Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 196.814
Filtrar
1.
Nutr Diabetes ; 14(1): 25, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38729941

RESUMEN

BACKGROUND: Type 2 diabetes mellitus (T2DM) is a significant risk factor for non-alcoholic fatty liver disease (NAFLD). Increased fasting blood sugar (FBS), fasting insulin (FI), and insulin resistance (HOMA-IR) are observed in patients with NAFLD. Gut microbial modulation using prebiotics, probiotics, and synbiotics has shown promise in NAFLD treatment. This meta-umbrella study aimed to investigate the effects of gut microbial modulation on glycemic indices in patients with NAFLD and discuss potential mechanisms of action. METHODS: A systematic search was conducted in PubMed, Web of Science, Scopus, and Cochrane Library until March 2023 for meta-analyses evaluating the effects of probiotics, prebiotics, and synbiotics on patients with NAFLD. Random-effect models, sensitivity analysis, and subgroup analysis were employed. RESULTS: Gut microbial therapy significantly decreased HOMA-IR (ES: -0.41; 95%CI: -0.52, -0.31; P < 0.001) and FI (ES: -0.59; 95%CI: -0.77, -0.41; P < 0.001). However, no significant effect was observed on FBS (ES: -0.17; 95%CI: -0.36, 0.02; P = 0.082). Subgroup analysis revealed prebiotics had the most potent effect on HOMA-IR, followed by probiotics and synbiotics. For FI, synbiotics had the most substantial effect, followed by prebiotics and probiotics. CONCLUSION: Probiotics, prebiotics, and synbiotics administration significantly reduced FI and HOMA-IR, but no significant effect was observed on FBS.


Asunto(s)
Microbioma Gastrointestinal , Índice Glucémico , Resistencia a la Insulina , Enfermedad del Hígado Graso no Alcohólico , Prebióticos , Probióticos , Simbióticos , Humanos , Enfermedad del Hígado Graso no Alcohólico/terapia , Enfermedad del Hígado Graso no Alcohólico/microbiología , Enfermedad del Hígado Graso no Alcohólico/sangre , Enfermedad del Hígado Graso no Alcohólico/dietoterapia , Prebióticos/administración & dosificación , Probióticos/uso terapéutico , Probióticos/administración & dosificación , Simbióticos/administración & dosificación , Glucemia/metabolismo , Diabetes Mellitus Tipo 2/sangre , Diabetes Mellitus Tipo 2/microbiología , Diabetes Mellitus Tipo 2/terapia , Insulina/sangre
2.
Int J Mol Sci ; 25(9)2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38731926

RESUMEN

The escalating prevalence of diabetes mellitus underscores the need for a comprehensive understanding of pancreatic beta cell function. Interest in glucose effectiveness has prompted the exploration of novel regulatory factors. The myeloid/lymphoid or mixed-lineage leukaemia gene (MLL) is widely recognised for its role in leukemogenesis and nuclear regulatory mechanisms through its histone methyltransferase activity in active chromatin. However, its function within pancreatic endocrine tissues remains elusive. Herein, we unveil a novel role of MLL in glucose metabolism and insulin secretion. MLL knockdown in ßHC-9 pancreatic beta cells diminished insulin secretion in response to glucose loading, paralleled by the downregulation of the glucose-sensitive genes SLC2a1 and SLC2a2. Similar observations were made in MLL heterozygous knockout mice (MLL+/-), which exhibited impaired glucose tolerance and reduced insulin secretion without morphological anomalies in pancreatic endocrine cells. The reduction in insulin secretion was independent of changes in beta cell mass or insulin granule morphology, suggesting the regulatory role of MLL in glucose-sensitive gene expression. The current results suggest that MLL interacts with circadian-related complexes to modulate the expression of glucose transporter genes, thereby regulating glucose sensing and insulin secretion. Our findings shed light on insulin secretion control, providing potential avenues for therapeutics against diabetes.


Asunto(s)
Transportador de Glucosa de Tipo 2 , Glucosa , N-Metiltransferasa de Histona-Lisina , Secreción de Insulina , Células Secretoras de Insulina , Proteína de la Leucemia Mieloide-Linfoide , Animales , Células Secretoras de Insulina/metabolismo , Glucosa/metabolismo , Ratones , Proteína de la Leucemia Mieloide-Linfoide/metabolismo , Proteína de la Leucemia Mieloide-Linfoide/genética , N-Metiltransferasa de Histona-Lisina/metabolismo , N-Metiltransferasa de Histona-Lisina/genética , Transportador de Glucosa de Tipo 2/metabolismo , Transportador de Glucosa de Tipo 2/genética , Regulación de la Expresión Génica , Ratones Noqueados , Insulina/metabolismo , Transportador de Glucosa de Tipo 1/metabolismo , Transportador de Glucosa de Tipo 1/genética , Línea Celular , Masculino
3.
BMJ Open Diabetes Res Care ; 12(3)2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38719507

RESUMEN

INTRODUCTION: Studies have found that sodium-glucose cotransporter 2 inhibitors (SGLT2) and glucagon-like peptide 1 receptor agonists (GLP1) have cardiovascular benefits for patients with type 2 diabetes (DM2) and atherosclerotic cardiovascular disease (ASCVD), chronic kidney disease (CKD), or heart failure (HF). The literature does not provide evidence specifically for patients with these conditions who are adding one of these medicines to two glucose-lowering medications (ie, as "third-step" therapy). We explored the effects of different third-step medications on cardiovascular outcomes in patients with diabetes and these comorbid conditions. Specifically, we compared third-step SGLT2 or GLP1 to third-step dipeptidyl peptidase-4 inhibitors (DPP4), insulin, or thiazolidinediones (TZD). RESEARCH DESIGN AND METHODS: We assembled a retrospective cohort of adults at five Kaiser Permanente sites with DM2 and ASCVD, CKD, or HF, initiating third-step treatment between 2016 and 2020. Propensity score weighted Poisson models were used to calculate adjusted rate ratios (ARRs) for all-cause mortality, incident major adverse cardiovascular event (MACE), and incident HF hospitalization in patients initiating SGLT2 or GLP1 compared with DPP4, insulin, or TZD. RESULTS: We identified 27 542 patients initiating third-step treatment with one or more of these conditions (19 958 with ASCVD, 14 577 with CKD, and 3919 with HF). ARRs for GLP1 and SGLT2 versus DPP4, insulin, and TZD in the patient subgroups ranged between 0.22 and 0.55 for all-cause mortality, 0.38 and 0.81 for MACE, and 0.46 and 1.05 for HF hospitalization. Many ARRs were statistically significant, and all significant ARRs showed a benefit (ARR <1) for GLP1 or SGLT2 when compared with DPP4, insulin, or TZD. CONCLUSIONS: Third-step SGLT2 and GLP1 are generally associated with a benefit for these outcomes in these patient groups when compared with third-step DPP4, insulin, or TZD. Our results add to evidence of a cardiovascular benefit of SGLT2 and GLP1 and could inform clinical guidelines for choosing third-step diabetes treatment.


Asunto(s)
Enfermedades Cardiovasculares , Diabetes Mellitus Tipo 2 , Inhibidores de la Dipeptidil-Peptidasa IV , Receptor del Péptido 1 Similar al Glucagón , Hipoglucemiantes , Inhibidores del Cotransportador de Sodio-Glucosa 2 , Humanos , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/complicaciones , Inhibidores del Cotransportador de Sodio-Glucosa 2/uso terapéutico , Femenino , Masculino , Estudios Retrospectivos , Receptor del Péptido 1 Similar al Glucagón/agonistas , Persona de Mediana Edad , Anciano , Hipoglucemiantes/uso terapéutico , Enfermedades Cardiovasculares/mortalidad , Enfermedades Cardiovasculares/etiología , Enfermedades Cardiovasculares/epidemiología , Inhibidores de la Dipeptidil-Peptidasa IV/uso terapéutico , Glucemia/análisis , Insuficiencia Renal Crónica/epidemiología , Estudios de Seguimiento , Pronóstico , Insulina/uso terapéutico
4.
Biol Res ; 57(1): 20, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38698488

RESUMEN

BACKGROUND: Diabetes mellitus (DM) is a global epidemic with increasing incidences. DM is a metabolic disease associated with chronic hyperglycemia. Aside from conventional treatments, there is no clinically approved cure for DM up till now. Differentiating mesenchymal stem cells (MSCs) into insulin-producing cells (IPCs) is a promising approach for curing DM. Our study was conducted to investigate the effect of DM on MSCs differentiation into IPCs in vivo and in vitro. METHODS: We isolated adipose-derived mesenchymal stem cells (Ad-MSCs) from the epididymal fat of normal and STZ-induced diabetic Sprague-Dawley male rats. Afterwards, the in vitro differentiation of normal-Ad-MSCs (N-Ad-MSCs) and diabetic-Ad-MSCs (DM-Ad-MSCs) into IPCs was compared morphologically then through determining the gene expression of ß-cell markers including neurogenin-3 (Ngn-3), homeobox protein (Nkx6.1), musculoaponeurotic fibrosarcoma oncogene homolog A (MafA), and insulin-1 (Ins-1) and eventually, through performing glucose-stimulated insulin secretion test (GSIS). Finally, the therapeutic potential of N-Ad-MSCs and DM-Ad-MSCs transplantation was compared in vivo in STZ-induced diabetic animals. RESULTS: Our results showed no significant difference in the characteristics of N-Ad-MSCs and DM-Ad-MSCs. However, we demonstrated a significant difference in their abilities to differentiate into IPCs in vitro morphologically in addition to ß-cell markers expression, and functional assessment via GSIS test. Furthermore, the abilities of both Ad-MSCs to control hyperglycemia in diabetic rats in vivo was assessed through measuring fasting blood glucose (FBGs), body weight (BW), histopathological examination of both pancreas and liver and immunoexpression of insulin in pancreata of study groups. CONCLUSION: Our findings reveal the effectiveness of N-Ad-MSCs in differentiating into IPCs in vitro and controlling the hyperglycemia of STZ-induced diabetic rats in vivo compared to DM-Ad-MSCs.


Asunto(s)
Diferenciación Celular , Diabetes Mellitus Experimental , Células Secretoras de Insulina , Insulina , Células Madre Mesenquimatosas , Ratas Sprague-Dawley , Animales , Diferenciación Celular/fisiología , Diabetes Mellitus Experimental/terapia , Masculino , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Ratas , Trasplante de Células Madre Mesenquimatosas/métodos , Células Cultivadas , Estreptozocina , Glucemia/análisis
5.
Front Endocrinol (Lausanne) ; 15: 1379228, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38745956

RESUMEN

Aims: Individuals with lipodystrophies typically suffer from metabolic disease linked to adipose tissue dysfunction including lipoatrophic diabetes. In the most severe forms of lipodystrophy, congenital generalised lipodystrophy, adipose tissue may be almost entirely absent. Better therapies for affected individuals are urgently needed. Here we performed the first detailed investigation of the effects of a glucagon like peptide-1 receptor (GLP-1R) agonist in lipoatrophic diabetes, using mice with generalised lipodystrophy. Methods: Lipodystrophic insulin resistant and glucose intolerant seipin knockout mice were treated with the GLP-1R agonist liraglutide either acutely preceding analyses of insulin and glucose tolerance or chronically prior to metabolic phenotyping and ex vivo studies. Results: Acute liraglutide treatment significantly improved insulin, glucose and pyruvate tolerance. Once daily injection of seipin knockout mice with liraglutide for 14 days led to significant improvements in hepatomegaly associated with steatosis and reduced markers of liver fibrosis. Moreover, liraglutide enhanced insulin secretion in response to glucose challenge with concomitantly improved glucose control. Conclusions: GLP-1R agonist liraglutide significantly improved lipoatrophic diabetes and hepatic steatosis in mice with generalised lipodystrophy. This provides important insights regarding the benefits of GLP-1R agonists for treating lipodystrophy, informing more widespread use to improve the health of individuals with this condition.


Asunto(s)
Modelos Animales de Enfermedad , Receptor del Péptido 1 Similar al Glucagón , Resistencia a la Insulina , Lipodistrofia , Liraglutida , Ratones Noqueados , Animales , Liraglutida/farmacología , Liraglutida/uso terapéutico , Receptor del Péptido 1 Similar al Glucagón/agonistas , Receptor del Péptido 1 Similar al Glucagón/metabolismo , Ratones , Lipodistrofia/tratamiento farmacológico , Lipodistrofia/metabolismo , Masculino , Enfermedades Metabólicas/tratamiento farmacológico , Enfermedades Metabólicas/metabolismo , Glucemia/metabolismo , Insulina/metabolismo , Hipoglucemiantes/farmacología , Hipoglucemiantes/uso terapéutico , Ratones Endogámicos C57BL
6.
Tunis Med ; 102(4): 235-240, 2024 Apr 05.
Artículo en Francés | MEDLINE | ID: mdl-38746964

RESUMEN

INTRODUCTION-AIM: Flexible insulin therapy is currently considered the gold standard therapy of type 1 diabetes. We aimed to study the evolution of glycemic control, weight and nutritional intake of a group of patients with type 1 diabetes, three months after the initiation of functional insulin therapy (FIT). METHODS: This was a prospective longitudinal study having included 30 type 1 diabetic patients hospitalized for education to FIT. Each patient underwent an assessment of glycemic control (glycated hemoglobin (A1C) and number of hypoglycemia), weight and nutritional intake before FIT and 3 months after the initiation of this educative approach. RESULTS: The mean age of patients was 21,8 ± 7,9 years and the sex ratio was 0,5. The mean duration of diabetes was 7,2 ± 6 years. Three months after initiation of FIT, we observed a significant lowering of A1C, which went from 9,2 ± 1,6% to 8,3 ± 1,4% (p<0,001) of the number of minor hypoglycemia (p=0,001) and that of severe hypoglycemia (p= 0,021). the average weight went from 64,6 ± 13,1 kg to 65,5 ± 13,5 kg (p = 0,040) with a significant increase in BMI (p = 0,041). Weight gain was observed in 67% of patients. This weight gain contrasted with a significant decrease in caloric (p = 0,040) and in carbohydrates intakes (p = 0,027). CONCLUSION: Weight gain, associated with better glycemic control, should encourage the healthcare team to strengthen therapeutic education of patients undergoing FIT in order to limit weight gain.


Asunto(s)
Peso Corporal , Diabetes Mellitus Tipo 1 , Hipoglucemiantes , Insulina , Humanos , Diabetes Mellitus Tipo 1/tratamiento farmacológico , Diabetes Mellitus Tipo 1/sangre , Femenino , Masculino , Insulina/administración & dosificación , Insulina/uso terapéutico , Adulto , Adulto Joven , Estudios Prospectivos , Estudios Longitudinales , Adolescente , Hipoglucemiantes/administración & dosificación , Hipoglucemiantes/uso terapéutico , Peso Corporal/fisiología , Hemoglobina Glucada/análisis , Hemoglobina Glucada/metabolismo , Hipoglucemia/prevención & control , Hipoglucemia/inducido químicamente , Hipoglucemia/epidemiología , Control Glucémico/métodos , Ingestión de Energía , Aumento de Peso/fisiología , Aumento de Peso/efectos de los fármacos , Factores de Tiempo , Glucemia/análisis , Glucemia/metabolismo
7.
FASEB J ; 38(10): e23669, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38747734

RESUMEN

Amomum xanthioides (AX) has been used as an edible herbal medicine to treat digestive system disorders in Asia. Additionally, Lactobacillus casei is a well-known probiotic commonly used in fermentation processes as a starter. The current study aimed to investigate the potential of Lactobacillus casei-fermented Amomum xanthioides (LAX) in alleviating metabolic disorders induced by high-fat diet (HFD) in a mouse model. LAX significantly reduced the body and fat weight, outperforming AX, yet without suppressing appetite. LAX also markedly ameliorated excessive lipid accumulation and reduced inflammatory cytokine (IL-6) levels in serum superior to AX in association with UCP1 activation and adiponectin elevation. Furthermore, LAX noticeably improved the levels of fasting blood glucose, serum insulin, and HOMA-IR through positive regulation of glucose transporters (GLUT2, GLUT4), and insulin receptor gene expression. In conclusion, the fermentation of AX demonstrates a pronounced mitigation of overnutrition-induced metabolic dysfunction, including hyperlipidemia, hyperglycemia, hyperinsulinemia, and obesity, compared to non-fermented AX. Consequently, we proposed that the fermentation of AX holds promise as a potential candidate for effectively ameliorating metabolic disorders.


Asunto(s)
Amomum , Dieta Alta en Grasa , Fermentación , Lacticaseibacillus casei , Obesidad , Animales , Dieta Alta en Grasa/efectos adversos , Ratones , Obesidad/metabolismo , Masculino , Lacticaseibacillus casei/metabolismo , Amomum/química , Ratones Endogámicos C57BL , Probióticos/farmacología , Proteína Desacopladora 1/metabolismo , Resistencia a la Insulina , Ratones Obesos , Adiponectina/metabolismo , Insulina/metabolismo , Insulina/sangre , Glucemia/metabolismo
8.
Clin Lab ; 70(5)2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38747928

RESUMEN

BACKGROUND: Our aim was to investigate the changes in neudesin levels in pregnant women with GDM and the relationship between neudesin and metabolic parameters. METHODS: Forty pregnant women diagnosed with GDM and forty age- and gestational week-matched control subjects were included in the study. Demographic data were obtained from records. Maternal lipid profiles, glucose levels, fasting insulin, HbA1C, and HOMA-IR results were compared between the groups. Correlation tests were performed to evaluate the relationship between neudesin and clinical and laboratory diagnostic parameters. p < 0.05 were interpreted as statistically significant. RESULTS: The human serum neudesin levels were significantly lower in the GDM group compared with the controls. The correlation tests showed statistically negative and weak correlations between the neudesin levels and the maternal age, 50 g OGCT, 100 g OGTT 3 hours, and HbA1C. The optimum neudesin cutoff value for a diagnosis of GDM disease is 6.94 ng/dL, with a sensitivity of 65.9% and a specificity of 63.2%. CONCLUSIONS: This study has shown that lower neudesin levels may occur as a reflection of changes in glucose metabolism during intrauterine life.


Asunto(s)
Glucemia , Diabetes Gestacional , Hemoglobina Glucada , Humanos , Femenino , Diabetes Gestacional/sangre , Diabetes Gestacional/diagnóstico , Embarazo , Adulto , Glucemia/metabolismo , Glucemia/análisis , Hemoglobina Glucada/análisis , Hemoglobina Glucada/metabolismo , Estudios de Casos y Controles , Prueba de Tolerancia a la Glucosa , Biomarcadores/sangre , Insulina/sangre , Resistencia a la Insulina
9.
J Cell Mol Med ; 28(9): e18141, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38742851

RESUMEN

Type 2 diabetes mellitus (T2D) and osteoporosis (OP) are systemic metabolic diseases and often coexist. The mechanism underlying this interrelationship remains unclear. We downloaded microarray data for T2D and OP from the Gene Expression Omnibus (GEO) database. Using weighted gene co-expression network analysis (WGCNA), we identified co-expression modules linked to both T2D and OP. To further investigate the functional implications of these associated genes, we evaluated enrichment using ClueGO software. Additionally, we performed a biological process analysis of the genes unique in T2D and OP. We constructed a comprehensive miRNA-mRNA network by incorporating target genes and overlapping genes from the shared pool. Through the implementation of WGCNA, we successfully identified four modules that propose a plausible model that elucidates the disease pathway based on the associated and distinct gene profiles of T2D and OP. The miRNA-mRNA network analysis revealed co-expression of PDIA6 and SLC16A1; their expression was upregulated in patients with T2D and islet ß-cell lines. Remarkably, PDIA6 and SLC16A1 were observed to inhibit the proliferation of pancreatic ß cells and promote apoptosis in vitro, while downregulation of PDIA6 and SLC16A1 expression led to enhanced insulin secretion. This is the first study to reveal the significant roles of PDIA6 and SLC16A1 in the pathogenesis of T2D and OP, thereby identifying additional genes that hold potential as indicators or targets for therapy.


Asunto(s)
Diabetes Mellitus Tipo 2 , Perfilación de la Expresión Génica , Redes Reguladoras de Genes , MicroARNs , Osteoporosis , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Humanos , Osteoporosis/genética , Osteoporosis/metabolismo , MicroARNs/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Regulación de la Expresión Génica , Apoptosis/genética , Transcriptoma/genética , Proliferación Celular/genética , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/patología , Insulina/metabolismo
10.
Sci Rep ; 14(1): 10986, 2024 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-38744994

RESUMEN

To assess the efficacy and safety of topical insulin (TI) for treating neurotrophic keratopathy (NK) within one-month post-diabetic vitrectomy (DV) compared to conventional non-invasive measures, we conducted this retrospective case-control study including all eyes that developed acute NK (stages 2 and 3) following DV between October 2020 and June 2023. The control group included NK cases managed with preservative-free lubricant eye drops and prophylactic topical antibiotics. In contrast, the study group included NK cases treated with TI [1 unit per drop] four times daily, in addition to the previously mentioned treatment. The primary outcome measure was time to epithelial healing. Secondary outcome measures included any adverse effect of TI or the need for amniotic membrane transplantation (AMT). During the study period, 19 patients with a mean age of 49.3 ± 8.6 years received TI versus 18 controls with a mean age of 52.5 ± 10.7 years. Corneal epithelial healing was significantly faster in the TI-treated group compared to controls, with a mean difference of 12.16 days (95% CI 6.1-18.3, P = 0.001). Survival analysis indicated that the insulin-treated group had 0% and 20% of NK stages 2 and 3, respectively, that failed to achieve corneal epithelial healing, compared to 20% and 66.7% for the control group (P < 0.001). In the control group, two eyes required AMT due to progressive thinning. Additionally, three patients in the control group, progressing to stage 3 NK, were switched to TI, achieving healing after a mean of 14 days. No adverse effects were reported in the TI-treated group. Our study suggests that TI can effectively and safely promote the healing of NK after DV.


Asunto(s)
Enfermedades de la Córnea , Insulina , Vitrectomía , Humanos , Persona de Mediana Edad , Masculino , Femenino , Insulina/administración & dosificación , Estudios Retrospectivos , Vitrectomía/métodos , Estudios de Casos y Controles , Adulto , Enfermedades de la Córnea/tratamiento farmacológico , Enfermedades de la Córnea/cirugía , Retinopatía Diabética/tratamiento farmacológico , Cicatrización de Heridas/efectos de los fármacos , Administración Tópica , Anciano , Resultado del Tratamiento
11.
J Sports Sci ; 42(6): 498-510, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38695325

RESUMEN

Stair climbing exercise (SE) provides a feasible approach to elevate physical activity, but the effects on metabolic health are unclear. We systematically reviewed the currently available evidence on the effects of SE on fasting and postprandial glycaemia and lipidaemia. Studies were included if they investigated the effects of acute or chronic (at least 2 weeks) SE on fasting and/or postprandial glycaemic (insulin and glucose) and lipidaemic (triacylglycerols and non-esterified fatty acids) responses in healthy, prediabetic or type 2 diabetic adult populations. PubMed, Web of Science and Scopus were searched for eligible studies until July 2022. A total of 25 studies (14 acute and 11 chronic) were eligible for review. Acute bout(s) of SE can reduce postprandial glycaemia in individuals with prediabetes and type 2 diabetes (8 of 9 studies), but not in normoglycemic individuals. The effects of acute SE on postprandial lipidaemic responses and SE training on both fasting and postprandial glycaemia/lipidaemia were unclear. Acute SE may reduce postprandial glucose concentrations in people with impaired glycaemic control, but high-quality studies are needed. More studies are needed to determine the effect of chronic SE training on postprandial glucose and lipid responses, and the acute effects of SE on lipid responses.


Asunto(s)
Glucemia , Diabetes Mellitus Tipo 2 , Periodo Posprandial , Subida de Escaleras , Humanos , Periodo Posprandial/fisiología , Glucemia/metabolismo , Subida de Escaleras/fisiología , Ayuno , Estado Prediabético/terapia , Insulina/sangre , Triglicéridos/sangre , Ácidos Grasos no Esterificados/sangre , Lípidos/sangre
12.
Sci Rep ; 14(1): 10936, 2024 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-38740832

RESUMEN

The aim of this study was to develop a dynamic model-based approach to separately quantify the exogenous and endogenous contributions to total plasma insulin concentration and to apply it to assess the effects of inhaled-insulin administration on endogenous insulin secretion during a meal test. A three-step dynamic in-silico modeling approach was developed to estimate the two insulin contributions of total plasma insulin in a group of 21 healthy subjects who underwent two equivalent standardized meal tests on separate days, one of which preceded by inhalation of a Technosphere® Insulin dose (22U or 20U). In the 30-120 min test interval, the calculated endogenous insulin component showed a divergence in the time course between the test with and without inhaled insulin. Moreover, the supra-basal area-under-the-curve of endogenous insulin in the test with inhaled insulin was significantly lower than that in the test without (2.1 ± 1.7 × 104 pmol·min/L vs 4.2 ± 1.8 × 104 pmol·min/L, p < 0.01). The percentage of exogenous insulin reaching the plasma, relative to the inhaled dose, was 42 ± 21%. The proposed in-silico approach separates exogenous and endogenous insulin contributions to total plasma insulin, provides individual bioavailability estimates, and can be used to assess the effect of inhaled insulin on endogenous insulin secretion during a meal.


Asunto(s)
Simulación por Computador , Insulina , Humanos , Insulina/sangre , Insulina/administración & dosificación , Insulina/metabolismo , Administración por Inhalación , Masculino , Adulto , Femenino , Modelos Biológicos , Glucemia/metabolismo , Adulto Joven
13.
BMC Endocr Disord ; 24(1): 60, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38711112

RESUMEN

BACKGROUND: Worldwide, up to 20 % of hospitalised patients have diabetes mellitus. In-hospital dysglycaemia increases patient mortality, morbidity, and length of hospital stay. Improved in-hospital diabetes management strategies are needed. The DIATEC trial investigates the effects of an in-hospital diabetes team and operational insulin titration algorithms based on either continuous glucose monitoring (CGM) data or standard point-of-care (POC) glucose testing. METHODS: This is a two-armed, two-site, prospective randomised open-label blinded endpoint (PROBE) trial. We recruit non-critically ill hospitalised general medical and orthopaedic patients with type 2 diabetes treated with basal, prandial, and correctional insulin (N = 166). In both arms, patients are monitored by POC glucose testing and diabetes management is done by ward nurses guided by in-hospital diabetes teams. In one of the arms, patients are monitored in addition to POC glucose testing by telemetric CGM viewed by the in-hospital diabetes teams only. The in-hospital diabetes teams have operational algorithms to titrate insulin in both arms. Outcomes are in-hospital glycaemic and clinical outcomes. DISCUSSION: The DIATEC trial will show the glycaemic and clinical effects of in-hospital CGM handled by in-hospital diabetes teams with access to operational insulin titration algorithms in non-critically ill patients with type 2 diabetes. The DIATEC trial seeks to identify which hospitalised patients will benefit from CGM and in-hospital diabetes teams compared to POC glucose testing. This is essential information to optimise the use of healthcare resources before broadly implementing in-hospital CGM and diabetes teams. TRIAL REGISTRATION: Prospectively registered at ClinicalTrials.gov with identification number NCT05803473 on March 27th 2023.


Asunto(s)
Automonitorización de la Glucosa Sanguínea , Glucemia , Diabetes Mellitus Tipo 2 , Humanos , Diabetes Mellitus Tipo 2/diagnóstico , Diabetes Mellitus Tipo 2/sangre , Glucemia/análisis , Automonitorización de la Glucosa Sanguínea/métodos , Estudios Prospectivos , Pruebas en el Punto de Atención , Femenino , Masculino , Hospitalización , Insulina/uso terapéutico , Insulina/administración & dosificación , Hipoglucemiantes/uso terapéutico , Grupo de Atención al Paciente , Adulto , Persona de Mediana Edad , Monitoreo Continuo de Glucosa
14.
PLoS One ; 19(5): e0302992, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38713664

RESUMEN

Bean beetle (Callosobruchus maculatus) exhibits clear phenotypic plasticity depending on population density; However, the underlying molecular mechanism remains unknown. Compared to low-density individuals, high-density individuals showed a faster terminal oocyte maturity rate. Four insulin-like peptide (ILP) genes were identified in the bean beetle, which had higher expression levels in the head than in the thorax and abdomen. The population density could regulate the expression levels of CmILP1-3, CmILP2-3, and CmILP1 as well as CmILP3 in the head, thorax, and abdomen, respectively. RNA interference results showed that each CmILP could regulate terminal oocyte maturity rate, indicating that there was functional redundancy among CmILPs. Silencing each CmILP could lead to down-regulation of some other CmILPs, however, CmILP3 was up-regulated in the abdomen after silencing CmILP1 or CmILP2. Compared to single gene silencing, silencing CmILP3 with CmILP1 or CmILP2 at the same time led to more serious retardation in oocyte development, suggesting CmILP3 could be up-regulated to functionally compensate for the down-regulation of CmILP1 and CmILP2. In conclusion, population density-dependent plasticity in terminal oocyte maturity rate of bean beetle was regulated by CmILPs, which exhibited gene redundancy and gene compensation.


Asunto(s)
Escarabajos , Oocitos , Animales , Escarabajos/genética , Escarabajos/metabolismo , Oocitos/metabolismo , Oocitos/crecimiento & desarrollo , Femenino , Interferencia de ARN , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Insulina/metabolismo , Insulina/genética , Densidad de Población , Péptidos Similares a la Insulina
15.
Front Endocrinol (Lausanne) ; 15: 1343641, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38715798

RESUMEN

Background: Overweight and obesity, high blood pressure, hyperglycemia, hyperlipidemia, and insulin resistance (IR) are strongly associated with non-communicable diseases (NCDs), including type 2 diabetes, cardiovascular disease, stroke, and cancer. Different surrogate indices of IR are derived and validated with the euglycemic-hyperinsulinemic clamp (EHC) test. Thus, using a computational approach to predict IR with Matsuda index as reference, this study aimed to determine the optimal cutoff value and diagnosis accuracy for surrogate indices in non-diabetic young adult men. Methods: A cross-sectional descriptive study was carried out with 93 young men (ages 18-31). Serum levels of glucose and insulin were analyzed in the fasting state and during an oral glucose tolerance test (OGTT). Additionally, clinical, biochemical, hormonal, and anthropometric characteristics and body composition (DEXA) were determined. The computational approach to evaluate the IR diagnostic accuracy and cutoff value using difference parameters was examined, as well as other statistical tools to make the output robust. Results: The highest sensitivity and specificity at the optimal cutoff value, respectively, were established for the Homeostasis model assessment of insulin resistance index (HOMA-IR) (0.91; 0.98; 3.40), the Quantitative insulin sensitivity check index (QUICKI) (0.98; 0.96; 0.33), the triglyceride-glucose (TyG)-waist circumference index (TyG-WC) (1.00; 1.00; 427.77), the TyG-body mass index (TyG-BMI) (1.00; 1.00; 132.44), TyG-waist-to-height ratio (TyG-WHtR) (0.98; 1.00; 2.48), waist-to-height ratio (WHtR) (1.00; 1.00; 0.53), waist circumference (WC) (1.00; 1.00; 92.63), body mass index (BMI) (1.00; 1.00; 28.69), total body fat percentage (TFM) (%) (1.00; 1.00; 31.07), android fat (AF) (%) (1.00; 0.98; 40.33), lipid accumulation product (LAP) (0.84; 1.00; 45.49), leptin (0.91; 1.00; 16.08), leptin/adiponectin ratio (LAR) (0.84; 1.00; 1.17), and fasting insulin (0.91; 0.98; 16.01). Conclusions: The computational approach was used to determine the diagnosis accuracy and the optimal cutoff value for IR to be used in preventive healthcare.


Asunto(s)
Glucemia , Prueba de Tolerancia a la Glucosa , Resistencia a la Insulina , Humanos , Masculino , Estudios Transversales , Adulto , Adulto Joven , Adolescente , Prueba de Tolerancia a la Glucosa/métodos , Glucemia/análisis , Insulina/sangre , Biomarcadores/sangre , Índice de Masa Corporal , Composición Corporal , Técnica de Clampeo de la Glucosa
16.
WMJ ; 123(2): 144-146, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38718248

RESUMEN

INTRODUCTION: Tarka (trandolapril/verapamil hydrohloride extended-release) is a fixed-dose combination antihypertensive drug formed from verapamil hydrochloride and trandolapril. Toxicologic manifestations of Tarka overdose are altered mental status, bradycardia, hypotension, atrioventricular block (first-degree), hyperglycemia, metabolic acidosis, and shock. CASE PRESENTATION: We report a case of Tarka toxicity in a 2-year-old girl who presented with altered mental status, cardiogenic shock, hypotension, bradycardia, severe metabolic acidosis, hyperglycemia, and first-degree atrioventricular block. We started fluid resuscitation, epinephrine, norepinephrine, and insulin. Because of the patient's hyperlactatemia and hypotension despite standard therapies, we initiated intravenous lipid emulsion (ILE) therapy, after which her condition improved promptly. DISCUSSION: Tarka overdose may be life-threatening as it can cause cardiogenic shock. In our patient, the regression of lactate elevation in a short time with ILE therapy and the improvement of her general condition highlight the importance of ILE. CONCLUSIONS: ILE is an alternative treatment method for acute lipophilic drug intoxications, such as Tarka.


Asunto(s)
Sobredosis de Droga , Emulsiones Grasas Intravenosas , Insulina , Verapamilo , Humanos , Femenino , Emulsiones Grasas Intravenosas/uso terapéutico , Insulina/envenenamiento , Sobredosis de Droga/terapia , Sobredosis de Droga/tratamiento farmacológico , Verapamilo/envenenamiento , Preescolar , Combinación de Medicamentos , Antihipertensivos/envenenamiento , Hipoglucemiantes/envenenamiento , Indoles
17.
Cell Metab ; 36(5): 891-892, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38718756

RESUMEN

Brown adipose tissue has long been functionally characterized as an organ that regulates thermogenesis, body weight set point, and glucose homeostasis. In the May 9, 2024, issue of Cell, Verkerke et al. discover a novel function for brown adipose tissue in processing branched-chain amino acids into antioxidant metabolites that enter the circulation and regulate insulin signaling in the liver.


Asunto(s)
Adipocitos Marrones , Adipocitos Marrones/metabolismo , Animales , Humanos , Tejido Adiposo Pardo/metabolismo , Termogénesis , Aminoácidos de Cadena Ramificada/metabolismo , Insulina/metabolismo , Transducción de Señal , Hígado/metabolismo
18.
Cell Metab ; 36(5): 947-968, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38718757

RESUMEN

Insulin resistance (IR) is a major pathogenic factor in the progression of MASLD. In the liver, insulin suppresses gluconeogenesis and enhances de novo lipogenesis (DNL). During IR, there is a defect in insulin-mediated suppression of gluconeogenesis, but an unrestrained increase in hepatic lipogenesis persists. The mechanism of increased hepatic steatosis in IR is unclear and remains controversial. The key discrepancy is whether insulin retains its ability to directly regulate hepatic lipogenesis. Blocking insulin/IRS/AKT signaling reduces liver lipid deposition in IR, suggesting insulin can still regulate lipid metabolism; hepatic glucose metabolism that bypasses insulin's action may contribute to lipogenesis; and due to peripheral IR, other tissues are likely to impact liver lipid deposition. We here review the current understanding of insulin's action in governing different aspects of hepatic lipid metabolism under normal and IR states, with the purpose of highlighting the essential issues that remain unsettled.


Asunto(s)
Hígado Graso , Resistencia a la Insulina , Insulina , Hígado , Transducción de Señal , Humanos , Insulina/metabolismo , Hígado/metabolismo , Hígado Graso/metabolismo , Animales , Metabolismo de los Lípidos , Lipogénesis
19.
Elife ; 122024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38700926

RESUMEN

The gain-of-function mutation in the TALK-1 K+ channel (p.L114P) is associated with maturity-onset diabetes of the young (MODY). TALK-1 is a key regulator of ß-cell electrical activity and glucose-stimulated insulin secretion. The KCNK16 gene encoding TALK-1 is the most abundant and ß-cell-restricted K+ channel transcript. To investigate the impact of KCNK16 L114P on glucose homeostasis and confirm its association with MODY, a mouse model containing the Kcnk16 L114P mutation was generated. Heterozygous and homozygous Kcnk16 L114P mice exhibit increased neonatal lethality in the C57BL/6J and the CD-1 (ICR) genetic background, respectively. Lethality is likely a result of severe hyperglycemia observed in the homozygous Kcnk16 L114P neonates due to lack of glucose-stimulated insulin secretion and can be reduced with insulin treatment. Kcnk16 L114P increased whole-cell ß-cell K+ currents resulting in blunted glucose-stimulated Ca2+ entry and loss of glucose-induced Ca2+ oscillations. Thus, adult Kcnk16 L114P mice have reduced glucose-stimulated insulin secretion and plasma insulin levels, which significantly impairs glucose homeostasis. Taken together, this study shows that the MODY-associated Kcnk16 L114P mutation disrupts glucose homeostasis in adult mice resembling a MODY phenotype and causes neonatal lethality by inhibiting islet insulin secretion during development. These data suggest that TALK-1 is an islet-restricted target for the treatment for diabetes.


Asunto(s)
Diabetes Mellitus Tipo 2 , Glucagón , Glucosa , Secreción de Insulina , Ratones Endogámicos C57BL , Animales , Masculino , Ratones , Animales Recién Nacidos , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Modelos Animales de Enfermedad , Glucagón/metabolismo , Glucosa/metabolismo , Homeostasis , Insulina/metabolismo , Secreción de Insulina/efectos de los fármacos , Secreción de Insulina/genética , Islotes Pancreáticos/metabolismo , Mutación , Canales de Potasio/metabolismo , Canales de Potasio/genética
20.
Nat Commun ; 15(1): 3810, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38714671

RESUMEN

Previous studies have revealed heterogeneity in the progression to clinical type 1 diabetes in children who develop islet-specific antibodies either to insulin (IAA) or glutamic acid decarboxylase (GADA) as the first autoantibodies. Here, we test the hypothesis that children who later develop clinical disease have different early immune responses, depending on the type of the first autoantibody to appear (GADA-first or IAA-first). We use mass cytometry for deep immune profiling of peripheral blood mononuclear cell samples longitudinally collected from children who later progressed to clinical disease (IAA-first, GADA-first, ≥2 autoantibodies first groups) and matched for age, sex, and HLA controls who did not, as part of the Type 1 Diabetes Prediction and Prevention study. We identify differences in immune cell composition of children who later develop disease depending on the type of autoantibodies that appear first. Notably, we observe an increase in CD161 expression in natural killer cells of children with ≥2 autoantibodies and validate this in an independent cohort. The results highlight the importance of endotype-specific analyses and are likely to contribute to our understanding of pathogenic mechanisms underlying type 1 diabetes development.


Asunto(s)
Autoanticuerpos , Diabetes Mellitus Tipo 1 , Glutamato Descarboxilasa , Inmunidad Celular , Humanos , Diabetes Mellitus Tipo 1/inmunología , Autoanticuerpos/inmunología , Autoanticuerpos/sangre , Niño , Femenino , Masculino , Glutamato Descarboxilasa/inmunología , Preescolar , Adolescente , Células Asesinas Naturales/inmunología , Leucocitos Mononucleares/inmunología , Insulina/inmunología , Islotes Pancreáticos/inmunología , Progresión de la Enfermedad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA