convenient structural modification of the tetrahydroquinoline fragment by varying the substituents in positions 2, 4, and 6. In addition, the design of target molecules was achieved by alkylating the amino group of the rhodanine fragment with propargyl bromide or by replacing the rhodanine fragment with 2-thioxoimidazolidin-4-one. The in vitro testing showed that eight derivatives are capable of inhibiting both coagulation factors, two compounds are selective inhibitors of factor Xa, and two compounds are selective inhibitors of factor XIa. Overall, these data indicate the potential anticoagulant activity of these molecules through the inhibition of the coagulation factors Xa and XIa.


Asunto(s)
Factor XIa , Rodanina , Factor XIa/química , Inhibidores del Factor Xa/química , Rodanina/química , Anticoagulantes/farmacología , Factor Xa
3.
J Thromb Haemost ; 21(7): 1692-1702, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37116752

RESUMEN

Oral anticoagulants are a mainstay for the prevention and treatment of arterial and venous thrombosis. Direct oral anticoagulants (DOACs) have replaced vitamin K antagonists for many indications. Currently available DOACs include dabigatran, which inhibits thrombin, and apixaban, edoxaban, and rivaroxaban, which inhibit factor (F) Xa. A new class of DOACs is under development. These new DOACs, which include asundexian and milvexian, inhibit FXIa, which is positioned in the intrinsic pathway of coagulation. Anticoagulants that target FXIa have the potential to be safer than the current DOACs because there is emerging evidence that FXI is essential for thrombosis but mostly dispensable for hemostasis. In addition to the oral inhibitors of FXIa, parenteral inhibitors are also under development. These include fesomersen, an antisense oligonucleotide that reduces the hepatic synthesis of FXI; abelacimab, an antibody that binds to FXI and blocks its activation; and osocimab, an FXIa inhibitory antibody. Focusing on these new agents, this article describes the unmet needs in oral anticoagulation therapy, explains why FXI is a promising target for new oral anticoagulants, reviews phase 2 clinical data on new agents, describes ongoing phase 3 trials, and provides a perspective on the opportunities and challenges for FXI inhibitors.


Asunto(s)
Anticoagulantes , Inhibidores del Factor Xa , Humanos , Administración Oral , Anticoagulantes/química , Anticoagulantes/uso terapéutico , Dabigatrán , Inhibidores del Factor Xa/química , Inhibidores del Factor Xa/uso terapéutico , Factor XI , Rivaroxabán/uso terapéutico
4.
J Biomol Struct Dyn ; 41(10): 4723-4734, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35532097

RESUMEN

A new promising drug candidate DD217 has been proposed recently as a potent anticoagulant acting on factor Xa (fXa) target. It exhibits the lowest concentration of doubling the prothrombin time among the known anticoagulants. In order to explain the efficacy of DD217 in terms of molecular interactions with its target we studied the hypothesis of the tight binding mechanism by means of molecular dynamics simulations and statistical analysis of the trajectory. The conducted analysis confirms the significant contributions to the MM/GBSA estimated binding free energy of the S4 pocket residues as well the crucial role of establishing the hydrogen bonds between the ligand and the backbone amides of Gly216 and Gly218 of the target. The simulation results support the hypothesis of the tight binding mechanism of DD217 to fXa.Communicated by Ramaswamy H. Sarma.


Asunto(s)
Anticoagulantes , Simulación de Dinámica Molecular , Anticoagulantes/química , Simulación del Acoplamiento Molecular , Factor Xa/química , Inhibidores del Factor Xa/farmacología , Inhibidores del Factor Xa/química
5.
Molecules ; 27(13)2022 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-35807514

RESUMEN

The rational discovery of new peptidomimetic inhibitors of the coagulation factor Xa (fXa) could help set more effective therapeutic options (to prevent atrial fibrillation). In this respect, we explored the conformational impact on the enzyme inhibition potency of the malonamide bridge, compared to the glycinamide one, as a linker connecting the P1 benzamidine anchoring moiety to the P4 aryl group of novel selective fXa inhibitors. We carried out structure-activity relationship (SAR) studies aimed at investigating para- or meta-benzamidine as the P1 basic group as well as diversely decorated aryl moieties as P4 fragments. To this end, twenty-three malonamide derivatives were synthesized and tested as inhibitors of fXa and thrombin (thr); the molecular determinants behind potency and selectivity were also studied by employing molecular docking. The malonamide linker, compared to the glycinamide one, does significantly increase anti-fXa potency and selectivity. The meta-benzamidine (P1) derivatives bearing 2',4'-difluoro-biphenyl as the P4 moiety proved to be highly potent reversible fXa-selective inhibitors, achieving inhibition constants (Ki) in the low nanomolar range. The most active compounds were also tested against cholinesterase (ChE) isoforms (acetyl- or butyrylcholinesterase, AChE, and BChE), and some of them returned single-digit micromolar inhibition potency against AChE and/or BChE, both being drug targets for symptomatic treatment of mild-to-moderate Alzheimer's disease. Compounds 19h and 22b were selected as selective fXa inhibitors with potential as multimodal neuroprotective agents.


Asunto(s)
Benzamidinas , Inhibidores de la Colinesterasa , Inhibidores del Factor Xa , Malonatos , Acetilcolinesterasa , Benzamidinas/química , Butirilcolinesterasa , Inhibidores de la Colinesterasa/química , Diseño de Fármacos , Factor Xa , Inhibidores del Factor Xa/química , Fibrinolíticos/química , Glicina/análogos & derivados , Glicina/química , Malonatos/química , Simulación del Acoplamiento Molecular , Estructura Molecular , Relación Estructura-Actividad
6.
PLoS One ; 17(1): e0262482, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35015795

RESUMEN

Based on previous large-scale in silico screening several factor Xa inhibitors were proposed to potentially inhibit SARS-CoV-2 Mpro. In addition to their known anticoagulants activity this potential inhibition could have an additional therapeutic effect on patients with COVID-19 disease. In this study we examined the binding of the Apixaban, Betrixaban and Rivaroxaban to the SARS-CoV-2 Mpro with the use of the MicroScale Thermophoresis technique. Our results indicate that the experimentally measured binding affinity is weak and the therapeutic effect due to the SARS-CoV-2 Mpro inhibition is rather negligible.


Asunto(s)
Proteínas M de Coronavirus/antagonistas & inhibidores , Inhibidores del Factor Xa/química , SARS-CoV-2/metabolismo , Benzamidas/química , Benzamidas/metabolismo , Sitios de Unión , COVID-19/virología , Proteínas M de Coronavirus/metabolismo , Inhibidores del Factor Xa/metabolismo , Humanos , Simulación de Dinámica Molecular , Unión Proteica , Estabilidad Proteica , Pirazoles/química , Pirazoles/metabolismo , Piridinas/química , Piridinas/metabolismo , Piridonas/química , Piridonas/metabolismo , Rivaroxabán/química , Rivaroxabán/metabolismo , SARS-CoV-2/aislamiento & purificación , Tratamiento Farmacológico de COVID-19
7.
J Ethnopharmacol ; 287: 114964, 2022 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-34990765

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: The cardiovascular and cerebrovascular diseases affect human health globally. Naoxintong capsules (NXTs), a famous Chinese Patent Medicine, has been especially applied to treat cerebral infarction and coronary heart disease in clinical practice. The anticoagulant activity of this prescription plays an important role in this course of treatment. AIM OF THE STUDY: Thrombin and factor Xa (FXa) are two key targets considering the anticoagulant activity. The purpose of this investigation is to screen the quanlity markers as key thrombin and FXa inhibitors for the anticoagulant activity oriented quality control of Chinese patent medicine. MATERIALS AND METHODS: Simple multi-polar solvent extraction processes using various proportions of solvents were conducted and their thrombin/FXa inhibitory activities were evaluated in vitro. Bivariate correlation analysis (BCA), grey correlation analysis (GCA), and orthogonal partial least squares discriminate analysis (OPLS-DA) were adopted for screening the potential active markers related to the anticoagulant activity. The chemical structures of these active compounds were identified by UHPLC-Q-TOF-MS/MS and their thrombin/FXa inhibitory activity was determined. The molecular docking technology was applied to explore the interaction between the compounds and targets. The contribution of these anticoagulant active ingredients in NXT was also investigated. Last but not the least, the contents of these markers in NXT were determined by liquid chromatography-electrospray ionization tandem triple quadrupole mass spectrometry (HPLC-ESI-MS/MS) method. RESULTS: The results showed that the NXT extract exhibited great activity against thrombin and FXa, especially extracted by 75% methanol (v/v). Six marker compounds with potential anticoagulant activity were screened out. Therein, four of the active compounds owing thrombin inhibitory activity (paeoniflorin, lithospermic acid, salvianolic acid B, Z-ligustilide) and five of the active compounds owing FXa inhibitory activity (3,5-dicaffeoylquinic acid, rosmarinic acid, lithospermic acid, salvianolic acid B and Z-ligustilide). In addition, these active compounds accounted for a large proportion of thrombin/FXa inhibitory activity of NXTs. The binding energy also showed the strong interaction formed by close connection of the compounds to the residues of targets. CONCLUSIONS: The proposed integrated stategy could be an efficient strategy to screen potential thrombin/FXa inhibitors for the bioactivity related quanlity control of Chinese patent medicine.


Asunto(s)
Anticoagulantes/farmacología , Medicamentos Herbarios Chinos/farmacología , Inhibidores del Factor Xa/farmacología , Trombina/antagonistas & inhibidores , Animales , Anticoagulantes/química , Bovinos , Cromatografía Líquida de Alta Presión , Medicamentos Herbarios Chinos/química , Inhibidores del Factor Xa/química , Simulación del Acoplamiento Molecular , Control de Calidad , Espectrometría de Masas en Tándem
8.
Molecules ; 26(23)2021 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-34885877

RESUMEN

In this study; a spectrum-effect relationship analysis combined with a high-performance liquid chromatography-mass spectrometry (LC-MS) analysis was established to screen and identify active components that can inhibit thrombin and factor Xa (THR and FXa) in Salviae Miltiorrhizae Radix et Rhizoma-Chuanxiong Rhizoma (Danshen-Chuanxiong) herbal pair. Ten potential active compounds were predicted through a canonical correlation analysis (CCA), and eight of them were tentatively identified through an LC-MS analysis. Furthermore; the enzyme inhibitory activity of six available compounds; chlorogenic acid; Z-ligustilide; caffeic acid; ferulic acid; tanshinone I and tanshinone IIA; were tested to verify the feasibility of the method. Among them; chlorogenic acid was validated to possess a good THR inhibitory activity with IC50 of 185.08 µM. Tanshinone I and tanshinone IIA are potential FXa inhibitors with IC50 of 112.59 µM and 138.19 µM; respectively. Meanwhile; molecular docking results show that tanshinone I and tanshinone IIA; which both have binding energies of less than -7.0 kcal·mol-1; can interact with FXa by forming H-bonds with residues of SER214; GLY219 and GLN192. In short; the THR and FXa inhibitors in the Danshen-Chuanxiong herbal pair have been successfully characterized through a spectrum-effect relationship analysis and an LC-MS analysis.


Asunto(s)
Antitrombinas/farmacología , Medicamentos Herbarios Chinos/farmacología , Inhibidores del Factor Xa/farmacología , Trombina/antagonistas & inhibidores , Antitrombinas/química , Evaluación Preclínica de Medicamentos , Medicamentos Herbarios Chinos/química , Inhibidores del Factor Xa/química , Humanos , Simulación del Acoplamiento Molecular , Salvia miltiorrhiza/química
9.
ChemMedChem ; 16(24): 3772-3786, 2021 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-34596968

RESUMEN

In silico driven optimization of compound properties related to pharmacokinetics, pharmacodynamics, and safety is a key requirement in modern drug discovery. Nowadays, large and harmonized datasets allow to implement deep neural networks (DNNs) as a framework for leveraging predictive models. Nevertheless, various available model architectures differ in their global applicability and performance in lead optimization projects, such as stability over time and interpretability of the results. Here, we describe and compare the value of established DNN-based methods for the prediction of key ADME property trends and biological activity in an industrial drug discovery environment, represented by microsomal lability, CYP3A4 inhibition and factor Xa inhibition. Three architectures are exemplified, our earlier described multilayer perceptron approach (MLP), graph convolutional network-based models (GCN) and a vector representation approach, Mol2Vec. From a statistical perspective, MLP and GCN were found to perform superior over Mol2Vec, when applied to external validation sets. Interestingly, GCN-based predictions are most stable over a longer period in a time series validation study. Apart from those statistical observations, DNN prove of value to guide local SAR. To illustrate this important aspect in pharmaceutical research projects, we discuss challenging applications in medicinal chemistry towards a more realistic picture of artificial intelligence in drug discovery.


Asunto(s)
Inhibidores del Citocromo P-450 CYP3A/farmacología , Citocromo P-450 CYP3A/metabolismo , Aprendizaje Profundo , Descubrimiento de Drogas , Inhibidores del Factor Xa/farmacología , Factor Xa/metabolismo , Inhibidores del Citocromo P-450 CYP3A/síntesis química , Inhibidores del Citocromo P-450 CYP3A/química , Relación Dosis-Respuesta a Droga , Inhibidores del Factor Xa/síntesis química , Inhibidores del Factor Xa/química , Humanos , Estructura Molecular , Relación Estructura-Actividad
10.
Artículo en Inglés | MEDLINE | ID: mdl-34628186

RESUMEN

A simple, selective, rapid, and reliable ultra-high performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method was developed and validated to determine CX3002 in human plasma using CX3002-d3 as the internal standard (IS). After a rapid protein precipitation with acetonitrile (3:1, v/v), the chromatographic separation of CX3002 and IS was performed on a Thermo Hypersil GOLD C18 column (2.1 mm × 50 mm, 1.9 µm) with gradient elution at a flow rate of 0.4 ml/min. Gradient elution was achieved with mobile phase A consisting of water containing 0.1% formic acid and 5 mmol/L ammonium formate and mobile phase B consisting of methanol containing 0.1% formic acid. The detection was performed on AB SCIEX QTRAP® 5500 tandem mass spectrometry in the positive ion mode. Multiple reactions monitoring (MRM) was used for quantitative analysis at transition of m/z 460.3 â†’ 199.3 for CX3002 and m/z 463.3 â†’ 202.3 m/z for IS. The method was fully validated and displayed good linearity over a concentration range of 0.2-400 ng/mL with the correlation coefficient above 0.997. The intra-run and inter-run precision (coefficient of variation, CV) ranged from 0.60%-16.46% and the accuracy bias ranged from -7.09%-9.75%. The mean IS-normalized extraction recovery ranged from 98.30% to 104.52%. The CV(%) of IS-normalized matrix factors at the low and high QC concentration were 4.09% and 1.68%, respectively. The storage stability under different conditions was in accordance with the bioanalytical guidelines. The method was successfully applied to the pharmacokinetic study of CX3002 (30 mg) in healthy Chinese subjects.


Asunto(s)
Cromatografía Líquida de Alta Presión/métodos , Inhibidores del Factor Xa/sangre , Inhibidores del Factor Xa/farmacocinética , Espectrometría de Masas en Tándem/métodos , Inhibidores del Factor Xa/química , Humanos , Límite de Detección , Modelos Lineales , Pirazoles , Piridonas , Reproducibilidad de los Resultados
11.
Molecules ; 26(17)2021 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-34500804

RESUMEN

Blood coagulation is an essential physiological process for hemostasis; however, abnormal coagulation can lead to various potentially fatal disorders, generally known as thromboembolic disorders, which are a major cause of mortality in the modern world. Recently, the FDA has approved several anticoagulant drugs for Factor Xa (FXa) which work via the common pathway of the coagulation cascade. A main side effect of these drugs is the potential risk for bleeding in patients. Coagulation Factor IXa (FIXa) has recently emerged as the strategic target to ease these risks as it selectively regulates the intrinsic pathway. These aforementioned coagulation factors are highly similar in structure, functional architecture, and inhibitor binding mode. Therefore, it remains a challenge to design a selective inhibitor which may affect only FIXa. With the availability of a number of X-ray co-crystal structures of these two coagulation factors as protein-ligand complexes, structural alignment, molecular docking, and pharmacophore modeling were employed to derive the relevant criteria for selective inhibition of FIXa over FXa. In this study, six ligands (three potent, two selective, and one inactive) were selected for FIXa inhibition and six potent ligands (four FDA approved drugs) were considered for FXa. The pharmacophore hypotheses provide the distribution patterns for the principal interactions that take place in the binding site. None of the pharmacophoric patterns of the FXa inhibitors matched with any of the patterns of FIXa inhibitors. Based on pharmacophore analysis, a selectivity of a ligand for FIXa over FXa may be defined quantitatively as a docking score of lower than -8.0 kcal/mol in the FIXa-grids and higher than -7.5 kcal/mol in the FXa-grids.


Asunto(s)
Anticoagulantes/farmacología , Factor IXa/antagonistas & inhibidores , Inhibidores del Factor Xa/farmacología , Factor Xa/metabolismo , Anticoagulantes/química , Cristalografía por Rayos X , Factor IXa/genética , Factor IXa/metabolismo , Factor Xa/genética , Inhibidores del Factor Xa/química , Humanos , Modelos Moleculares , Estructura Molecular
12.
Eur J Med Chem ; 220: 113437, 2021 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-33894565

RESUMEN

Factor XIa, as a blood coagulation enzyme, amplifies the generation of the last enzyme thrombin in the blood coagulation cascade. It was proved that direct inhibition of factor XIa could reduce pathologic thrombus formation without an enhanced risk of bleeding. WSJ-557, a nonpurine imidazole-based xanthine oxidase inhibitor in our previous reports, could delay blood coagulation during its animal experiments, which prompted us to investigate its action mechanism. Subsequently, during the exploration of the action mechanism, it was found that WSJ-557 exhibited weak in vitro factor XIa binding affinity. Under the guide of molecular modeling, we adopted molecular hybridization strategy to develop novel factor XIa inhibitors with WSJ-557 as an initial compound. This led to the identification of the most potent compound 44g with a Ki value of 0.009 µM, which was close to that of BMS-724296 (Ki = 0.0015 µM). Additionally, serine protease selectivity study indicated that compound 44g display a desired selectivity, more 400-fold than those of thrombin, factor VIIa and factor Xa in coagulation cascade. Moreover, enzyme kinetics studies suggested that the representative compound 44g acted as a competitive-type inhibitor for FXIa, and molecular modeling revealed that it could tightly bind to the S1, S1' and S2' pockets of factor XIa. Furthermore, in vivo efficacy in the rabbit arteriovenous shunt model suggested that compound 44g demonstrated dose-dependent antithrombotic efficacy. Therefore, these results supported that compound 44g could be a potential and efficacious agent for the treatment of thrombotic diseases.


Asunto(s)
Diseño de Fármacos , Factor XIa/antagonistas & inhibidores , Inhibidores del Factor Xa/farmacología , Relación Dosis-Respuesta a Droga , Factor XIa/metabolismo , Inhibidores del Factor Xa/química , Humanos , Estructura Molecular , Relación Estructura-Actividad
13.
CPT Pharmacometrics Syst Pharmacol ; 10(3): 199-210, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33449439

RESUMEN

The exposure-response relationship of direct acting oral anti-coagulants (DOACs) for bleeding risk is steep relative to ischemic stroke reduction. As a result, small changes in exposure may lead to bleeding events. The overall goal of this project was to determine the effect of critical formulation parameters on the pharmacokinetics (PKs) and thus safety and efficacy of generic DOACs. In this first installment of our overall finding, we developed and verified a physiologically-based PK (PBPK) model for dabigatran etexilate (DABE) and its metabolites. The model was developed following a middle out approach leveraging available in vitro and in vivo data. External validity of the model was confirmed by overlapping predicted and observed PK profiles for DABE as well as free and total dabigatran for a dataset not used during model development. The verified model was applied to interrogate the impact of modulating the microenvironment pH on DABE systemic exposure. The PBPK exploratory analyses highlighted the high sensitivity of DABE exposure to supersaturation ratio and precipitation kinetics.


Asunto(s)
Antitrombinas/farmacocinética , Dabigatrán/farmacocinética , Composición de Medicamentos/métodos , Sustitución de Medicamentos/métodos , Accidente Cerebrovascular Isquémico/prevención & control , Antitrombinas/efectos adversos , Antitrombinas/química , Disponibilidad Biológica , Precipitación Química , Dabigatrán/efectos adversos , Dabigatrán/química , Desarrollo de Medicamentos , Sustitución de Medicamentos/estadística & datos numéricos , Inhibidores del Factor Xa/efectos adversos , Inhibidores del Factor Xa/química , Inhibidores del Factor Xa/farmacocinética , Hemorragia/inducido químicamente , Humanos , Farmacocinética , Seguridad , Resultado del Tratamiento
14.
Proc Natl Acad Sci U S A ; 118(3)2021 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-33441484

RESUMEN

Humans express seven heparan sulfate (HS) 3-O-sulfotransferases that differ in substrate specificity and tissue expression. Although genetic studies have indicated that 3-O-sulfated HS modulates many biological processes, ligand requirements for proteins engaging with HS modified by 3-O-sulfate (3-OS) have been difficult to determine. In particular, the context in which the 3-OS group needs to be presented for binding is largely unknown. We describe herein a modular synthetic approach that can provide structurally diverse HS oligosaccharides with and without 3-OS. The methodology was employed to prepare 27 hexasaccharides that were printed as a glycan microarray to examine ligand requirements of a wide range of HS-binding proteins. The binding selectivity of antithrombin-III (AT-III) compared well with anti-Factor Xa activity supporting robustness of the array technology. Many of the other examined HS-binding proteins required an IdoA2S-GlcNS3S6S sequon for binding but exhibited variable dependence for the 2-OS and 6-OS moieties, and a GlcA or IdoA2S residue neighboring the central GlcNS3S. The HS oligosaccharides were also examined as inhibitors of cell entry by herpes simplex virus type 1, which, surprisingly, showed a lack of dependence of 3-OS, indicating that, instead of glycoprotein D (gD), they competitively bind to gB and gC. The compounds were also used to examine substrate specificities of heparin lyases, which are enzymes used for depolymerization of HS/heparin for sequence determination and production of therapeutic heparins. It was found that cleavage by lyase II is influenced by 3-OS, while digestion by lyase I is only affected by 2-OS. Lyase III exhibited sensitivity to both 3-OS and 2-OS.


Asunto(s)
Células Epiteliales/metabolismo , Liasa de Heparina/metabolismo , Heparitina Sulfato/metabolismo , Herpesvirus Humano 1/metabolismo , Sulfatos/metabolismo , Sulfotransferasas/metabolismo , Acetilglucosamina/química , Acetilglucosamina/metabolismo , Antitrombina III/química , Antitrombina III/genética , Antitrombina III/metabolismo , Sitios de Unión , Unión Competitiva , Secuencia de Carbohidratos , Línea Celular , Córnea/citología , Córnea/metabolismo , Células Epiteliales/patología , Células Epiteliales/virología , Factor Xa/química , Factor Xa/genética , Factor Xa/metabolismo , Inhibidores del Factor Xa/química , Inhibidores del Factor Xa/metabolismo , Expresión Génica , Ácido Glucurónico/química , Ácido Glucurónico/metabolismo , Liasa de Heparina/química , Liasa de Heparina/genética , Heparitina Sulfato/química , Herpesvirus Humano 1/crecimiento & desarrollo , Interacciones Huésped-Patógeno/genética , Humanos , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo , Análisis por Micromatrices , Unión Proteica , Proteolisis , Bibliotecas de Moléculas Pequeñas , Especificidad por Sustrato , Sulfatos/química , Sulfotransferasas/química , Sulfotransferasas/genética , Proteínas del Envoltorio Viral/química , Proteínas del Envoltorio Viral/genética , Proteínas del Envoltorio Viral/metabolismo
15.
Nanotechnology ; 32(13): 135101, 2021 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-33276347

RESUMEN

Rivaroxaban (RXB), an oral direct factor Xa inhibitor, presents innovative therapeutic profile. However, RXB has shown adverse effects, mainly due to pharmacokinetic limitations, highlighting the importance of developing more effective formulations. Therefore, this work aims at the preparation, physicochemical characterization and in vitro evaluation of time-dependent anticoagulant activity and toxicology profile of RXB-loaded poly(lactic-co-glycolic acid) (PLGA)/poloxamer nanoparticles (RXBNps). RXBNp were produced by nanoprecipitation method and physicochemical characteristics were evaluated. In vitro analysis of time-dependent anticoagulant activity was performed by prothrombin time test and toxicological profile was assessed by hemolysis and MTT reduction assays. The developed RXBNp present spherical morphology with average diameter of 205.5 ± 16.95 nm (PdI 0.096 ± 0.04), negative zeta potential (-26.28 ± 0.77 mV), entrapment efficiency of 91.35 ± 2.40%, yield of 41.81 ± 1.68% and 3.72 ± 0.07% of drug loading. Drug release was characterized by an initial fast release followed by a sustained release with 28.34 ± 2.82% of RXB available in 72 h. RXBNp showed an expressive time-dependent anticoagulant activity in human and rat blood plasma and non-toxic profile. Based on the results presented, it is possible to consider that RXBNp may be able to assist in the development of promising new therapies for treatment of thrombotic disorders.


Asunto(s)
Anticoagulantes/química , Inhibidores del Factor Xa/química , Nanopartículas/química , Poloxámero/química , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/química , Rivaroxabán/química , Animales , Anticoagulantes/farmacocinética , Supervivencia Celular , Chlorocebus aethiops , Portadores de Fármacos/química , Liberación de Fármacos , Inhibidores del Factor Xa/farmacocinética , Hemólisis , Humanos , Nanopartículas/ultraestructura , Tamaño de la Partícula , Ratas , Rivaroxabán/farmacocinética , Células Vero
16.
J Mol Recognit ; 34(3): e2877, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33034105

RESUMEN

The anticoagulant therapy is widely used to prevent and treat thromboembolic events. Until the last decade, vitamin K antagonists were the only available oral anticoagulants; recently, direct oral anticoagulants (DOACs) have been developed. Since 55% to 95% of DOACs are bound to plasma proteins, the in silico docking and ligand-binding properties of drugs apixaban, betrixaban, dabigatran, edoxaban, and rivaroxaban and of the prodrug dabigatran etexilate to human serum albumin (HSA), the most abundant plasma protein, have been investigated. DOACs bind to the fatty acid (FA) site 1 (FA1) of ligand-free HSA, whereas they bind to the FA8 and FA9 sites of heme-Fe(III)- and myristic acid-bound HSA. DOACs binding to the FA1 site of ligand-free HSA has been validated by competitive inhibition of heme-Fe(III) recognition. Values of the dissociation equilibrium constant for DOACs binding to the FA1 site (ie, calc KDOAC ) derived from in silico docking simulations (ranging between 1.2 × 10-8 M and 1.4 × 10-6 M) agree with those determined experimentally from competitive inhibition of heme-Fe(III) binding (ie, exp KDOAC ; ranging between 2.5 × 10-7 M and 2.2 × 10-6 M). In addition, this study highlights the inequivalence of rivaroxaban binding to mammalian serum albumin. Given the HSA concentration in vivo (~7.5 × 10-4 M), values of KDOAC here determined indicate that the formation of the HSA:DOACs complexes in the absence and presence of FAs and heme-Fe(III) may occur in vivo. Therefore, HSA appears to be an important determinant for DOACs transport.


Asunto(s)
Inhibidores del Factor Xa/farmacología , Albúmina Sérica Humana/química , Albúmina Sérica Humana/metabolismo , Sitios de Unión , Inhibidores del Factor Xa/química , Ácidos Grasos/metabolismo , Humanos , Modelos Moleculares , Simulación del Acoplamiento Molecular , Conformación Proteica , Rivaroxabán/química , Rivaroxabán/farmacología , Equivalencia Terapéutica
18.
AAPS PharmSciTech ; 21(6): 228, 2020 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-32767034

RESUMEN

Rivaroxaban (RXB) is a class II drug, according to the Biopharmaceutics Classification System. Since its bioavailability is low at high doses, dose proportionality is not achieved for pharmacokinetic parameters. However, when taken with food, its bioavailability increases at high doses. In this study, nanocrystal technology was used to increase the solubility and, hence, the bioavailability of RXB. Pluronic F127, pharmacoat 603, and PVP K-30 were used as stabilizers to prepare RXB nanosuspension, combining ball mill and high pressure homogenization methods. Particle sizes of RXB in nanosuspension (formulation A:348 nm; formulation B:403 nm) and nanocrystal formulations (formulation A:1167 nm; formulation B:606 nm) were significantly reduced (p < 0.05) compared to those of bulk RXB. In both formulations, 80% of the drug dissolved in 30 min. For dose proportionality evaluation, 3, 10, and 15 mg/kg of RXB nanosuspensions (formulation B) were administered to rabbits. The dose proportionality for AUC and Cmax of RXB nanocrystals was assessed by the power model, variance analysis of pharmacokinetic parameters, linear regression, and equivalence criterion methods. Dose proportionality for AUC was achieved at doses between 10-15 and 3-15 mg/kg. In conclusion, the preparation of a nanocrystal formulation of RXB improved its dissolution rate and pharmacokinetic profile.


Asunto(s)
Inhibidores del Factor Xa/administración & dosificación , Nanopartículas/química , Rivaroxabán/administración & dosificación , Animales , Área Bajo la Curva , Disponibilidad Biológica , Relación Dosis-Respuesta a Droga , Inhibidores del Factor Xa/química , Inhibidores del Factor Xa/farmacocinética , Tamaño de la Partícula , Conejos , Rivaroxabán/química , Rivaroxabán/farmacocinética , Solubilidad
19.
J Med Chem ; 63(15): 8088-8113, 2020 08 13.
Artículo en Inglés | MEDLINE | ID: mdl-32551603

RESUMEN

The serine protease factor XI (FXI) is a prominent drug target as it holds promise to deliver efficacious anticoagulation without an enhanced risk of major bleeds. Several efforts have been described targeting the active form of the enzyme, FXIa. Herein, we disclose our efforts to identify potent, selective, and orally bioavailable inhibitors of FXIa. Compound 1, identified from a diverse library of internal serine protease inhibitors, was originally designed as a complement factor D inhibitor and exhibited submicromolar FXIa activity and an encouraging absorption, distribution, metabolism, and excretion (ADME) profile while being devoid of a peptidomimetic architecture. Optimization of interactions in the S1, S1ß, and S1' pockets of FXIa through a combination of structure-based drug design and traditional medicinal chemistry led to the discovery of compound 23 with subnanomolar potency on FXIa, enhanced selectivity over other coagulation proteases, and a preclinical pharmacokinetics (PK) profile consistent with bid dosing in patients.


Asunto(s)
Factor XIa/antagonistas & inhibidores , Factor XIa/genética , Inhibidores del Factor Xa/administración & dosificación , Inhibidores del Factor Xa/química , Administración Oral , Secuencia de Aminoácidos , Animales , Disponibilidad Biológica , Perros , Evaluación Preclínica de Medicamentos/métodos , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratas , Ratas Sprague-Dawley , Relación Estructura-Actividad
20.
Bioorg Med Chem Lett ; 30(15): 127279, 2020 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-32527459

RESUMEN

The synthesis and structure activity relationship development of a pyrimidine series of heterocyclic Factor IXa inhibitors is described. Increased selectivity over Factor Xa inhibition was achieved through SAR expansion of the P1 element. Select compounds were evaluated in vivo to assess their plasma levels in rat.


Asunto(s)
Descubrimiento de Drogas , Factor IXa/antagonistas & inhibidores , Inhibidores del Factor Xa/farmacología , Pirimidinas/farmacología , Relación Dosis-Respuesta a Droga , Factor IXa/metabolismo , Inhibidores del Factor Xa/síntesis química , Inhibidores del Factor Xa/química , Humanos , Estructura Molecular , Pirimidinas/síntesis química , Pirimidinas/química , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA