Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 9.874
Filtrar
1.
Front Immunol ; 15: 1367040, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38745661

RESUMEN

Background: In recent years, immunotherapy has been emerging as a promising alternative therapeutic method for cancer patients, offering potential benefits. The expression of PD-L1 by tumors can inhibit the T-cell response to the tumor and allow the tumor to evade immune surveillance. To address this issue, cancer immunotherapy has shown promise in disrupting the interaction between PD-L1 and its ligand PD-1. Methods: We used mirror-image phage display technology in our experiment to screen and determine PD-L1 specific affinity peptides (PPL-C). Using CT26 cells, we established a transplanted mouse tumor model to evaluate the inhibitory effects of PPL-C on tumor growth in vivo. We also demonstrated that PPL-C inhibited the differentiation of T regulatory cells (Tregs) and regulated the production of cytokines. Results: In vitro, PPL-C has a strong affinity for PD-L1, with a binding rate of 0.75 µM. An activation assay using T cells and mixed lymphocytes demonstrated that PPL-C inhibits the interaction between PD-1 and PD-L1. PPL-C or an anti-PD-L1 antibody significantly reduced the rate of tumor mass development in mice compared to those given a control peptide (78% versus 77%, respectively). The results of this study demonstrate that PPL-C prevents or retards tumor growth. Further, immunotherapy with PPL-C enhances lymphocyte cytotoxicity and promotes proliferation in CT26-bearing mice. Conclusion: PPL-C exhibited antitumor and immunoregulatory properties in the colon cancer. Therefore, PPL-C peptides of low molecular weight could serve as effective cancer immunotherapy.


Asunto(s)
Antígeno B7-H1 , Inmunoterapia , Péptidos , Animales , Antígeno B7-H1/inmunología , Antígeno B7-H1/metabolismo , Ratones , Péptidos/inmunología , Línea Celular Tumoral , Inmunoterapia/métodos , Humanos , Linfocitos T Reguladores/inmunología , Femenino , Ratones Endogámicos BALB C , Receptor de Muerte Celular Programada 1/inmunología , Citocinas/metabolismo , Activación de Linfocitos/inmunología , Inmunomodulación/efectos de los fármacos , Neoplasias del Colon/terapia , Neoplasias del Colon/inmunología
2.
Front Immunol ; 15: 1357378, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38720885

RESUMEN

Exosomes carry proteins, metabolites, nucleic acids and lipids from their parent cell of origin. They are derived from cells through exocytosis, are ingested by target cells, and can transfer biological signals between local or distant cells. Therefore, exosomes are often modified in reaction to pathological processes, including infection, cancer, cardiovascular diseases and in response to metabolic perturbations such as obesity and diabetes, all of which involve a significant inflammatory aspect. Here, we discuss how immune cell-derived exosomes origin from neutrophils, T lymphocytes, macrophages impact on the immune reprogramming of diabetes and the associated complications. Besides, exosomes derived from stem cells and their immunomodulatory properties and anti-inflammation effect in diabetes are also reviewed. Moreover, As an important addition to previous reviews, we describes promising directions involving engineered exosomes as well as current challenges of clinical applications in diabetic therapy. Further research on exosomes will explore their potential in translational medicine and provide new avenues for the development of effective clinical diagnostics and therapeutic strategies for immunoregulation of diabetes.


Asunto(s)
Diabetes Mellitus , Exosomas , Inmunomodulación , Exosomas/inmunología , Exosomas/metabolismo , Humanos , Diabetes Mellitus/inmunología , Diabetes Mellitus/terapia , Animales , Macrófagos/inmunología , Macrófagos/metabolismo
3.
Front Immunol ; 15: 1373497, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38720889

RESUMEN

Introduction: Intraoperative radiation therapy (IORT) delivers a single accelerated radiation dose to the breast tumor bed during breast-conserving surgery (BCS). The synergistic biologic effects of simultaneous surgery and radiation remain unclear. This study explores the cellular and molecular changes induced by IORT in the tumor microenvironment and its impact on the immune response modulation. Methods: Patients with hormone receptor (HR)-positive/HER2-negative, ductal carcinoma in situ (DCIS), or early-stage invasive breast carcinoma undergoing BCS with margin re-excision were included. Histopathological evaluation and RNA-sequencing in the re-excision tissue were compared between patients with IORT (n=11) vs. non-IORT (n=11). Results: Squamous metaplasia with atypia was exclusively identified in IORT specimens (63.6%, p=0.004), mimicking DCIS. We then identified 1,662 differentially expressed genes (875 upregulated and 787 downregulated) between IORT and non-IORT samples. Gene ontology analyses showed that IORT was associated with the enrichment of several immune response pathways, such as inflammatory response, granulocyte activation, and T-cell activation (p<0.001). When only considering normal tissue from both cohorts, IORT was associated with intrinsic apoptotic signaling, response to gamma radiation, and positive regulation of programmed cell death (p<0.001). Using the xCell algorithm, we inferred a higher abundance of γδ T-cells, dendritic cells, and monocytes in the IORT samples. Conclusion: IORT induces histological changes, including squamous metaplasia with atypia, and elicits molecular alterations associated with immune response and intrinsic apoptotic pathways. The increased abundance of immune-related components in breast tissue exposed to IORT suggests a potential shift towards active immunogenicity, particularly immune-desert tumors like HR-positive/HER2-negative breast cancer.


Asunto(s)
Neoplasias de la Mama , Inmunomodulación , Cuidados Intraoperatorios , Mastectomía Segmentaria , Microambiente Tumoral , Humanos , Femenino , Neoplasias de la Mama/radioterapia , Neoplasias de la Mama/inmunología , Neoplasias de la Mama/patología , Persona de Mediana Edad , Microambiente Tumoral/inmunología , Microambiente Tumoral/efectos de la radiación , Inmunomodulación/efectos de la radiación , Anciano , Adulto , Terapia Combinada
5.
FASEB J ; 38(10): e23644, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38738472

RESUMEN

Tumors typically lack canonical danger signals required to activate adaptive immunity and also frequently employ substantial immunomodulatory mechanisms that downregulate adaptive responses and contribute to escape from immune surveillance. Given the variety of mechanisms involved in shielding tumors from immune recognition, it is not surprising that single-agent immunomodulatory approaches have been largely unsuccessful in generating durable antitumor responses. Here we report a unique combination of immunomodulatory and cytostatic agents that recondition the tumor microenvironment and eliminate complex and/or poor-prognosis tumor types including the non-immunogenic 4T-1 model of TNBC, the aggressive MOC-2 model of HNSCC, and the high-risk MYCN-amplified model of neuroblastoma. A course of therapy optimized for TNBC cured a majority of tumors in both ectopic and orthotopic settings and eliminated metastatic spread in all animals tested at the highest doses. Immune responses were transferable between therapeutic donor and naïve recipient through adoptive transfer, and a sizeable abscopal effect on distant, untreated lesions could be demonstrated experimentally. Similar results were observed in HNSCC and neuroblastoma models, with characteristic remodeling of the tumor microenvironment documented in all model systems. scRNA-seq analysis implicated upregulation of innate immune responses and antigen presentation in tumor cells and the myeloid cell compartment as critical early events. This analysis also highlighted the potential importance of the autonomic nervous system in the governance of inflammatory processes. The data indicate that the targeting of multiple pathways and mechanisms of action can result in substantial synergistic antitumor effects and suggest follow-up in the neoadjuvant setting may be warranted.


Asunto(s)
Microambiente Tumoral , Animales , Ratones , Microambiente Tumoral/inmunología , Línea Celular Tumoral , Neuroblastoma/inmunología , Neuroblastoma/terapia , Neuroblastoma/patología , Femenino , Humanos , Inmunomodulación , Ratones Endogámicos C57BL
6.
Viruses ; 16(4)2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38675906

RESUMEN

The disruption of antiviral sensors and the evasion of immune defences by various tactics are hallmarks of EBV infection. One of the EBV latent gene products, LMP1, was shown to induce the activation of signalling pathways, such as NF-κB, MAPK (JNK, ERK1/2, p38), JAK/STAT and PI3K/Akt, via three subdomains of its C-terminal domain, regulating the expression of several cytokines responsible for modulation of the immune response and therefore promoting viral persistence. The aim of this review is to summarise the current knowledge on the EBV-mediated induction of immunomodulatory molecules by the activation of signal transduction pathways with a particular focus on LMP1-mediated mechanisms. A more detailed understanding of the cytokine biology molecular landscape in EBV infections could contribute to the more complete understanding of diseases associated with this virus.


Asunto(s)
Infecciones por Virus de Epstein-Barr , Herpesvirus Humano 4 , Transducción de Señal , Proteínas de la Matriz Viral , Humanos , Proteínas de la Matriz Viral/metabolismo , Proteínas de la Matriz Viral/inmunología , Proteínas de la Matriz Viral/genética , Herpesvirus Humano 4/inmunología , Infecciones por Virus de Epstein-Barr/inmunología , Infecciones por Virus de Epstein-Barr/virología , Infecciones por Virus de Epstein-Barr/metabolismo , Citocinas/metabolismo , Citocinas/inmunología , Animales , Inmunomodulación , Interacciones Huésped-Patógeno/inmunología , FN-kappa B/metabolismo , Latencia del Virus/inmunología
7.
Front Immunol ; 15: 1385691, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38605955

RESUMEN

Mesenchymal stem/stromal cells (MSCs) are being increasingly used in cell-based therapies due to their broad anti-inflammatory and immunomodulatory properties. Intravascularly-administered MSCs do not efficiently migrate to sites of inflammation/immunopathology, but this shortfall has been overcome by cell surface enzymatic fucosylation to engender expression of the potent E-selectin ligand HCELL. In applications of cell-based therapies, cryopreservation enables stability in both storage and transport of the produced cells from the manufacturing facility to the point of care. However, it has been reported that cryopreservation and thawing dampens their immunomodulatory/anti-inflammatory activity even after a reactivation/reconditioning step. To address this issue, we employed a variety of methods to cryopreserve and thaw fucosylated human MSCs derived from either bone marrow or adipose tissue sources. We then evaluated their immunosuppressive properties, cell viability, morphology, proliferation kinetics, immunophenotype, senescence, and osteogenic and adipogenic differentiation. Our studies provide new insights into the immunobiology of cryopreserved and thawed MSCs and offer a readily applicable approach to optimize the use of fucosylated human allogeneic MSCs as immunomodulatory/anti-inflammatory therapeutics.


Asunto(s)
Inmunomodulación , Células Madre Mesenquimatosas , Humanos , Glicosilación , Células Madre Mesenquimatosas/metabolismo , Criopreservación/métodos , Antiinflamatorios/metabolismo
8.
Int J Mol Sci ; 25(7)2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38612580

RESUMEN

An organism's ability to function properly depends not solely on its diet but also on the intake of nutrients and non-nutritive bioactive compounds that exert immunomodulatory effects. This principle applies both to healthy individuals and, in particular, to those with concomitant chronic conditions, such as type 2 diabetes. However, the current food industry and the widespread use of highly processed foods often lead to nutritional deficiencies. Numerous studies have confirmed the occurrence of immune system dysfunction in patients with type 2 diabetes. This article elucidates the impact of specific nutrients on the immune system function, which maintains homeostasis of the organism, with a particular emphasis on type 2 diabetes. The role of macronutrients, micronutrients, vitamins, and selected substances, such as omega-3 fatty acids, coenzyme Q10, and alpha-lipoic acid, was taken into consideration, which outlined the minimum range of tests that ought to be performed on patients in order to either directly or indirectly determine the severity of malnutrition in this group of patients.


Asunto(s)
Diabetes Mellitus Tipo 2 , Desnutrición , Humanos , Diabetes Mellitus Tipo 2/terapia , Estado Nutricional , Nutrientes , Inmunomodulación
9.
Curr Top Dev Biol ; 158: 221-238, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38670707

RESUMEN

The skeletal muscle is well known for its remarkable ability to regenerate after injuries. The regeneration is a complex and dynamic process that involves muscle stem cells (also called muscle satellite cells, MuSCs), fibro-adipogenic progenitors (FAPs), immune cells, and other muscle-resident cell populations. The MuSCs are the myogenic cell populaiton that contribute nuclei directly to the regenerated myofibers, while the other cell types collaboratively establish a microenvironment that facilitates myogenesis of MuSCs. The myogenic process includes activation, proliferation and differentiationof MuSCs, and subsequent fusion their descendent mononuclear myocytes into multinuclear myotubes. While the contributions of FAPs and immune cells to this microenvironment have been well studied, the influence of MuSCs on other cell types remains poorly understood. This review explores recent evidence supporting the potential role of MuSCs as immunomodulators during muscle regeneration, either through cytokine production or ligand-receptor interactions.


Asunto(s)
Músculo Esquelético , Regeneración , Regeneración/fisiología , Animales , Humanos , Músculo Esquelético/fisiología , Músculo Esquelético/citología , Desarrollo de Músculos , Células Madre/citología , Células Madre/metabolismo , Células Satélite del Músculo Esquelético/citología , Células Satélite del Músculo Esquelético/metabolismo , Células Satélite del Músculo Esquelético/fisiología , Diferenciación Celular , Factores Inmunológicos/farmacología , Factores Inmunológicos/metabolismo , Inmunomodulación
10.
Cancer Immunol Immunother ; 73(5): 94, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38564002

RESUMEN

The advent of tumor immunotherapy in patients has revolutionized the treatment of tumors and significantly improved survival rates for a wide range of tumors. However, the full therapeutic potential of immune checkpoint inhibitors (ICIs) has yet to be realized, as not all patients have a lasting survival benefit from them, and a significant proportion of patients show primary or acquired resistance to immunotherapy. Bifidobacterium is one of the most common probiotics, and its antitumor and immunomodulatory effects have been demonstrated in recent years, but its immunomodulatory effects in tumors, especially on ICIs and in combination, have not been extensively studied in clinical practice, and its effects on the immune system and the mechanisms that modulate immunotherapy are largely unknown. Therefore, this review will focus on the immunomodulatory effects of Bifidobacteria in malignancies and the possible mechanisms of action of Bifidobacteria on immunotherapy in the hope of providing a basis for further research and better application of Bifidobacteria in clinical practice.


Asunto(s)
Inmunomodulación , Inmunoterapia , Humanos , Bifidobacterium , Inhibidores de Puntos de Control Inmunológico
11.
BMJ Open ; 14(4): e072159, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38580363

RESUMEN

INTRODUCTION: Surgical stress results in immune dysfunction, predisposing patients to infections in the postoperative period and potentially increasing the risk of cancer recurrence. Perioperative immunonutrition with arginine-enhanced diets has been found to potentially improve short-term and cancer outcomes. This study seeks to measure the impact of perioperative immunomodulation on biomarkers of the immune response and perioperative outcomes following hepatopancreaticobiliary surgery. METHODS AND ANALYSIS: This is a 1:1:1 randomised, controlled and blinded superiority trial of 45 patients. Baseline and perioperative variables were collected to evaluate immune function, clinical outcomes and feasibility outcomes. The primary outcome is a reduction in natural killer cell killing as measured on postoperative day 1 compared with baseline between the control and experimental cohorts. ETHICS AND DISSEMINATION: This trial has been approved by the research ethics boards at participating sites and Health Canada (parent control number: 223646). Results will be distributed widely through local and international meetings, presentation, publication and ClinicalTrials.gov (identifier: NCT04549662). Any modifications to the protocol will be communicated via publications and ClinicalTrials.gov. TRIAL REGISTRATION NUMBER: ClinicalTrials.gov identifier: NCT04549662.


Asunto(s)
Neoplasias , Humanos , Proyectos de Investigación , Inmunomodulación , Inmunidad , Canadá , Ensayos Clínicos Controlados Aleatorios como Asunto , Ensayos Clínicos Fase II como Asunto
12.
Lett Appl Microbiol ; 77(4)2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38565315

RESUMEN

Lactic acid bacteria, found in heterogenous niches, are known for their health-endorsing properties and are in demand as prospective probiotics. Hence, the scientific community around the globe is in continuous search for novel and new potential strains with extensive applicability and minimum risk. In this context, the present study evaluated the efficiency of Lactiplantibacillus plantarum (P2F2) of human origin, a highly autoaggregating and coaggregating (with pathogens) strain, for its colonization, growth promotion, and immunomodulation. Results indicated moderate hydrophobicity on adhesion to xylene and n-hexadecane and weak electron-donating properties with chloroform. The biofilm of P2F2 formed on polystyrene was strong and highly correlated to exopolysaccharide production. The autoaggregation was moderately correlated with hydrophobicity and biofilm production. It was noted that the P2F2 strain modulated the gut microbiota and increased intestinal villi length in Wistar rats. The lipid and glucose profiles remained intact. P2F2 treatment increased the activity of reactive oxygen species-generating cells in the peritoneal cavity, besides augmenting the mitogen-induced splenocyte proliferation and maintained the immunoglobulins at the normal level. Results from this study conclusively suggest that the strain P2F2 adheres to the intestine and modulates the gut ecosystem besides enhancing cell-mediated immunity without altering the serological parameters tested.


Asunto(s)
Lactobacillus plantarum , Probióticos , Animales , Humanos , Lactante , Ratas , Adhesión Bacteriana , Heces/microbiología , Inmunomodulación , Probióticos/farmacología , Estudios Prospectivos , Ratas Wistar
13.
Front Immunol ; 15: 1380089, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38650950

RESUMEN

Introduction: The culture of Pacific oysters (Crassostrea gigas) is of significant socio-economic importance in the U.S. Pacific Northwest and other temperate regions worldwide, with disease outbreaks acting as significant bottlenecks to the successful production of healthy seed larvae. Therefore, the current study aims to describe the mechanisms of a probiotic combination in improving the survival of C. gigas larvae. Specifically, we investigate changes in C. gigas larval gene expression in response to V. coralliilyticus infection with or without a pre-treatment of a novel probiotic combination. Methods: Treatment groups consisted of replicates of Pacific oyster larvae exposed to a) a combination of four probiotic bacteria at a total concentration of 3.0 x 105 CFU/mL at 18 hours post-fertilization (hpf), b) pathogenic V. coralliilyticus RE22 at a concentration of 6.0 x 103 CFU/mL at 48 hpf, and c) the probiotic combination at 18 hpf and V. coralliilyticus RE22 at 48 hpf. RNA was extracted from washed larvae after 72 hpf, and transcriptome sequencing was used to identify significant differentially expressed genes (DEGs) within each treatment. Results: Larvae challenged with V. coralliilyticus showed enhanced expression of genes responsible for inhibiting immune signaling (i.e., TNFAIP3, PSMD10) and inducing apoptosis (i.e., CDIP53). However, when pre-treated with the probiotic combination, these genes were no longer differentially expressed relative to untreated control larvae. Additionally, pre-treatment with the probiotic combination increased expression of immune signaling proteins and immune effectors (i.e., IL-17, MyD88). Apparent immunomodulation in response to probiotic treatment corresponds to an increase in the survival of C. gigas larvae infected with V. coralliilyticus by up to 82%. Discussion: These results indicate that infection with V. coralliilyticus can suppress the larval immune response while also prompting cell death. Furthermore, the results suggest that the probiotic combination treatment negates the deleterious effects of V. coralliilyticus on larval gene expression while stimulating the expression of genes involved in infection defense mechanisms.


Asunto(s)
Crassostrea , Larva , Probióticos , Vibrio , Animales , Larva/inmunología , Larva/microbiología , Crassostrea/inmunología , Crassostrea/microbiología , Vibriosis/inmunología , Vibriosis/veterinaria , Transcriptoma , Inmunomodulación
14.
Mol Cancer ; 23(1): 72, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38581001

RESUMEN

For decades, great strides have been made in the field of immunometabolism. A plethora of evidence ranging from basic mechanisms to clinical transformation has gradually embarked on immunometabolism to the center stage of innate and adaptive immunomodulation. Given this, we focus on changes in immunometabolism, a converging series of biochemical events that alters immune cell function, propose the immune roles played by diversified metabolic derivatives and enzymes, emphasize the key metabolism-related checkpoints in distinct immune cell types, and discuss the ongoing and upcoming realities of clinical treatment. It is expected that future research will reduce the current limitations of immunotherapy and provide a positive hand in immune responses to exert a broader therapeutic role.


Asunto(s)
Inmunidad , Neoplasias , Humanos , Inmunoterapia , Inmunomodulación , Neoplasias/terapia
15.
Front Immunol ; 15: 1372862, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38650942

RESUMEN

Balancing the immune response after solid organ transplantation (SOT) and vascularized composite allotransplantation (VCA) remains an ongoing clinical challenge. While immunosuppressants can effectively reduce acute rejection rates following transplant surgery, some patients still experience recurrent acute rejection episodes, which in turn may progress to chronic rejection. Furthermore, these immunosuppressive regimens are associated with an increased risk of malignancies and metabolic disorders. Despite significant advancements in the field, these IS related side effects persist as clinical hurdles, emphasizing the need for innovative therapeutic strategies to improve transplant survival and longevity. Cellular therapy, a novel therapeutic approach, has emerged as a potential pathway to promote immune tolerance while minimizing systemic side-effects of standard IS regiments. Various cell types, including chimeric antigen receptor T cells (CAR-T), mesenchymal stromal cells (MSCs), regulatory myeloid cells (RMCs) and regulatory T cells (Tregs), offer unique immunomodulatory properties that may help achieve improved outcomes in transplant patients. This review aims to elucidate the role of cellular therapies, particularly MSCs, T cells, Tregs, RMCs, macrophages, and dendritic cells in SOT and VCA. We explore the immunological features of each cell type, their capacity for immune regulation, and the prospective advantages and obstacles linked to their application in transplant patients. An in-depth outline of the current state of the technology may help SOT and VCA providers refine their perioperative treatment strategies while laying the foundation for further trials that investigate cellular therapeutics in transplantation surgery.


Asunto(s)
Trasplante de Órganos , Humanos , Trasplante de Órganos/efectos adversos , Animales , Tratamiento Basado en Trasplante de Células y Tejidos/métodos , Rechazo de Injerto/inmunología , Rechazo de Injerto/prevención & control , Inmunomodulación
16.
Acta Biomater ; 180: 262-278, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38579918

RESUMEN

Given the crucial role of periosteum in bone repair, the use of artificial periosteum to induce spontaneous bone healing instead of using bone substitutes has become a potential strategy. Also, the proper transition from pro-inflammatory signals to anti-inflammatory signals is pivotal for achieving optimal repair outcomes. Hence, we designed an artificial periosteum loaded with a filamentous bacteriophage clone named P11, featuring an aligned fiber morphology. P11 endowed the artificial periosteum with the capacity to recruit bone marrow mesenchymal stem cells (BMSCs). The artificial periosteum also regulated the immune microenvironment at the bone injury site through the synergistic effects of biochemical factors and topography. Specifically, the inclusion of P11 preserved inflammatory signaling in macrophages and additionally facilitated the migration of BMSCs. Subsequently, aligned fibers stimulated macrophages, inducing alterations in cytoskeletal and metabolic activities, resulting in the polarization into the M2 phenotype. This progression encouraged the osteogenic differentiation of BMSCs and promoted vascularization. In vivo experiments showed that the new bone generated in the AP group exhibited the most efficient healing pattern. Overall, the integration of biochemical factors with topographical considerations for sequential immunomodulation during bone repair indicates a promising approach for artificial periosteum development. STATEMENT OF SIGNIFICANCE: The appropriate transition of macrophages from a pro-inflammatory to an anti-inflammatory phenotype is pivotal for achieving optimal bone repair outcomes. Hence, we designed an artificial periosteum featuring an aligned fiber morphology and loaded with specific phage clones. The artificial periosteum not only fostered the recruitment of BMSCs but also achieved sequential regulation of the immune microenvironment through the synergistic effects of biochemical factors and topography, and improved the effect of bone repair. This study indicates that the integration of biochemical factors with topographical considerations for sequential immunomodulation during bone repair is a promising approach for artificial periosteum development.


Asunto(s)
Regeneración Ósea , Células Madre Mesenquimatosas , Osteogénesis , Periostio , Animales , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Regeneración Ósea/efectos de los fármacos , Osteogénesis/efectos de los fármacos , Ratones , Macrófagos/metabolismo , Bacteriófagos , Masculino , Diferenciación Celular , Ratas Sprague-Dawley , Inmunomodulación , Células RAW 264.7
17.
Gene ; 916: 148446, 2024 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-38583816

RESUMEN

Mesenchymal stem cells (MSCs) have high priority in clinical applications for treatment of immune disorders because of their immunomodulatory function. A lot of researches have currently been undertaken to enhance the stemness capacities of the cells and pick an excellent type of MSCs for clinical approaches. This study aims to assess the immunomodulatory related MicroRNAs (miRNAs) expression as well as their target genes in both adipose derived stem cells (Ad-SCs) and dental pulp derived stem cell (DP-SCs) in the presence or lack of Crocin (saffron plant's bioactive compound). For this purpose, first MSCs were extracted from adipose and dental pulp tissues, and then their mesenchymal nature was confirmed using flow cytometry and differentiation tests. Following the cell treatment with an optimal-non-toxic dose of Crocin (Obtained by MTT test), the expression of 4 selected immunomodulatory-related micro-RNAs (Mir-126, -21, -23, and-155) and their target genes (PI3K/ Akt 1 and 2/ NFKB and RELA) were assessed by RT-PCR. Our findings revealed that miRNA-23 and miRNA-126 were up-regulated in both types of cells treated with Crocin, while in the other side, miRNA-21 and miRNA-155 were down-regulated in DP-SCs and were up-regulated in Ad-SCs under treatment. Moreover, the real-time PCR results indicated that Crocin could significantly down regulate the expression of PI3K/ Akt1/ Akt2/ NFKB/ RELA genes in DP-SCs and PI3K/Akt2 genes in Ad-SCs and up regulate the expression of Akt1/ NFKB/ RELA genes in recent cells. Based on the analysis of the obtained data, the immunoregulatory effects of Crocin were higher in DP-SCs than in Ad-SCs. In conclusion, Crocin could control essential signaling pathways related to the inflammation by regulating the expression of related- miRNAs genes that play a key function in the immune regulation pathways in MSCs. Our findings can give an understanding of the mechanisms by which Crocin enhances the immunomodulatory feature of MSCs. According to the research findings, DP-SCs are probably a better immunomodulator in Crocin treatment than Ad-SCs and it may be helpful for MSCs selection in clinical applications for modulation or treatment of autoimmune disorders.


Asunto(s)
Carotenoides , Células Madre Mesenquimatosas , MicroARNs , MicroARNs/genética , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Mesenquimatosas/inmunología , Carotenoides/farmacología , Humanos , Células Cultivadas , Regulación de la Expresión Génica/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Inmunomodulación/efectos de los fármacos , Inmunomodulación/genética , Factor de Transcripción ReIA/metabolismo , Factor de Transcripción ReIA/genética , Tejido Adiposo/citología , Tejido Adiposo/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Transducción de Señal/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt/metabolismo
18.
Biomater Adv ; 160: 213852, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38636118

RESUMEN

Immunotherapy is an emerging approach for the treatment of solid tumors. Although chemotherapy is generally considered immunosuppressive, specific chemotherapeutic agents can induce tumor immunity. In this study, we developed a targeted, acid-sensitive peptide nanoparticle (DT/Pep1) to deliver doxorubicin (DOX) and triptolide (TPL) to breast cancer cells via the enhanced permeability and retention (EPR) effect and the breast cancer-targeting effect of peptide D8. Compared with administration of the free drugs, treatment with the DT/Pep1 system increased the accumulation of DOX and TPL at the tumor site and achieved deeper penetration into the tumor tissue. In an acidic environment, DT/Pep1 transformed from spherical nanoparticles to aggregates with a high aspect ratio, which successfully extended the retention of the drugs in the tumor cells and bolstered the anticancer effect. In both in vivo and in vitro experiments, DT/Pep1 effectively blocked the cell cycle and induced apoptosis. Importantly, the DT/Pep1 system efficiently suppressed tumor development in mice bearing 4T1 tumors while simultaneously promoting immune system activation. Thus, the results of this study provide a system for breast cancer therapy and offer a novel and promising platform for peptide nanocarrier-based drug delivery.


Asunto(s)
Antineoplásicos , Apoptosis , Diterpenos , Doxorrubicina , Péptidos , Animales , Apoptosis/efectos de los fármacos , Doxorrubicina/farmacología , Doxorrubicina/química , Doxorrubicina/administración & dosificación , Femenino , Péptidos/farmacología , Péptidos/química , Péptidos/administración & dosificación , Ratones , Humanos , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/administración & dosificación , Línea Celular Tumoral , Diterpenos/farmacología , Diterpenos/química , Diterpenos/administración & dosificación , Inmunomodulación/efectos de los fármacos , Compuestos Epoxi/farmacología , Compuestos Epoxi/química , Compuestos Epoxi/administración & dosificación , Nanopartículas/química , Fenantrenos/farmacología , Fenantrenos/química , Fenantrenos/administración & dosificación , Fenantrenos/uso terapéutico , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/inmunología , Neoplasias de la Mama/patología , Sistemas de Liberación de Medicamentos/métodos , Ratones Endogámicos BALB C
19.
Int J Mol Sci ; 25(8)2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38673781

RESUMEN

Vagus nerve stimulation (VNS) represents a long-term adjunctive treatment option in patients with difficult-to-treat depression (DTD). Anti-inflammatory effects have been discussed as a key mechanism of action of VNS. However, long-term investigations in real-world patients are sparse. In this naturalistic observational study, we collected data on cytokines in peripheral blood in n = 6 patients (mean age 47.8) with DTD and VNS treatment at baseline and at 6 months follow-up. We have identified clusters of peripheral cytokines with a similar dynamic over the course of these 6 months using hierarchical clustering. We have investigated cytokine changes from baseline to 6 months as well as the relationship between the cytokine profile at 6 months and long-term response at 12 months. After 6 months of VNS, we observed significant correlations between cytokines (p < 0.05) within the identified three cytokine-pairs which were not present at baseline: IL(interleukin)-6 and IL-8; IL-1ß and TNF-α; IFN-α2 and IL-33. At 6 months, the levels of all the cytokines of interest had decreased (increased in non-responders) and were lower (5-534 fold) in responders to VNS than in non-responders: however, these results were not statistically significant. VNS-associated immunomodulation might play a role in long-term clinical response to VNS.


Asunto(s)
Citocinas , Estimulación del Nervio Vago , Humanos , Citocinas/sangre , Citocinas/metabolismo , Masculino , Femenino , Persona de Mediana Edad , Estimulación del Nervio Vago/métodos , Adulto , Depresión/terapia , Depresión/inmunología , Resultado del Tratamiento , Inmunomodulación
20.
J Clin Periodontol ; 51(6): 774-786, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38462847

RESUMEN

AIM: To evaluate the effect of subgingival delivery of progranulin (PGRN)/gelatin methacryloyl (GelMA) complex as an adjunct to scaling and root planing (SRP) on an experimental periodontitis dog model with Class II furcation involvement (FI). MATERIALS AND METHODS: A Class II FI model was established, and the defects were divided into four treatment groups: (a) no treatment (control); (b) SRP; (c) SRP + GelMA; (d) SRP + PGRN/GelMA. Eight weeks after treatment, periodontal parameters were recorded, gingival crevicular fluid and gingival tissue were collected for ELISA and RT-qPCR, respectively, and mandibular tissue blocks were collected for micro computed tomography (micro-CT) scanning and hematoxylin and eosin (H&E) staining. RESULTS: The SRP + PGRN/GelMA group showed significant improvement in all periodontal parameters compared with those in the other groups. The expression of markers related to M1 macrophage and Th17 cell significantly decreased, and the expression of markers related to M2 macrophage and Treg cell significantly increased in the SRP + PGRN/GelMA group compared with those in the other groups. The volume, quality and area of new bone and the length of new cementum in the root furcation defects of the PGRN/GelMA group were significantly increased compared to those in the other groups. CONCLUSIONS: Subgingival delivery of the PGRN/GelMA complex could be a promising non-surgical adjunctive therapy for anti-inflammation, immunomodulation and periodontal regeneration.


Asunto(s)
Raspado Dental , Defectos de Furcación , Hidrogeles , Progranulinas , Animales , Perros , Defectos de Furcación/terapia , Hidrogeles/uso terapéutico , Raspado Dental/métodos , Inmunomodulación , Aplanamiento de la Raíz/métodos , Modelos Animales de Enfermedad , Periodontitis/terapia , Periodontitis/inmunología , Gelatina , Masculino , Microtomografía por Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA