Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.200
Filtrar
1.
Parasite ; 31: 45, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39109982

RESUMEN

Global changes in climate are contributing to modified Phlebotomine sand fly presence and activity, and the distribution of the pathogens they transmit (e.g., Leishmania and Phlebovirus), and are leading to their possible extension toward northern France. To predict the evolution of these pathogens and control their spread, it is essential to identify and characterize the presence and abundance of potential vectors. However, there are no recent publications describing sand fly species distribution in France. Consequently, we carried out a systematic review to provide distribution and abundance maps over time, along with a simplified dichotomous key for species in France. The review adhered to PRISMA guidelines, resulting in 172 relevant capture reports from 168 studies out of the 2646 documents retrieved, of which 552 were read and 228 analyzed. Seven species were recorded and categorized into three groups based on their abundance: low abundance species, abundant but little-studied species, and abundant vector species. Sand flies are certainly present throughout France but there is a greater diversity of species in the Mediterranean region. Phlebotomus perniciosus and Ph. ariasi are the most abundant and widely distributed species, playing a role as vectors of Leishmania. Sergentomyia minuta, though very abundant, remains under-studied, highlighting the need for further research. Phlebotomus papatasi, Ph. perfiliewi, Ph. sergenti, and Ph. mascittii are present in low numbers and are less documented, limiting understanding of their potential role as vectors. This work provides the necessary basis for comparison of field data generated in the future.


Title: Répartition et abondance des phlébotomes en France : revue systématique. Abstract: Les changements globaux du climat contribuent à modifier la présence et l'activité des phlébotomes, ainsi que la répartition des pathogènes qu'ils transmettent (par exemple Leishmania et Phlebovirus), et conduisent à leur éventuelle extension vers le nord de la France. Pour prédire l'évolution de ces pathogènes et contrôler leur propagation, il est essentiel d'identifier et de caractériser la présence et l'abondance des vecteurs potentiels. Il n'existe cependant aucune publication récente décrivant la répartition des espèces de phlébotomes en France. Par conséquent, nous avons réalisé une revue systématique pour fournir des cartes de répartition et d'abondance dans le temps, ainsi qu'une clé dichotomique simplifiée pour les espèces françaises. La revue a respecté les lignes directrices PRISMA, aboutissant à 172 rapports de capture pertinents provenant de 168 études sur les 2 646 documents récupérés, dont 552 ont été lus et 228 analysés. Sept espèces ont été recensées et classées en trois groupes en fonction de leur abondance : les espèces de faible abondance, les espèces abondantes mais peu étudiées et les espèces vectrices abondantes. Les phlébotomes sont certes présents partout en France mais on trouve une plus grande diversité d'espèces dans le bassin méditerranéen. Phlebotomus perniciosus et Ph. ariasi sont les espèces les plus abondantes et les plus largement réparties, jouant un rôle de vecteurs de Leishmania. Sergentomyia minuta, bien que très abondant, reste sous-étudié, ce qui souligne la nécessité de recherches plus approfondies. Phlebotomus papatasi, Ph. perfiliewi, Ph. sergenti et Ph. mascittii sont présents en faibles nombres et sont moins documentés, ce qui limite la compréhension de leur rôle potentiel en tant que vecteurs. Ce travail fournit la base nécessaire pour la comparaison des données de terrain générées à l'avenir.


Asunto(s)
Insectos Vectores , Phlebotomus , Psychodidae , Francia , Animales , Insectos Vectores/parasitología , Phlebotomus/clasificación , Phlebotomus/parasitología , Psychodidae/parasitología , Psychodidae/clasificación , Distribución Animal , Leishmaniasis/transmisión , Leishmaniasis/epidemiología , Densidad de Población , Leishmania , Región Mediterránea , Cambio Climático
2.
Rev Bras Parasitol Vet ; 33(3): e000824, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39140495

RESUMEN

Sand flies, vectors capable of transmitting Leishmania spp. and causing leishmaniasis, have been a concern in the central region of Rio Grande do Sul, where canine leishmaniasis (CanL) has been documented since 1985. Notably, there has been a surge in CanL cases since 2017, with two autochthonous cases of human visceral leishmaniasis reported in the area in 2021. This study aimed to identify the sand fly fauna potentially involved in disease transmission. Modified Centers for Disease Control light traps were deployed in three neighborhoods of the city where CanL cases had been previously reported, spanning January 2021 to December 2022. Of the 89 collections conducted, 119 sand flies belonging to five species were captured: Pintomyia fischeri (76/119, 63.86%), Migonemyia migonei (23/119, 19.33%), Lutzomyia longipalpis (16/119, 13.45%), Brumptomyia sp. (2/119, 1.68%), and Psathyromyia lanei (2/119, 1.68%), predominantly between February and April in 2021 and 2022. Polymerase chain reaction testing on all female specimens yielded negative results for Leishmania spp. DNA. Although Leishmania spp. was not detected in these vectors, these findings underscore the imperative to implement measures aimed at curtailing the proliferation of these insects.


Asunto(s)
Insectos Vectores , Leishmaniasis , Psychodidae , Estaciones del Año , Animales , Psychodidae/clasificación , Psychodidae/parasitología , Brasil , Femenino , Insectos Vectores/parasitología , Insectos Vectores/clasificación , Leishmaniasis/transmisión , Masculino
3.
Biomedica ; 44(2): 248-257, 2024 05 30.
Artículo en Inglés, Español | MEDLINE | ID: mdl-39088534

RESUMEN

Introduction. El Alférez, a village in Los Montes de María (Bolívar, Colombia) and a macro-focus of leishmaniasis, recorded its first case in 2018, evidencing changes in the distribution and eco-epidemiology of the disease, although interactions between vectors and local fauna remain unknown. Objective. To evaluate the diversity of sandflies and their blood meal sources in the community of El Alférez in the municipality of El Carmen de Bolívar (Bolívar, Colombia). Materials and methods. In 2018, sandflies were collected using LED-based light traps in domestic, peridomestic, and sylvatic ecotopes and identified at the species level. Multiplex polymerase chain reaction targeting the mitochondrial cytochrome B gene was used to analyze blood from the digestive tract. Results. Lutzomyia evansi was the most abundant species (71.85%; n = 485/675), followed by Lu. panamensis, Lu. gomezi, Lu. trinidadensis, Lu. dubitans, Lu. abonnenci, and Lu.aclydifera. Twenty-five percent of the species had blood meals from Canis familiaris (36.00%; n = 9/25), Ovis aries (36.00%; n=9:/25), Bos taurus (24.00%; n = 6/25), Sus scrofa (20.00%; n = 5/25), and Homo sapiens (8.00%; n = 2/25). Lutzomyia evansi registered the highest feeding frequency (68.00%; n = 17/25), predominantly on a single (44.00%; n = 11/25) or multiple species (24.00%; n = 6/25). Conclusion. Results indicate a eclectic feeding behavior in Lu. evansi, implying potential reservoir hosts for Leishmania spp. and increasing transmission risk. This study is a first step towards understanding the diversity of mammalian blood sources used by sandflies, that may be crucial for vector identification and formulation of effective control measures.


Introducción. En 2018, en la vereda El Alférez de Los Montes de María (Bolívar, Colombia), un macrofoco de leishmaniasis, se reportó el primer caso y se evidenciaron cambios en la distribución y ecoepidemiología de la enfermedad. No obstante, las interacciones entre vectores y fauna local aún son desconocidas. Objetivo. Evaluar la diversidad de flebotomíneos y sus fuentes de alimentación sanguínea en la comunidad de El Alférez del municipio de El Carmen de Bolívar (Bolívar, Colombia). Materiales y métodos. En el 2018, se recolectaron flebotomíneos mediante trampas de luz led ubicadas en el domicilio, el peridomicilio y en el área silvestre, y se identificaron a nivel de especie. Se utilizó la reacción en cadena de la polimerasa múltiple dirigida al gen mitocondrial citocromo B para analizar la sangre del aparato digestivo. Resultados. Lutzomyia evansi fue la especie más abundante (71,85 %; n = 485/675), seguida por Lu. panamensis, Lu. gomezi, Lu. trinidadensis, Lu. dubitans, Lu. abonnenci y Lu. aclydifera. El 25 % (n = 25/100) de las especies analizadas tuvieron como fuentes de ingesta sanguínea a Canis familiaris (36 %; n = 9/25), Ovis aries (36 %; n = 9/25), Bos taurus (24 %; n = 6/25), Sus scrofa (20 %; n = 5/25) y Homo sapiens (8 %; n = 2/25). Lutzomyia evansi fue la especie con la mayor frecuencia de alimentación (68 %; n = 17/25), predominantemente de una sola especie (44 %; n = 11/25) o de varias (24 %; n = 6/25).


Asunto(s)
Insectos Vectores , Leishmaniasis , Psychodidae , Animales , Colombia/epidemiología , Psychodidae/parasitología , Insectos Vectores/parasitología , Humanos , Leishmaniasis/epidemiología , Leishmaniasis/transmisión , Conducta Alimentaria , Perros , Bovinos , Citocromos b/genética , Femenino , Masculino
4.
Nat Commun ; 15(1): 6960, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39138209

RESUMEN

Leishmania species, members of the kinetoplastid parasites, cause leishmaniasis, a neglected tropical disease, in millions of people worldwide. Leishmania has a complex life cycle with multiple developmental forms, as it cycles between a sand fly vector and a mammalian host; understanding their life cycle is critical to understanding disease spread. One of the key life cycle stages is the haptomonad form, which attaches to insect tissues through its flagellum. This adhesion, conserved across kinetoplastid parasites, is implicated in having an important function within their life cycles and hence in disease transmission. Here, we discover the kinetoplastid-insect adhesion proteins (KIAPs), which localise in the attached Leishmania flagellum. Deletion of these KIAPs impairs cell adhesion in vitro and prevents Leishmania from colonising the stomodeal valve in the sand fly, without affecting cell growth. Additionally, loss of parasite adhesion in the sand fly results in reduced physiological changes to the fly, with no observable damage of the stomodeal valve and reduced midgut swelling. These results provide important insights into a comprehensive understanding of the Leishmania life cycle, which will be critical for developing transmission-blocking strategies.


Asunto(s)
Flagelos , Leishmania , Psychodidae , Animales , Leishmania/fisiología , Leishmania/genética , Leishmania/metabolismo , Psychodidae/parasitología , Flagelos/metabolismo , Adhesión Celular , Insectos Vectores/parasitología , Interacciones Huésped-Parásitos , Proteínas de Insectos/metabolismo , Proteínas de Insectos/genética , Estadios del Ciclo de Vida , Leishmaniasis/parasitología , Leishmaniasis/transmisión , Proteínas Protozoarias/metabolismo , Proteínas Protozoarias/genética , Femenino
5.
Acta Trop ; 257: 107303, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38950763

RESUMEN

Sand flies are vectors of great public health importance, since they constitute a group of hematophagous insects responsible for etiological agents transmission of zoonotic diseases such a visceral leishmaniasis. In face of the expansion of these diseases, efficient control strategies are needed which depend on comprehending the sand fly eco-epidemiology. In this regard, MALDI-TOF mass spectrometry has been used for bacteria, fungi and yeast detection studies through peptide/protein profiles. However, little is known about interference of biological factors associated with vector ecology, such as blood meal preferences and even sand fly age on the peptide/protein profiles. Thus, the present study aimed to evaluate the differences in peptide/protein profiles of the sand fly Lutzomyia longipalpis, by means of MALDI-TOF, due to the sand fly's age, sex, blood meal source and Leishmania infantum infection. Sample preparation was made removing both head and last abdomen segments keeping the thorax, its appendices and the rest of the abdomen. Five specimens per pool were used to obtain peptide/protein extract of which 1 µL solution was deposited over 1 µL MALDI matrix dried. Characteristic spectra were analyzed using principal coordinate analysis as well as indicator species analysis to discriminate differences in sand flies's peptide/protein profile by sex, age, blood meal source and L. infantum infection. The results show that the evaluated variables produced distinct peptide/protein profiles, demonstrated by the identification of specific diagnostic ions. It was found that the interference of biological factors should be taken into account when using the MALDI-TOF analysis of sand fly species identification and eco-epidemiological applications in field studies. Based on our results, we believe that it is possible to identify infected specimens and the source of blood meal in a collection of wild sand flies, serving to measure infectivity and understand the dynamics of the vector's transmission chain. Our results may be useful for epidemiological studies that look at the ecology of sand flies and leishmaniasis, as well as for raising awareness of biological characteristics' impact on peptide/protein profiles in sand fly species identification.


Asunto(s)
Psychodidae , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Animales , Psychodidae/parasitología , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Femenino , Masculino , Péptidos/análisis , Proteínas de Insectos/análisis , Insectos Vectores/parasitología , Leishmania infantum/aislamiento & purificación , Leishmaniasis Visceral/transmisión
6.
Trends Parasitol ; 40(8): 717-730, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39013660

RESUMEN

The protozoan parasites Plasmodium, Leishmania, and Trypanosoma are transmitted by hematophagous insects and cause severe diseases in humans. These infections pose a global threat, particularly in low-resource settings, and are increasingly extending beyond the current endemic regions. Tropism of parasites is crucial for their development, and recent studies have revealed colonization of noncanonical tissues, aiding their survival and immune evasion. Despite receiving limited attention, cumulative evidence discloses the respiratory system as a significant interface for host-pathogen interactions, influencing the course of (co)infection and disease onset. Due to its pathophysiological and clinical implications, we emphasize that further research is needed to better understand the involvement of the respiratory system and its potential to improve prevention, diagnosis, treatment, and interruption of the chain of transmission.


Asunto(s)
Plasmodium , Animales , Humanos , Plasmodium/fisiología , Sistema Respiratorio/parasitología , Trypanosoma/fisiología , Insectos/parasitología , Insectos Vectores/parasitología , Leishmania/fisiología , Infecciones por Protozoos/parasitología , Infecciones por Protozoos/transmisión , Leishmaniasis/transmisión , Leishmaniasis/parasitología
7.
Parasit Vectors ; 17(1): 318, 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39044228

RESUMEN

BACKGROUND: Cutaneous leishmaniasis (CL) is understudied in sub-Saharan Africa. The epidemiology of CL is determined by the species involved in its transmission. Our objectives were to systematically review available data on the species of Leishmania, along with vectors and reservoirs involved in the occurrence of human cases of CL in sub-Saharan Africa, and to discuss implications for case management and future research. METHODS: We systematically searched PubMed, Scopus, Cochrane and African Index Medicus. There was no restriction on language or date of publication. The review was conducted according to PRISMA guidelines and was registered on PROSPERO (CRD42022384157). RESULTS: In total, 188 published studies and 37 reports from the grey literature were included. An upward trend was observed, with 45.7% of studies published after 2010. East Africa (55.1%) represented a much greater number of publications than West Africa (33.3%). In East Africa, the identification of reservoirs for Leishmania tropica remains unclear. This species also represents a therapeutic challenge, as it is often resistant to meglumine antimoniate. In Sudan, the presence of hybrids between Leishmania donovani and strictly cutaneous species could lead to important epidemiological changes. In Ghana, the emergence of CL in the recent past could involve rare species belonging to the Leishmania subgenus Mundinia. The area of transmission of Leishmania major could expand beyond the Sahelian zone, with scattered reports in forested areas. While the L. major-Phlebotomus duboscqi-rodent complex may not be the only cycle in the dry areas of West Africa, the role of dogs as a potential reservoir for Leishmania species with cutaneous tropism in this subregion should be clarified. Meglumine antimoniate was the most frequently reported treatment, but physical methods and systemic agents such as ketoconazole and metronidazole were also used empirically to treat L. major infections. CONCLUSIONS: Though the number of studies on the topic has increased recently, there is an important need for intersectional research to further decipher the Leishmania species involved in human cases of CL as well as the corresponding vectors and reservoirs, and environmental factors that impact transmission dynamics. The development of molecular biology in sub-Saharan Africa could help in leveraging diagnostic and research capacities and improving the management of human cases through personalized treatment strategies.


Asunto(s)
Reservorios de Enfermedades , Leishmania , Leishmaniasis Cutánea , África del Sur del Sahara/epidemiología , Humanos , Leishmaniasis Cutánea/epidemiología , Leishmaniasis Cutánea/transmisión , Leishmaniasis Cutánea/parasitología , Animales , Reservorios de Enfermedades/parasitología , Leishmania/clasificación , Leishmania/aislamiento & purificación , Leishmania/genética , Leishmania/efectos de los fármacos , Insectos Vectores/parasitología , Perros
8.
PLoS Negl Trop Dis ; 18(7): e0012290, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39024365

RESUMEN

Equids may be infected by zoonotic Leishmania spp., including Leishmania infantum, in regions where canine leishmaniasis (CanL) is endemic, and Leishmania martiniquensis, which has been reported in horses from Central Europe. This study was designed to evaluate the occurrence of both Leishmania spp. among equids living in CanL endemic areas of Italy, as well as to identify dipteran vectors from the same habitats. From March to October 2023, blood, serum and tissue samples from skin lesions were collected from equids (n = 98; n = 56 donkeys and n = 42 horses) living in Italy, as well as sand flies and biting midges. Blood samples (n = 98) and skin lesions (n = 56) were tested for Leishmania spp. by conventional and real time PCRs and sera were tested by immunofluorescence antibody tests (IFAT) for both L. infantum and L. martiniquensis. Insects were morphologically identified, and female specimens (n = 268 sand flies, n = 7 biting midges) analyzed for Leishmania DNA, as well as engorged sand flies (n = 16) for blood-meal detection. Two animals with skin lesions (i.e., one donkey and one horse) scored positive for Leishmania spp. DNA, and 19 animals (i.e., 19.4%; n = 13 donkeys and n = 6 horses) were seropositive for L. infantum, with five of them also for L. martiniquensis. Most seropositive animals had no dermatological lesions (i.e., 68.4%) while both animals molecularly positive for Leishmania spp. scored seronegative. Of the 356 sand flies collected, 12 females (i.e., n = 8 Sergentomyia minuta; n = 3 Phlebotomus perniciosus, n = 1 Phlebotomus perfiliewi) were positive for Leishmania spp. DNA, and one out of seven biting midges collected was DNA-positive for L. infantum. Moreover, engorged sand flies scored positive for human and equine DNA. Data suggest that equids living in CanL endemic areas are exposed to Leishmania spp., but their role in the circulation of the parasite needs further investigations.


Asunto(s)
Enfermedades de los Perros , Equidae , Insectos Vectores , Leishmania , Leishmaniasis , Animales , Perros , Caballos/parasitología , Equidae/parasitología , Leishmania/aislamiento & purificación , Leishmania/genética , Leishmania/clasificación , Enfermedades de los Perros/parasitología , Enfermedades de los Perros/epidemiología , Enfermedades de los Perros/transmisión , Leishmaniasis/veterinaria , Leishmaniasis/epidemiología , Leishmaniasis/parasitología , Leishmaniasis/transmisión , Femenino , Insectos Vectores/parasitología , Italia/epidemiología , Masculino , Psychodidae/parasitología , Enfermedades de los Caballos/parasitología , Enfermedades de los Caballos/epidemiología , Leishmania infantum/aislamiento & purificación , Leishmania infantum/genética , Ceratopogonidae/parasitología , Enfermedades Endémicas/veterinaria
9.
Zhongguo Xue Xi Chong Bing Fang Zhi Za Zhi ; 36(3): 243-246, 2024 May 22.
Artículo en Chino | MEDLINE | ID: mdl-38952309

RESUMEN

The insecticide resistance is becoming increasingly severe in malaria vectors and has become one of the most important threats to global malaria elimination. Currently, malaria vectors not only have developed high resistance to conventional insecticides, including organochlorine, organophosphates, carbamates, and pyrethroids, but also have been resistant to recently used neonicotinoids and pyrrole insecticides. This article describes the current status of global insecticide resistance in malaria vectors and global insecticide resistance management strategies, analyzes the possible major challenges in the insecticide resistance management, and proposes the response actions, so as to provide insights into global insecticide resistance management and contributions to global malaria elimination.


Asunto(s)
Resistencia a los Insecticidas , Insecticidas , Malaria , Animales , Humanos , Insectos Vectores/efectos de los fármacos , Insectos Vectores/parasitología , Insecticidas/farmacología , Malaria/prevención & control , Malaria/transmisión , Mosquitos Vectores/efectos de los fármacos , Mosquitos Vectores/parasitología
10.
PLoS Negl Trop Dis ; 18(7): e0012312, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39038058

RESUMEN

BACKGROUND: The World Health Organization's 2021-2030 Road Map for Neglected Tropical Diseases boosted global commitment towards the elimination of onchocerciasis, but the timeline to elimination will vary strongly between countries in Africa. To assess progress towards elimination in the Republic of Togo, we reviewed the history of control and time trends in infection. METHODOLOGY/PRINCIPAL FINDINGS: We collated all available programmatic, entomological, and epidemiological data since the initiation of the Onchocerciasis Control Programme (OCP) in Togo through different data sources. We then visualised data trends over time, to assess the impact of interventions on infection and transmission levels. Vector control was initiated by OCP from 1977 (northern and central parts of Togo) or 1988 (southern regions) up to 2002 (most areas) or 2007 ("special intervention zones" [SIZ], parts of Northern and Central Togo). Between 1988 and 1991, Togo initiated ivermectin mass drug administration (MDA) in eligible communities. The impact of vector control was high in most river basins, resulting in low annual biting rates and annual transmission potential declining to very low levels; the impact was lower in river basins designated as SIZ. Repeated, longitudinal ivermectin mass treatments have overall strongly reduced onchocerciasis transmission in Togo. Epidemiological surveys performed between 2014 and 2017 showed that the prevalence of skin microfilariae (mf) and anti-OV16 IgG4 antibodies had declined to low levels in several districts of the Centrale, Plateaux, and Maritime region. Yet, relatively high mf prevalences (between 5.0% and 32.7%) were still found in other districts during the same period, particularly along the Kéran, Mô and Ôti river basins (SIZ areas). CONCLUSIONS/SIGNIFICANCE: Trends in infection prevalence and intensity show that onchocerciasis levels have dropped greatly over time in most areas. This demonstrates the large impact of long-term and wide-scale interventions, and suggest that several districts of Togo are approaching elimination.


Asunto(s)
Ivermectina , Oncocercosis , Togo/epidemiología , Humanos , Ivermectina/uso terapéutico , Ivermectina/administración & dosificación , Oncocercosis/epidemiología , Oncocercosis/transmisión , Oncocercosis/prevención & control , Animales , Administración Masiva de Medicamentos , Insectos Vectores/parasitología , Control de Insectos/métodos , Onchocerca volvulus , Femenino
11.
PLoS Negl Trop Dis ; 18(7): e0012291, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39012845

RESUMEN

BACKGROUND: Understanding and mapping the distribution of sandflies and sandfly-associated pathogens (SAPs) is crucial for guiding the surveillance and control effort. However, their distribution and the related risk burden in China remain poorly understood. METHODS: We mapped the distribution of sandflies and SAPs using literature data from 1940 to 2022. We also mapped the human visceral leishmaniasis (VL) cases using surveillance data from 2014 to 2018. The ecological drivers of 12 main sandfly species and VL were identified by applying machine learning, and their distribution and risk were predicted in three time periods (2021-2040, 2041-2060, and 2061-2080) under three scenarios of climate and socioeconomic changes. RESULTS: In the mainland of China, a total of 47 sandfly species have been reported, with the main 12 species classified into three clusters according to their ecological niches. Additionally, 6 SAPs have been identified, which include two protozoa, two bacteria, and two viruses. The incidence risk of different VL subtypes was closely associated with the distribution risk of specific vectors. The model predictions also revealed a substantial underestimation of the current sandfly distribution and VL risk. The predicted areas affected by the 12 major species of sandflies and the high-risk areas for VL were found to be 37.9-1121.0% and 136.6% larger, respectively, than the observed range in the areas. The future global changes were projected to decrease the risk of mountain-type zoonotic VL (MT-ZVL), but anthroponotic VL (AVL) and desert-type zoonotic VL (DT-ZVL) could remain stable or slightly increase. CONCLUSIONS: Current field observations underestimate the spatial distributions of main sandfly species and VL in China. More active surveillance and field investigations are needed where high risks are predicted, especially in areas where the future risk of VL is projected to remain high or increase.


Asunto(s)
Insectos Vectores , Psychodidae , Animales , China/epidemiología , Psychodidae/parasitología , Humanos , Insectos Vectores/parasitología , Leishmaniasis Visceral/epidemiología , Leishmaniasis Visceral/transmisión , Distribución Animal
12.
Acta Trop ; 257: 107273, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38834157

RESUMEN

Phlebotomine sand flies are critical vectors of Leishmania parasites, impacting public health significantly. This study focused on assessing the diversity of sand flies in a rural area of El Carmen de Bolívar Municipality, northern Colombia, employing rarefaction curves and Hill numbers to understand potential vector communities and inform environmental management. From January 2018 to April 2019 (five samplings), sand flies were collected using CDC light traps with blue LED in domestic/peridomestic/sylvatic ecotopes, identifying species per Young and Duncan (1994) and Galati (2003). Hill numbers provided diversity estimates across samples, while Principal Component Analysis correlated with environmental factors with phlebotomine species presence and abundance. 8,784 phlebotomine individuals were collected; 56.4 % females and 43.6% males (ratio 3:2). These individuals belonged to eight species: Pintomyia evansi, Psychodopygus panamensis, Lutzomyia gomezi, Micropygomyia cayennensis, Evandromyia dubitans, Psathyromyia aclydifera, Pintomyia serrana, and Pintomyia rangeliana; with Pi. evansi being the most abundant species (74.39 %; 6,530 exemplars). The ANOVA showed no significant differences between phlebotomine sand flies abundances across ecotopes (p = 0.018). Species of epidemiological relevance as Pi. evansi and Lu. gomezi not show a positive correlation with environmental variables evaluated, only Ps. panamensis was positively correlated with precipitation. However, the study emphasizes the need for a continuous sand fly monitoring and research to enhance leishmaniasis control strategies, highlighting the necessity to expand knowledge on phlebotomine diversity and environmental interactions to understand vector ecology and disease dynamics better.


Asunto(s)
Insectos Vectores , Leishmania , Leishmaniasis , Psychodidae , Animales , Colombia , Psychodidae/clasificación , Psychodidae/crecimiento & desarrollo , Insectos Vectores/clasificación , Insectos Vectores/parasitología , Femenino , Masculino , Leishmania/clasificación , Leishmaniasis/transmisión , Biodiversidad
13.
Acta Trop ; 257: 107281, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38852917

RESUMEN

Phospholipases A2 (PLA2) comprise a superfamily of enzymes that specifically catalyze hydrolysis of the ester bond at the sn-2 position of glycerophospholipids, generating lysophospholipids and fatty acids. In Rhodnius prolixus, one of the main vectors of the Chagas's disease etiologic agent Trypanosoma cruzi, it was previously shown that lysophosphatidylcholine, a bioactive lipid, found in the insect's saliva, contributes to the inhibition of platelet aggregation, and increases the production of nitric oxide, an important vasodilator. Due to its role in potentially generating LPC, here we studied the PLA2 present in the salivary glands of R. prolixus. PLA2 activity is approximately 100 times greater in the epithelium than in the contents of salivary glands. Our study reveals the role of the RpPLA2XIIA gene in the insect feeding performance and in the fatty acids composition of phospholipids extracted from the salivary glands. Knockdown of RpPLA2XIIA significantly altered the relative amounts of palmitic, palmitoleic, oleic and linoleic acids. A short-term decrease in the expression of RpPLA2III and RpPLA2XIIA in the salivary glands of R. prolixus was evident on the third day after infection by T. cruzi. Taken together, our results contribute to the understanding of the role of PLA2 in the salivary glands of hematophagous insects and show that the parasite is capable of modulating even tissues that are not colonized by it.


Asunto(s)
Fosfolipasas A2 , Rhodnius , Glándulas Salivales , Trypanosoma cruzi , Animales , Rhodnius/parasitología , Rhodnius/enzimología , Rhodnius/genética , Glándulas Salivales/parasitología , Glándulas Salivales/enzimología , Glándulas Salivales/metabolismo , Trypanosoma cruzi/genética , Trypanosoma cruzi/enzimología , Fosfolipasas A2/metabolismo , Fosfolipasas A2/genética , Ácidos Grasos/metabolismo , Enfermedad de Chagas/parasitología , Insectos Vectores/parasitología , Insectos Vectores/enzimología
14.
Int J Parasitol Drugs Drug Resist ; 25: 100554, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38941845

RESUMEN

Leishmania major is responsible for zoonotic cutaneous leishmaniasis. Therapy is mainly based on the use of antimony-based drugs; however, treatment failures and illness relapses were reported. Although studies were developed to understand mechanisms of drug resistance, the interactions of resistant parasites with their reservoir hosts and vectors remain poorly understood. Here we compared the development of two L. major MON-25 trivalent antimony-resistant lines, selected by a stepwise in vitro Sb(III)-drug pressure, to their wild-type parent line in the natural vector Phlebotomus papatasi. The intensity of infection, parasite location and morphological forms were compared by microscopy. Parasite growth curves and IC50 values have been determined before and after the passage in Ph. papatasi. qPCR was used to assess the amplification rates of some antimony-resistance gene markers. In the digestive tract of sand flies, Sb(III)-resistant lines developed similar infection rates as the wild-type lines during the early-stage infections, but significant differences were observed during the late-stage of the infections. Thus, on day 7 p. i., resistant lines showed lower representation of heavy infections with colonization of the stomodeal valve and lower percentage of metacyclic promastigote forms in comparison to wild-type strains. Observed differences between both resistant lines suggest that the level of Sb(III)-resistance negatively correlates with the quality of the development in the vector. Nevertheless, both resistant lines developed mature infections with the presence of infective metacyclic forms in almost half of infected sandflies. The passage of parasites through the sand fly guts does not significantly influence their capacity to multiply in vitro. The IC50 values and molecular analysis of antimony-resistance genes showed that the resistant phenotype of Sb(III)-resistant parasites is maintained after passage through the sand fly. Sb(III)-resistant lines of L. major MON-25 were able to produce mature infections in Ph. papatasi suggesting a possible circulation in the field using this vector.


Asunto(s)
Antimonio , Resistencia a Medicamentos , Leishmania major , Leishmaniasis Cutánea , Phlebotomus , Phlebotomus/parasitología , Phlebotomus/efectos de los fármacos , Leishmania major/efectos de los fármacos , Leishmania major/genética , Animales , Antimonio/farmacología , Resistencia a Medicamentos/genética , Leishmaniasis Cutánea/parasitología , Leishmaniasis Cutánea/transmisión , Insectos Vectores/parasitología , Insectos Vectores/efectos de los fármacos , Fenotipo , Antiprotozoarios/farmacología , Concentración 50 Inhibidora , Femenino
15.
Microb Pathog ; 193: 106716, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38848932

RESUMEN

The yellow spot disease caused by the virus species Orthotospovirus iridimaculaflavi (Iris yellow spot virus-IYSV), belonging to the genus Orthotospovirus, the family Tospoviridae, order Bunyavirales and transmitted by Thrips tabaci Lindeman. At present, emerging as a major threat in onion (Allium cepa) in Tamil Nadu, India. The yellow spot disease incidence was found to be 53-73 % in six districts out of eight major onion-growing districts surveyed in Tamil Nadu during 2021-2023. Among the onion cultivars surveyed, the cultivar CO 5 was the most susceptible to IYSV. The population of thrips was nearly 5-9/plant during vegetative and flowering stages. The thrips infestation was 34-60 %. The tospovirus involved was confirmed as IYSV through DAS-ELISA, followed by molecular confirmation through RT-PCR using the nucleocapsid (N) gene. The predominant thrips species present in onion crops throughout the growing seasons was confirmed as Thrips tabaci based on the nucleotide sequence of the MtCOI gene. The mechanical inoculation of IYSV in different hosts viz., Vigna unguiculata, Gomphrena globosa, Chenopodium amaranticolor, Chenopodium quinoa and Nicotiana benthamiana resulted in chlorotic and necrotic lesion symptoms. The electron microscopic studies with partially purified sap from onion lesions revealed the presence of spherical to pleomorphic particles measuring 100-230 nm diameter. The transmission of IYSV was successful with viruliferous adult Thrips tabaci in cowpea (Cv. CO7), which matured from 1st instar larva fed on infected cowpea leaves (24 h AAP). Small brown necrotic symptoms were produced on inoculated plants after an interval of four weeks. The settling preference of non-viruliferous and viruliferous T. tabaci towards healthy and infected onion leaves resulted in the increased preference of non-viruliferous thrips towards infected (onion-61.33 % and viruliferous thrips towards healthy onion leaves (75.33 %). The study isolates shared 99-100 % identity at a nucleotide and amino acid level with Indian isolates of IYSV in the N gene. The multiple alignment of the amino acid sequence of the N gene of IYSV isolates collected from different locations and IYSV isolates from the database revealed amino acid substitution in the isolate ITPR4. All the IYSV isolates from India exhibited characteristic amino acid substitution of serine at the 6th position in the place of threonine in the isolates from Australia, Japan and USA. The phylogenetic analysis revealed the monophyletic origin of the IYSV isolates in India.


Asunto(s)
Cebollas , Enfermedades de las Plantas , Thysanoptera , Tospovirus , India , Thysanoptera/virología , Animales , Cebollas/virología , Cebollas/parasitología , Enfermedades de las Plantas/virología , Tospovirus/genética , Tospovirus/aislamiento & purificación , Tospovirus/fisiología , Tospovirus/patogenicidad , Filogenia , Insectos Vectores/virología , Insectos Vectores/parasitología
16.
Math Biosci ; 374: 109230, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38851529

RESUMEN

In addition to the traditional transmission route via the biting-and-defecating process, non-human host predation of triatomines is recognized as another significant avenue for Chagas disease transmission. In this paper, we develop an eco-epidemiological model to investigate the impact of predation on the disease's spread. Two critical thresholds, Rvp (the basic reproduction number of triatomines) and R0p (the basic reproduction number of the Chagas parasite), are derived to delineate the model's dynamics. Through the construction of appropriate Lyapunov functions and the application of the Bendixson-Dulac theorem, the global asymptotic stabilities of the equilibria are fully established. The vector-free equilibrium E0 is globally stable when Rvp<1. E1, the disease-free equilibrium, is globally stable when Rvp>1 and R0p<1, while the endemic equilibrium E∗ is globally stable when both Rvp>1 and R0p>1. Numerical simulations highlight that the degree of host predation on triatomines, influenced by non-human hosts activities, can variably increase or decrease the Chagas disease transmission risk. Specifically, low or high levels of host predation can reduce R0p to below unity, while intermediate levels may increase the infected host populations, albeit with a reduction in R0p. These findings highlight the role played by non-human hosts and offer crucial insights for the prevention and control of Chagas disease.


Asunto(s)
Número Básico de Reproducción , Enfermedad de Chagas , Conducta Predatoria , Enfermedad de Chagas/transmisión , Animales , Humanos , Número Básico de Reproducción/estadística & datos numéricos , Modelos Biológicos , Insectos Vectores/parasitología , Triatominae/parasitología , Conceptos Matemáticos , Trypanosoma cruzi
17.
Mem Inst Oswaldo Cruz ; 119: e230226, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38865577

RESUMEN

BACKGROUND: Monitoring and analysing the infection rates of the vector of Trypanosoma cruzi, that causes Chagas disease, helps assess the risk of transmission. OBJECTIVES: A study was carried out on triatomine in the State of Paraná, Brazil, between 2012 and 2021 and a comparison was made with a previous study. This was done to assess the risk of disease transmission. METHODS: Ecological niche models based on climate and landscape variables were developed to predict habitat suitability for the vectors as a proxy for risk of occurrence. FINDINGS: A total of 1,750 specimens of triatomines were recorded, of which six species were identified. The overall infection rate was 22.7%. The areas with the highest risk transmission of T. cruzi are consistent with previous predictions in municipalities. New data shows that climate models are more accurate than landscape models. This is likely because climate suitability was higher in the previous period. MAIN CONCLUSION: Regardless of uneven sampling and potential biases, risk remains high due to the wide presence of infected vectors and high environmental suitability for vector species throughout the state and, therefore, improvements in public policies aimed at wide dissemination of knowledge about the disease are recommended to ensure the State remains free of Chagas disease.


Asunto(s)
Enfermedad de Chagas , Insectos Vectores , Triatominae , Trypanosoma cruzi , Enfermedad de Chagas/transmisión , Animales , Insectos Vectores/clasificación , Insectos Vectores/parasitología , Brasil/epidemiología , Triatominae/clasificación , Triatominae/parasitología , Humanos , Factores de Riesgo , Medición de Riesgo , Ecosistema
18.
Med Trop Sante Int ; 4(1)2024 03 31.
Artículo en Francés | MEDLINE | ID: mdl-38846117

RESUMEN

Background - Rationale: Tsetse flies (Diptera: Glossinidae) are obligate bloodfeeders that occur exclusively in Sub-Saharan Africa, where they are the vectors of trypanosomes causing HAT (human African trypanosomiasis) and AAT (African animal trypanosomiasis). In Chad, tsetse flies occur only in the most southern part of the country because of its favorable bioclimatic conditions. However, despite the importance of HAT and AAT in this country, very little is known about the current tsetse distribution, in particular its northern limit, which is of key importance for the surveillance of these diseases. Material and methods - Results: A total of 217 biconical traps were deployed in 2021 and 2022 from the West to the East around the formerly known northern limit, resulting in 1,024 tsetse caught belonging to three different taxa: Glossina morsitans submorsitans (57%), G. tachinoides (39%) and G. fuscipes fuscipes (4%). In addition to the information gathered on the presence/absence of each tsetse taxon, we show a strong North-South shift of the northen tsetse distribution limit as compared to the previous works from 1966 to 1996, and a growing spatial fragmentation in more and more discrete pockets of tsetse presence. Discussion - Conclusion: This North-South shift of the northern tsetse distribution limit in Chad is the likely consequence of the combined effect of severe draughts that affected the country, and increasing human pressure on land. This update of the tsetse northern limit will be of help to the national programmes in charge of HAT and AAT.


Asunto(s)
Moscas Tse-Tse , Chad/epidemiología , Animales , Distribución Animal , Cambio Climático , Humanos , Insectos Vectores/parasitología
19.
Parasit Vectors ; 17(1): 269, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38918858

RESUMEN

BACKGROUND: The sand fly Nyssomyia neivai is one of the most abundant species in Southern Brazil. It is frequently found in areas that are foci of visceral leishmaniasis in the state of Santa Catarina, caused by Leishmania infantum. In this region, the main vector of L. infantum, Lutzomyia longipalpis, has not been detected. In the absence of L. longipalpis, this study aimed to identify the sand fly fauna and diagnose any potential Leishmania spp. infection in sand flies and in dogs in a region of Southern Brazil that experienced a recent canine visceral leishmaniasis outbreak. METHODS: This report includes a survey of the sand fly fauna at the Zoonosis Control Center of the Municipality of Tubarão (Santa Catarina, Brazil). Molecular tests were conducted to investigate Leishmania spp. natural infection in sand flies using polymerase chain reaction (PCR). In positive females, in addition to morphological identification, molecular analysis through DNA barcoding was performed to determine the sand fly species. Additionally, the dogs were tested for the presence of Leishmania spp. using a non-invasive technique for the collection of biological material, to be assessed by PCR. RESULTS: A total of 3419 sand flies, belonging to five genera, were collected. Nyssomyia neivai was the most abundant species (85.8%), followed by Migonemyia migonei (13.3%), Pintomyia fischeri (0.8%), Evandromyia edwardsi (< 0.1%), and species of the genus Brumptomyia. (0.1%). Out of the 509 non-engorged females analyzed by PCR, two (0.4%) carried L. infantum DNA. The naturally infected females were identified as Ny. neivai, in both morphological and molecular analysis. In addition, two out of 47 conjunctival swabs from dogs tested positive for L. infantum, yielding an infection rate of 4.2%. CONCLUSIONS: These results confirm the presence of Ny. neivai naturally infected with L. infantum in an area where dogs were also infected by the parasite, suggesting its potential role as a vector in Southern Brazil.


Asunto(s)
Enfermedades de los Perros , Insectos Vectores , Leishmania infantum , Leishmaniasis Visceral , Psychodidae , Animales , Perros , Leishmania infantum/genética , Leishmania infantum/aislamiento & purificación , Brasil/epidemiología , Psychodidae/parasitología , Psychodidae/clasificación , Enfermedades de los Perros/parasitología , Enfermedades de los Perros/epidemiología , Leishmaniasis Visceral/veterinaria , Leishmaniasis Visceral/epidemiología , Leishmaniasis Visceral/parasitología , Leishmaniasis Visceral/transmisión , Femenino , Insectos Vectores/parasitología , Reacción en Cadena de la Polimerasa , Masculino
20.
PLoS Negl Trop Dis ; 18(6): e0012237, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38885272

RESUMEN

BACKGROUND: Leishmaniasis, a neglected disease and public health concern, is associated with various factors such as biological, social, economical conditions and climate, increasing the risk of human infection. Understanding the population dynamics of the vectors, like Pintomyia longiflocosa, and its relationship with ecological variables is crucial for developing effective strategies to control sand fly populations and combat cutaneous leishmaniasis in a tropical country like Colombia. METHODOLOGY: Adult sand flies were collected in three different sample locations: outdoor, indoor, and peri-domestic areas in three houses located in the rural settlement of Campoalegre (Huila) between February 2020 and February 2021, using the CDC light traps. The sand fly density was quantified and associated with the sample locations and the sampling months using Analysis of Variance and Pearson correlations. PRINCIPAL FINDINGS: In the period of the sample, 98.86% of sand fly collected was identified as Pi. longiflocosa. The density of this species was significantly different between males and females, the latter contributing more to density in all sample locations (P<0.0001). The outdoor was the sample location with the highest and most significative density in this study (70%, P = 0.04). The density of these sand flies is related to the seasonality of Campoalegre, revealing a density peak from February and June to October (P < 0.05). Finally, precipitation is the environmental variable prominently linked to the density pattern, showing a negative correlation with it. Months with the highest precipitations show the lowest values of Pi. longiflocosa abundance. CONCLUSIONS/SIGNICANCE: Our investigation reveals a inverse correlation between precipitation levels and the abundance of Pi. longiflocosa in Campoalegre (Huila), particularly in outdoor areas. This suggests that vector control strategies to periods of reduced precipitation in outdoor settings could offer an effective approach to minimizing cases of cutaneous leishmaniasis in the region.


Asunto(s)
Insectos Vectores , Leishmaniasis Cutánea , Psychodidae , Animales , Leishmaniasis Cutánea/transmisión , Leishmaniasis Cutánea/epidemiología , Colombia/epidemiología , Psychodidae/parasitología , Psychodidae/fisiología , Insectos Vectores/fisiología , Insectos Vectores/parasitología , Femenino , Masculino , Humanos , Estaciones del Año , Dinámica Poblacional , Análisis Espacio-Temporal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...