Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.961
Filtrar
1.
Rev Bras Epidemiol ; 27: e240017, 2024.
Artículo en Inglés, Portugués | MEDLINE | ID: mdl-38716959

RESUMEN

OBJECTIVE: To detect spatial and spatiotemporal clusters of urban arboviruses and to investigate whether the social development index (SDI) and irregular waste disposal are related to the coefficient of urban arboviruses detection in São Luís, state of Maranhão, Brazil. METHODS: The confirmed cases of Dengue, Zika and Chikungunya in São Luís, from 2015 to 2019, were georeferenced to the census tract of residence. The Bayesian Conditional Autoregressive regression model was used to identify the association between SDI and irregular waste disposal sites and the coefficient of urban arboviruses detection. RESULTS: The spatial pattern of arboviruses pointed to the predominance of a low-incidence cluster, except 2016. For the years 2015, 2016, 2017, and 2019, an increase of one unit of waste disposal site increased the coefficient of arboviruses detection in 1.25, 1.09, 1.23, and 1.13 cases of arboviruses per 100 thousand inhabitants, respectively. The SDI was not associated with the coefficient of arboviruses detection. CONCLUSION: In São Luís, spatiotemporal risk clusters for the occurrence of arboviruses and a positive association between the coefficient of arbovirus detection and sites of irregular waste disposal were identified.


Asunto(s)
Arbovirus , Fiebre Chikungunya , Dengue , Brasil/epidemiología , Humanos , Dengue/epidemiología , Fiebre Chikungunya/epidemiología , Infecciones por Arbovirus/epidemiología , Teorema de Bayes , Infección por el Virus Zika/epidemiología , Análisis Espacio-Temporal , Factores Socioeconómicos , Instalaciones de Eliminación de Residuos , Incidencia
2.
Environ Monit Assess ; 196(6): 537, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38730190

RESUMEN

Selecting an optimal solid waste disposal site is one of the decisive waste management issues because unsuitable sites cause serious environmental and public health problems. In Kenitra province, northwest Morocco, sustainable disposal sites have become a major challenge due to rapid urbanization and population growth. In addition, the existing disposal sites are traditional and inappropriate. The objective of this study is to suggest potential suitable disposal sites using fuzzy logic and analytical hierarchy process (fuzzy-AHP) method integrated with geographic information system (GIS) techniques. For this purpose, thirteen factors affecting the selection process were involved. The results showed that 5% of the studied area is considered extremely suitable and scattered in the central-eastern parts, while 9% is considered almost unsuitable and distributed in the northern and southern parts. Thereafter, these results were validated using the area under the curve (AUC) of the receiver operating characteristics (ROC). The AUC found was 57.1%, which is a moderate prediction's accuracy because the existing sites used in the validation's process were randomly selected. These results can assist relevant authorities and stakeholders for setting new solid waste disposal sites in Kenitra province.


Asunto(s)
Lógica Difusa , Sistemas de Información Geográfica , Eliminación de Residuos , Marruecos , Eliminación de Residuos/métodos , Residuos Sólidos/análisis , Monitoreo del Ambiente/métodos , Instalaciones de Eliminación de Residuos , Administración de Residuos/métodos
3.
Braz J Biol ; 84: e282386, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38695424

RESUMEN

Due to the need to achieve the principles of sustainable development and to understand the processes of formation of phytocenoses in areas that were adversely affected by the industrial impact, this study assessed the condition of the Grachevsky uranium mine (Kazakhstan), which underwent conservation procedures about 25 years ago. The purpose is to determine the level of water quality and phytocenosis of the shores of the reservoir accumulating natural effluents from reclaimed dumps and anthropogenic sites of a uranium mine, as well as quality indicators and toxicology. The assessment included a qualitative research method (analysis of documents) to determine agro-climatic conditions and empirical methods of collecting information. The authors studied the intensity of ionizing radiation of the gamma background of the water surface of the reservoir (and sections of the shoreline and territories adjacent to the reservoir), and hydrochemical parameters of the waters of the reservoir, and performed a description of the botanical diversity. The vegetation cover of the sections of the reservoir shore is at different stages of syngenesis and is represented by pioneer groupings, group thicket communities, and diffuse communities. Favorable ecological conditions for the settlement and development of plants develop within the shores of the reservoir. The intensity levels of ionizing radiation do not exceed the maximum permissible levels and practically do not affect the formation of phytocenoses. An anthropogenically modified dry meadow with the participation of plants typical of the steppe zone has been formed on the floodplain terrace. Concerning the indicators of quality and toxicology of this reservoir, the water can be used for household and drinking purposes under the condition of prior water treatment. It can be concluded that a high level of natural purification of the reservoir waters occurred within twenty years after the reclamation of the uranium mine.


Asunto(s)
Minería , Uranio , Calidad del Agua , Uranio/análisis , Biodiversidad , Residuos Industriales/análisis , Kazajstán , Monitoreo del Ambiente/métodos , Plantas/química , Plantas/clasificación , Contaminantes Radiactivos del Agua/análisis , Instalaciones de Eliminación de Residuos
4.
Mar Pollut Bull ; 202: 116327, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38581734

RESUMEN

The increasing human population and associated urban waste pose a significant threat to wildlife. Our study focused on the Kelp gull (Larus dominicanus), known for opportunistic feeding in anthropogenic areas, particularly urban landfills. We assessed the physiological status of Kelp gulls at a landfill and compared it with gulls from a protected natural site. Results indicate that gulls from the anthropogenic site exhibited lower levels of key physiological parameters linked to diet, including triglycerides, total proteins, uric acid, plasmatic enzyme activity, body condition index, and leukocyte count, in comparison to their counterparts from the natural site. These findings suggest that Kelp gulls experience inferior physical and nutritional conditions when utilizing anthropogenic sites like landfills governmentally managed.


Asunto(s)
Charadriiformes , Instalaciones de Eliminación de Residuos , Animales , Charadriiformes/fisiología , Monitoreo del Ambiente
5.
Waste Manag ; 181: 11-19, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38574688

RESUMEN

Mattresses are a difficult waste to manage in landfills due to their large volume and low density. Pyrolysis treatment could reduce its volume while producing fuel or products valuable for the chemical industry. Pressurized pyrolysis at 400, 450, and 500 °C is carried out in a lab-scale autoclave at initial pressures 4.2, 8.4, and 16.8 bar. Product gas yield increases slightly along with elevated pressure as well as temperature. However, beyond 8.4 bar the initial pressure makes no discernible differences. CO and CO2 are the major gas species followed by CH4. CO contributes the most to the product gas energy content followed by C3 species, C2H6, and H2. Calculated energy content (heating value) is between 2 and 15 MJ·Nm-3. In terms of product gas energy content, low pressure pyrolysis is favorable over high pressure pyrolysis. According to integration areas of chromatographic measurements the liquid phase contains up to 25 % of N-compounds, with benzonitrile being the most abundant, followed by toluene, o-xylene, and ethylbenzene. The solid char maintains constant properties across operating conditions, with carbon and energy contents of approximately 75 wt% and 30 MJ·kg-1, respectively.


Asunto(s)
Pirólisis , Instalaciones de Eliminación de Residuos , Eliminación de Residuos/métodos , Presión , Administración de Residuos/métodos , Metano/análisis , Metano/química , Dióxido de Carbono/análisis , Dióxido de Carbono/química
6.
Waste Manag ; 181: 34-43, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38581750

RESUMEN

The main disposal method for municipal solid waste (MSW), including the growing worldwide volumes of kitchen waste, involves transport to landfills. Because kitchen waste is mainly composed of organic matter and has a high moisture content, large amounts of leachate and landfill gas are generated when it is sent to landfills. Therefore, rapid waste stabilization is essential. In this study, four semi-aerobic bioreactors (named NS, SS, MS, and LS) were established with void fractions of 33.76%, 39.84%, 44.62%, and 41.31%, respectively. The results showed that the void fractions of landfill directly affected the gas flow path. When the landfill void fraction was small (e.g., NS), most airflow traveled directly through the pipeline and minimal airflow entered the waste layer. When the landfill void fraction was large (e.g., MS), air easily entered the waste layer and some air flowed into the gas vent with the landfill gas. As the reaction proceeded, the void fraction gradually decreased due to gravity-induced sedimentation. During the water addition experiment, the voids were occupied by water, leading to formation of an anaerobic area. Among the four bioreactors, only MS had negligible formation of an anaerobic zone in the center. Methane (CH4) generation was detected only at the connection between the gas vent and the leachate collection pipe. A larger void fraction led to formation of a smaller anaerobic zone. The ratio of air flowing in pipeline was lowest in MS. These results indicated that a large void fraction promotes the decomposition of organic matter.


Asunto(s)
Reactores Biológicos , Eliminación de Residuos , Instalaciones de Eliminación de Residuos , Eliminación de Residuos/métodos , Aerobiosis , Residuos Sólidos/análisis
7.
Waste Manag ; 181: 145-156, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38608529

RESUMEN

Landfill disposal is a major approach of disposing municipal solid waste (MSW) in China. In order to explore the impact of volatile organic compounds (VOCs) generated by landfill on the air quality of regional environment, Jiangcungou landfill in Xi'an and its surrounding area were taken as a research object to analyze the spatial distribution and seasonal variation patterns of non-methane hydrocarbon (NMHC) and VOCs components through seasonal sampling of regional NMHC concentration and VOCs concentration (116 species). CALPUFF model was adopted to analyze the regional dispersion characteristics of NMHC on landfill. In addition, propylene equivalent concentration (PEC) and maximum incremental reactivity (MIR) methods were used to estimate O3 formation potential of the landfill, while fraction aerosol coefficient (FAC) and SOA potential (SOAP) methods were used to estimate SOA formation potential of the landfill. It was indicated that, the component with the highest concentration of VOCs on the working surface and the surrounding area of landfill was p + m-xylene (41.0 µg/m3) and halohydrocarbon (111.2 µg/m3-156.3 µg/m3), respectively. The component with the greatest impact on the surrounding air was acetone, which accounts for 75 %-87 % of the corresponding substance concentration on the landfill. In summer, the surrounding area was affected most by NMHC from landfill, whose emissions contributed 9.5 mg/m3 to the surrounding area. The component making the largest contribution to O3 formation was p + m-xylene (8 %-24 %), while ethylbenzene was the component making the largest contribution to SOA formation (20 %-24 %).


Asunto(s)
Contaminantes Atmosféricos , Monitoreo del Ambiente , Eliminación de Residuos , Residuos Sólidos , Compuestos Orgánicos Volátiles , Instalaciones de Eliminación de Residuos , Compuestos Orgánicos Volátiles/análisis , China , Residuos Sólidos/análisis , Contaminantes Atmosféricos/análisis , Eliminación de Residuos/métodos , Estaciones del Año , Hidrocarburos/análisis
8.
Waste Manag ; 180: 125-134, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38564913

RESUMEN

Composting municipal food waste is a key strategy for beneficially reusing methane-producing waste that would otherwise occupy landfill space. However, land-applied compost can cycle per- and polyfluoroalkyl substances (PFAS) back into the food supply and the environment. We partnered with a pilot-scale windrow composting facility to investigate the sources and fate of 40 PFAS in food waste compost. A comparison of feedstock materials yielded concentrations of ∑PFAS under 1 ng g-1 in mulch and food waste and at 1380 ng g-1 in leachate from used compostable food contact materials. Concentrations of targeted ∑PFAS increased with compost maturity along the windrow (1.85-23.1 ng g-1) and in mature stockpiles of increasing curing age (12.6-84.3 ng g-1). Among 15 PFAS quantified in compost, short-chain perfluorocarboxylic acids (PFCAs) - C5 and C6 PFCAs in particular - led the increasing trend, suggesting biotransformation of precursor PFAS into these terminal PFAS through aerobic decomposition. Several precursor PFAS were also measured, including fluorotelomer carboxylic acids (FTCAs) and polyfluorinated phosphate diesters (PAPs). However, since most targeted analytical methods and proposed regulations prioritize terminal PFAS, testing fully matured compost would provide the most relevant snapshot of PFAS that could be land applied. In addition, removing co-disposed food contact materials from the FW feedstock onsite yielded only a 37 % reduction of PFAS loads in subsequent compost, likely due to PFAS leaching during co-disposal. Source-separation of food contact materials is currently the best management practice for meaningful reduction of PFAS in food waste composts intended for land application.


Asunto(s)
Compostaje , Fluorocarburos , Eliminación de Residuos , Contaminantes Químicos del Agua , Alimento Perdido y Desperdiciado , Alimentos , Contaminantes Químicos del Agua/análisis , Instalaciones de Eliminación de Residuos , Fluorocarburos/análisis , Fluorocarburos/metabolismo
9.
Waste Manag ; 182: 32-41, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38631178

RESUMEN

Inert waste landfills are strictly limited to inert or non-reactive waste materials, nevertheless, due to human negligence or unavoidable circumstances, sometimes, small amounts of biodegradable or chemically reactive waste are mixed and disposed together with the inert waste. Over time, leachate generated from these biodegradable wastes may come into contact with rainfall water and percolate into groundwater and surrounding ground, degrading water quality. Additionally, the large sized industrial plastics present inside the inert waste landfill may trap and store the leachate thus enhancing the risk of contamination due to increased contact time and reducing the mechanical stability of the landfill. In this research, inert waste materials were collected from a Japanese inert waste landfill, and laboratory batch and column leaching tests were performed to determine the leaching behavior of the waste materials with variation in fibrous contents (FC) as 2% and 10% of total inert waste materials. From the batch leaching test, the inert waste was characterized as highly alkaline with a pH value of 10.3 and moderately reduced with a redox potential (Eh) value of 300 mV. The results from the column leaching test indicated that landfilling with 10% FC, comprising sizes below 10 cm, along with an installation of soil layer reduced the concentrations of heavy metals, metalloids, and total organic carbon in the leachate, thus confirming the environmental safety of the inert waste landfill.


Asunto(s)
Instalaciones de Eliminación de Residuos , Contaminantes Químicos del Agua , Contaminantes Químicos del Agua/análisis , Eliminación de Residuos/métodos , Metales Pesados/análisis , Japón
10.
Waste Manag ; 182: 175-185, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38663277

RESUMEN

Every year an estimated two million tonnes of waste electrical and electronic equipment (WEEE) are discarded by householders and companies in the United Kingdom (UK). While the UK has left the European Union (EU), its waste-related policies still mirror those of the EU, including the WEEE-related policies. Motivated by the recent introduction the so-called 'Right to Repair' policy for electrical and electronic equipment (EEE) across the EU and UK, this paper aims to demonstrate that, depending on the commitment and behavioural changes by the consumers and the government, the future of the WEEE management of the UK will vary. To this end, focusing on landfilled WEEE reduction we develop a generic system dynamics model and apply it to eleven WEEE categories. They depict the flow of EEE and WEEE representing the interaction among the stakeholders (e.g., consumers and producers of EEE) and relevant government regulations of the UK. Our four scenario analyses find that longer use of EEE and better WEEE collection seem to be effective in reducing landfilled WEEE, while more reuse and more recycling and recovery have negligible impacts, despite excluding the additional generation of landfilled WEEE as a result of recycling and recovery. Comparing with the business-as-usual scenario, one year longer EEE use and 10% more of WEEE collection could at maximum reduce landfilled WEEE by 14.05% of monitoring and control instruments and 93.93% of display equipment respectively. Backcasting scenario analyses reveal that significant efforts are required to reduce the targeted amounts.


Asunto(s)
Residuos Electrónicos , Reciclaje , Administración de Residuos , Residuos Electrónicos/análisis , Reino Unido , Reciclaje/métodos , Reciclaje/legislación & jurisprudencia , Administración de Residuos/métodos , Administración de Residuos/legislación & jurisprudencia , Instalaciones de Eliminación de Residuos , Eliminación de Residuos/métodos , Eliminación de Residuos/legislación & jurisprudencia
11.
Environ Pollut ; 349: 123993, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38636838

RESUMEN

Landfill is a huge pathogen reservoir and needs special attention. Herein, the distribution and spread risk of pathogen were assessed in excavated landfill scenario. The results show that landfill excavation will greatly increase the risk of environmental microbial contamination. The highest total concentration of culturable bacteria among landfill refuse, topsoil and plant leaves was found to be as high as 1010 CFU g-1. Total coliforms, Hemolytic bacteria, Staphylococcus aureus, Salmonella, Enterococci, and Fecal coliforms were detected in the landfill surrounding environment. Notably, pathogens were more likely to adhere to plant leaves, making it an important source of secondary pathogens. The culturable bacteria concentration in the air samples differed with the landfill zone with different operation status, and the highest culturable bacteria concentration was found in the excavated area of the landfill (3.3 × 104 CFU m-3), which was the main source of bioaerosol release. The distribution of bioaerosols in the downwind outside of the landfill showed a tendency of increasing and then decreasing, and the highest concentration of bioaerosols outside of the landfill (6.56 × 104 CFU m-3) was significantly higher than that in the excavated area of the landfill. The risk of respiratory inhalation was the main pathway leading to infection, whereas the HQin (population inhalation hazardous quotient) at 500 m downwind the excavation landfill was still higher than 1, indicating that the neighboring residents were exposed to airborne microbial pollutants. The results of the study provide evidence for bioaerosols control protective measures taken to reduce health risk from the excavated landfill.


Asunto(s)
Microbiología del Aire , Monitoreo del Ambiente , Instalaciones de Eliminación de Residuos , Bacterias/aislamiento & purificación , Eliminación de Residuos , Aerosoles/análisis , Microbiología del Suelo , Medición de Riesgo
12.
Chemosphere ; 356: 141873, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38593958

RESUMEN

Phthalic acid esters (PAEs) are byproducts released from various sources, including microplastics, cosmetics, personal care products, pharmaceuticals, waxes, inks, detergents, and insecticides. This review article provides an overview of the literature on PAEs in landfill leachates, exploring their identification, occurrence, characteristics, fate, and transport in landfills across different countries. The study emphasizes the influence of these substances on the environment, especially on water and soil. Various analytical techniques, such as GC-MS, GC-FID, and HPLC, are commonly employed to quantify concentrations of PAEs. Studies show significant variations in levels of PAEs among different countries, with the highest concentration observed in landfill leachates in Brazil, followed by Iran. Among the different types of PAE, the survey highlights DEHP as the most concentrated PAE in the leachate, with a concentration of 89.6 µg/L. The review also discusses the levels of other types of PAEs. The data shows that DBP has the highest concentration at 6.8 mg/kg, while DOP has the lowest concentration (0.04 mg/kg). The concentration of PAEs typically decreases as the depth in the soil profile increases. In older landfills, concentrations of PAE decrease significantly, possibly due to long-term degradation and conversion of PAE into other chemical compounds. Future research should prioritize evaluating the effectiveness of landfill liners and waste management practices in preventing the release of PAE and other pollutants into the environment. It is also possible to focus on developing efficient physical, biological, and chemical methods for removing PAEs from landfill leachates. Additionally, the effectiveness of existing treatment processes in removing PAEs from landfill leachates and the necessity for new treatment processes can be considered.


Asunto(s)
Monitoreo del Ambiente , Ésteres , Ácidos Ftálicos , Instalaciones de Eliminación de Residuos , Contaminantes Químicos del Agua , Contaminantes Químicos del Agua/análisis , Ácidos Ftálicos/análisis , Ésteres/análisis , Contaminantes del Suelo/análisis , Brasil , Suelo/química
13.
Environ Geochem Health ; 46(5): 170, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38592402

RESUMEN

This study used a new X-ray fluorescence (XRF)-based analytical method with better precision and sensitivity to evaluate the fluorine concentrations in soil. It was hypothesized that the XRF method with a pellet-synthesizing procedure may effectively analyze the fluorine concentrations in soil with ease and reliability. The total fluorine concentrations determined using XRF were compared with those determined using three different types of analytical protocols-incineration/distillation, alkaline fusion, and aqua regia extraction procedures. Among the three procedures, the incineration/distillation procedure did not show reliable precision and reproducibility. In contrast, the total fluorine concentrations determined using the XRF analysis were linearly correlated with those determined using the alkaline fusion and aqua regia extraction procedures. Based on the results of the Korean waste leaching procedure and toxicity characteristics leaching procedure, the leachability of fluorine from soil and waste was not directly related to total fluorine concentrations in soil. Risk assessment also revealed that the fluorine-rich soils did not show non-carcinogenic toxic effects, despite exceeding the regulation level (800 mg/kg) in South Korea for total fluorine concentrations in soil. Our results suggest that XRF analysis in combination with the newly developed pretreatment method may be a promising alternative procedure for easily and rapidly determining the total fluorine concentration in soil. However, further efforts are needed to evaluate fluorine leachability and its associated risks in fluorine-contaminated soils.


Asunto(s)
Sulfato de Calcio , Ácido Clorhídrico , Ácido Nítrico , Fosfatos , Flúor , Reproducibilidad de los Resultados , Suelo , Instalaciones de Eliminación de Residuos
14.
Environ Sci Pollut Res Int ; 31(18): 27345-27355, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38512575

RESUMEN

Clay liners have been widely used in landfill engineering. However, large-scale clay excavation causes secondary environmental damage. This study investigates the feasibility of replacing clay liners with high-density polyethylene (HDPE) geomembranes with different specifications and parameters. Laboratory interface shear tests between municipal solid waste (MSW) samples of different ages and geomembranes were conducted to study the influence of landfill age on interface shear strength. Finite element method was adopted to compare the long-term stability of landfills with HDPE geomembrane versus clay as intermediate liner. The interfacial shear test results show that the cohesion of MSW increases in a short term and then decreases with landfill age. The internal friction angle exhibits an increasing trend with advancing age, however, the rate of its increment declines with age. The rough accuracy of the film surface can increase the interfacial shear strength between MSW. The simulation results show that, unlike clay-lined landfills, the sliding surface of geomembrane-lined landfills is discontinuous at the lining interface, which can delay the penetration of slip surfaces and block the formation of slip zone in the landfill. In addition, the maximum displacement of landfills with geomembrane is 10% lower than that with clay, and the absolute displacement of slope toe decreases with the increase of roughness at the interface of geomembrane. Compared with clay-lined landfills, the overall stability safety factor increased by 18.5-30%. This study provides references for landfill design and on-site stability evaluation, contributing to enhanced long-term stability.


Asunto(s)
Eliminación de Residuos , Instalaciones de Eliminación de Residuos , Residuos Sólidos , Resistencia al Corte , Polietileno/química , Arcilla/química
15.
Ying Yong Sheng Tai Xue Bao ; 35(1): 95-101, 2024 Jan.
Artículo en Chino | MEDLINE | ID: mdl-38511445

RESUMEN

Long-term occupation of coal gangue dumping sites (CGDS) may destroy ecological environment of nearby area. However, how the CGDS affects the distribution pattern of soil seed banks and vegetation in the nearby area is not clear. In this study, we investigated soil seed bank and vegetation at different distances from the second CGDS of Yangchangwan in Ningdong mining area, Lingwu, Ningxia. The results showed that soil seed bank was mainly distributed in 0-10 cm layer and decreased with increasing soil depth. Species richness of soil seed bank and vegetation first increased and then tended to be stable with increasing distance to the CGDS. The influence range of CGDS on soil seed banks was 300-500 m and was 100-300 m on aboveground vegetation. The CGDS did not affect the vertical distribution pattern of soil seed bank, but significantly affected the horizontal distribution pattern of soil seed banks and aboveground vegetation. The key area of vegetation restoration around the CGDS was between 100 m and 300 m.


Asunto(s)
Banco de Semillas , Suelo , Carbón Mineral , Minería , Instalaciones de Eliminación de Residuos
16.
J Environ Manage ; 356: 120644, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38522274

RESUMEN

Plastics are a wide range of synthetic or semi-synthetic materials, mainly consisting of polymers. The use of plastics has increased to over 300 million metric tonnes in recent years, and by 2050, it is expected to grow to 800 million. Presently, a mere 10% of plastic waste is recycled, with approximately 75% ended up in landfills. Inappropriate disposal of plastic waste into the environment poses a threat to human lives and marine species. Therefore, this review article highlights potential routes for converting plastic/microplastic waste into valuable resources to promote a greener and more sustainable environment. The literature review revealed that plastics/microplastics (P/MP) could be recycled or upcycled into various products or materials via several innovative processes. For example, P/MP are recycled and utilized as anodes in lithium-ion (Li-ion) and sodium-ion (Na-ion) batteries. The anode in Na-ion batteries comprising PP carbon powder exhibits a high reversible capacity of ∼340 mAh/g at 0.01 A/g current state. In contrast, integrating Fe3O4 and PE into a Li-ion battery yielded an excellent capacity of 1123 mAh/g at 0.5 A/g current state. Additionally, recycled Nylon displayed high physical and mechanical properties necessary for excellent application as 3D printing material. Induction heating is considered a revolutionary pyrolysis technique with improved yield, efficiency, and lower energy utilization. Overall, P/MPs are highlighted as abundant resources for the sustainable production of valuable products and materials such as batteries, nanomaterials, graphene, and membranes for future applications.


Asunto(s)
Microplásticos , Plásticos , Humanos , Reciclaje , Instalaciones de Eliminación de Residuos
17.
Waste Manag ; 179: 1-11, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38442433

RESUMEN

The application of in-situ aeration technology in landfills has been reported to promote fungal growth, but the community diversity and function of fungi in the aerated landfill system remain unknown. This study firstly investigated an in-situ aerated remediation landfill site to characterize the fungal community diversity in refuse. And to further reveal the fungal involvement in the nitrogen cycling system, laboratory-scale simulated aerated landfill reactors were then constructed. The results in the aerated landfill site showed a significant correlation between fungal community structure and ammonia nitrogen content in the refuse. Dominant fungi in the fungal community included commonly found environmental fungi such as Fusarium, Aspergillus, Gibberella, as well as unique fungi in the aerated system like Chaetomium. In the laboratory-scale aerated landfill simulation experiments, the fungal system was constructed using bacterial inhibitor, and nitrogen balance analysis confirmed the significant role of fungal nitrification in the nitrogen cycling process. When ammonia nitrogen was not readily available, fungi converted organic nitrogen to nitrate, serving as the main nitrification mechanism in the system, with a contribution rate ranging from 62.71 % to 100 % of total nitrification. However, when ammonia nitrogen was present in the system, autotrophic nitrification became the main mechanism, and the contribution of fungal nitrification to total nitrification was only 15.96 %. Additionally, fungi were capable of directly utilizing nitrite for nitrate production with a rate of 4.65 mg L-1 d-1. This research article contributes to the understanding of the importance of fungi in the aerated landfill systems, filling a gap in knowledge.


Asunto(s)
Micobioma , Contaminantes Químicos del Agua , Nitrógeno , Amoníaco , Nitratos , Nitrificación , Instalaciones de Eliminación de Residuos , Reactores Biológicos , Desnitrificación
18.
Sci Total Environ ; 925: 171697, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38492594

RESUMEN

Landfills are a major source of anthropogenic methane emissions and have been found to produce nitrous oxide, an even more potent greenhouse gas than methane. Intermediate cover soil (ICS) plays a key role in reducing methane emissions but may also result in nitrous oxide production. To assess the potential for microbial methane oxidation and nitrous oxide production, long sequencing reads were generated from ICS microbiome DNA and reads were functionally annotated for 24 samples across ICS at a large landfill in New York. Further, incubation experiments were performed to assess methane consumption and nitrous oxide production with varying amounts of ammonia supplemented. Methane was readily consumed by microbes in the composite ICS and all incubations with methane produced small amounts of nitrous oxide even when ammonia was not supplemented. Incubations without methane produced significantly less nitrous oxide than those incubated with methane. In incubations with methane added, the observed specific rate of methane consumption was 0.776 +/- 0.055 µg CH4 g dry weight (DW) soil-1 h-1 and the specific rate of nitrous oxide production was 3.64 × 10-5 +/- 1.30 × 10-5 µg N2O g DW soil-1 h-1. The methanotrophs Methylobacter and an unclassified genus within the family Methlyococcaceae were present in the original ICS samples and the incubation samples, and their abundance increased during incubations with methane. Genes encoding particulate methane monooxygenase/ ammonia monooxygenase (pMMO) were much more abundant than genes encoding soluble methane monooxygenase (sMMO) across the landfill ICS. Genes encoding proteins that convert hydroxylamine to nitrous oxide were not highly abundant in the ICS or incubation metagenomes. In total, these results suggest that although ammonia oxidation via methanotrophs may result in low levels of nitrous oxide production, ICS microbial communities have the potential to greatly reduce the overall global warming potential of landfill emissions.


Asunto(s)
Gases de Efecto Invernadero , Microbiota , Óxido Nitroso/análisis , Amoníaco , Suelo , Instalaciones de Eliminación de Residuos , Metano/análisis , Microbiología del Suelo
19.
Sci Total Environ ; 927: 171991, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38547976

RESUMEN

Landfill leachate is a hotspot in antibiotic resistance development. However, little is known about antibiotic resistome and host pathogens in leachate and their effects on surrounding groundwater. Here, metagenomic sequencing was used to explore profiles, host bacteria, environmental risks and influencing factors of antibiotic resistome in raw and treated leachate and surrounding groundwater of three landfills. Results showed detection of a total of 324 antibiotic resistance genes (ARGs). The ARGs conferring resistance to multidrug (8.8 %-25.7 %), aminoglycoside (13.1 %-39.2 %), sulfonamide (10.0 %-20.9 %), tetracycline (5.7 %-34.4 %) and macrolide-lincosamide-streptogramin (MLS, 5.3 %-29.5 %) were dominant in raw leachate, while multidrug resistance genes were the major ARGs in treated leachate (64.1 %-83.0 %) and groundwater (28.7 %-76.6 %). Source tracking analysis suggests non-negligible influence of leachate on the ARGs in groundwater. The pathogens including Acinetobacter pittii, Pseudomonas stutzeri and P. alcaligenes were the major ARG-carrying hosts. Variance partitioning analysis indicates that the microbial community, abiotic variables and their interaction contributed most to the antibiotic resistance development. Our results shed light on the dissemination and driving mechanisms of ARGs from leachate to the groundwater, indicating that a comprehensive risk assessment and efficient treatment approaches are needed to deal with ARGs in landfill leachate and nearby groundwater. ENVIRONMENTAL IMPLICATIONS: Antibiotic resistance genes are found abundant in the landfill sites, and these genes could be disseminated into groundwater via leaching of wastewater and infiltration of leachate. This results in deterioration of groundwater quality and human health risks posed by these ARGs and related pathogens. Thus measures should be taken to minimize potential negative impacts of landfills on the surrounding environment.


Asunto(s)
Agua Subterránea , Instalaciones de Eliminación de Residuos , Contaminantes Químicos del Agua , Agua Subterránea/microbiología , Agua Subterránea/química , Contaminantes Químicos del Agua/análisis , Farmacorresistencia Microbiana/genética , Antibacterianos/farmacología , Monitoreo del Ambiente , Bacterias/efectos de los fármacos , Bacterias/genética
20.
Chemosphere ; 355: 141719, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38513956

RESUMEN

PER: and polyfluoroalkyl substances (PFAS) have been measured in aqueous components within landfills. To date, the majority of these studies have been conducted in Florida. This current study aimed to evaluate PFAS concentrations in aqueous components (leachate, gas condensate, stormwater, and groundwater) from four landfills located outside of Florida, in Pennsylvania, Colorado, and Wisconsin (2 landfills). The Pennsylvania landfill also provided the opportunity to assess a leachate treatment system. Sample analyses were consistent across studies including the measurements of 26 PFAS and physical-chemical parameters. For the four target landfills, average PFAS concentrations were 6,900, 22,000, 280, and 260 ng L-1 in the leachate, gas condensate, stormwater, and groundwater, respectively. These results were not significantly different than those observed for landfills in Florida except for the significantly higher PFAS concentrations in gas condensate compared to leachate. For on-site treatment at the Pennsylvania landfill, results suggest that the membrane biological bioreactor (MBBR) system performed similarly as aeration-based leachate treatment systems at Florida landfills resulting in no significant decreases in ∑26PFAS. Overall, results suggest a general consistency across US regions in PFAS concentrations within different landfill liquid types, with the few differences observed likely influenced by landfill design and local climate. Results confirm that leachate exposed to open air (e.g., in trenches or in treatment systems) have lower proportions of perfluoroalkyl acid precursors relative to leachate collected in enclosed pipe systems. Results also confirm that landfills without bottom liner systems may have relatively higher PFAS levels in adjacent groundwater and that landfills in wetter climates tend to have higher PFAS concentrations in leachate.


Asunto(s)
Fluorocarburos , Contaminantes Químicos del Agua , Contaminantes Químicos del Agua/análisis , Colorado , Wisconsin , Pennsylvania , Biopelículas , Reactores Biológicos , Instalaciones de Eliminación de Residuos , Fluorocarburos/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA