Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.243
Filtrar
1.
PLoS Pathog ; 20(5): e1012157, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38723104

RESUMEN

Circadian rhythms are intrinsic 24-hour oscillations found in nearly all life forms. They orchestrate key physiological and behavioral processes, allowing anticipation and response to daily environmental changes. These rhythms manifest across entire organisms, in various organs, and through intricate molecular feedback loops that govern cellular oscillations. Recent studies describe circadian regulation of pathogens, including parasites, bacteria, viruses, and fungi, some of which have their own circadian rhythms while others are influenced by the rhythmic environment of hosts. Pathogens target specific tissues and organs within the host to optimize their replication. Diverse cellular compositions and the interplay among various cell types create unique microenvironments in different tissues, and distinctive organs have unique circadian biology. Hence, residing pathogens are exposed to cyclic conditions, which can profoundly impact host-pathogen interactions. This review explores the influence of circadian rhythms and mammalian tissue-specific interactions on the dynamics of pathogen-host relationships. Overall, this demonstrates the intricate interplay between the body's internal timekeeping system and its susceptibility to pathogens, which has implications for the future of infectious disease research and treatment.


Asunto(s)
Relojes Circadianos , Ritmo Circadiano , Interacciones Huésped-Patógeno , Relojes Circadianos/fisiología , Animales , Interacciones Huésped-Patógeno/fisiología , Humanos , Ritmo Circadiano/fisiología
2.
Dev Comp Immunol ; 154: 105148, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38325500

RESUMEN

The model organism Caenorhabditis elegans is susceptible to infection by obligate intracellular pathogens, specifically microsporidia and viruses. These intracellular pathogens infect intestinal cells, or, for some microsporidia, epidermal cells. Strikingly, intestinal cell infections by viruses or microsporidia trigger a common transcriptional response, activated in part by the ZIP-1 transcription factor. Among the strongest activated genes in this response are ubiquitin-pathway members and members of the pals family, an intriguing gene family with cross-regulations of different members of genomic clusters. Some of the induced genes participate in host defense against the pathogens, for example through ubiquitin-mediated inhibition. Other mechanisms defend the host specifically against viral infections, including antiviral RNA interference and uridylation. These various immune responses are altered by environmental factors and by intraspecific genetic variation of the host. These pathogens were first isolated 15 years ago and much remains to be discovered using C. elegans genetics; also, other intracellular pathogens of C. elegans may yet to be discovered.


Asunto(s)
Proteínas de Caenorhabditis elegans , Microsporidios , Virus , Animales , Caenorhabditis elegans , Interacciones Huésped-Patógeno/fisiología , Proteínas de Caenorhabditis elegans/genética , Ubiquitina
3.
Appl Microbiol Biotechnol ; 108(1): 29, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38159117

RESUMEN

Small noncoding RNAs (sncRNAs) play important regulatory roles in bacterial physiological processes and host-pathogen interactions. Meanwhile, bacterial outer membrane vesicles (OMVs), as naturally secreted outer membrane structures, play a vital role in the interaction between bacteria and their living environment, including the host environment. However, most current studies focus on the biological functions of sncRNAs in bacteria or hosts, while neglecting the roles and regulatory mechanisms of the OMVs that encapsulate these sncRNAs. Therefore, this review aims to summarize the intracellular regulatory roles of bacterial sncRNAs in promoting pathogen survival by regulating virulence, modulating bacterial drug resistance, and regulating iron metabolism, and their extracellular regulatory function for influencing host immunity through host-pathogen interactions. Additionally, we introduce the key role played by OMVs, which serve as important cargoes in bacterial sncRNA-host interactions. We propose emerging pathways of sncRNA action to further discuss the mode of host-pathogen interactions, highlighting that the inhibition of sncRNA delivery by OMVs may prevent the occurrence of infection to some extent. Hence, this review lays the foundation for future prophylactic treatments against bacterial infections and strategies for addressing bacterial drug resistance. KEY POINTS: •sncRNAs have intracellular and extracellular regulatory functions in bacterial physiological processes and host-pathogen interactions. •OMVs are potential mediators between bacterial sncRNAs and host cells. •OMVs encapsulating sncRNAs have more potential biological functions.


Asunto(s)
Vesículas Extracelulares , ARN Pequeño no Traducido , ARN Pequeño no Traducido/genética , Proteínas de la Membrana Bacteriana Externa/genética , Bacterias/metabolismo , Interacciones Huésped-Patógeno/fisiología , Interacciones Microbiota-Huesped , Vesículas Extracelulares/metabolismo
4.
Cell Host Microbe ; 31(4): 539-553, 2023 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-37054674

RESUMEN

Candida auris and Candida albicans can result in invasive fungal diseases. And yet, these species can stably and asymptomatically colonize human skin and gastrointestinal tracts. To consider these disparate microbial lifestyles, we first review factors shown to influence the underlying microbiome. Structured by the damage response framework, we then consider the molecular mechanisms deployed by C. albicans to switch between commensal and pathogenic lifestyles. Next, we explore this framework with C. auris to highlight how host physiology, immunity, and/or antibiotic receipt are associated with progression from colonization to infection. While treatment with antibiotics increases the risk that an individual will succumb to invasive candidiasis, the underlying mechanisms remain unclear. Here, we describe several hypotheses that may explain this phenomenon. We conclude by highlighting future directions integrating genomics with immunology to advance our understanding of invasive candidiasis and human fungal disease.


Asunto(s)
Candidiasis Invasiva , Micobioma , Humanos , Simbiosis , Interacciones Huésped-Patógeno/fisiología , Candida albicans/genética
5.
J Vis Exp ; (192)2023 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-36847390

RESUMEN

Type three secretion systems (T3SSs) enable gram-negative bacteria to inject a battery of effector proteins directly into the cytosol of eukaryotic host cells. Upon entry, the injected effector proteins cooperatively modulate eukaryotic signaling pathways and reprogram cellular functions, enabling bacterial entry and survival. Monitoring and localizing these secreted effector proteins in the context of infections provides a footprint for defining the dynamic interface of host-pathogen interactions. However, labeling and imaging bacterial proteins in host cells without disrupting their structure/function is technically challenging. Constructing fluorescent fusion proteins does not resolve this problem, because the fusion proteins jam the secretory apparatus and thus are not secreted. To overcome these obstacles, we recently employed a method for site-specific fluorescent labeling of bacterial secreted effectors, as well as other difficult-to-label proteins, using genetic code expansion (GCE). This paper provides a complete step-by-step protocol to label Salmonella secreted effectors using GCE site-specifically, followed by directions for imaging the subcellular localization of secreted proteins in HeLa cells using direct stochastic optical reconstruction microscopy (dSTORM) Recent findings suggest that the incorporation of non-canonical amino acids (ncAAs) via GCE, followed by bio-orthogonal labeling with tetrazine-containing dyes, is a viable technique for selective labeling and visualization of bacterial secreted proteins and subsequent image analysis in the host. The goal of this article is to provide a straightforward and clear protocol that can be employed by investigators interested in conducting super-resolution imaging using GCE to study various biological processes in bacteria and viruses, as well as host-pathogen interactions.


Asunto(s)
Proteínas Bacterianas , Código Genético , Humanos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Células HeLa , Transporte Biológico , Colorantes , Interacciones Huésped-Patógeno/fisiología
6.
mBio ; 14(1): e0354522, 2023 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-36728431

RESUMEN

There is a limited understanding of host defense mechanisms targeting intracellular pathogens that proliferate in a lysosome. Coxiella burnetii is a model bacterial pathogen capable of replicating in the hydrolytic and acidic environment of the lysosome. It has been shown that gamma interferon (IFNγ)-stimulated host cells restrict C. burnetii replication by a mechanism that involves host IDO1 depletion of tryptophan. Host cells deficient in IDO1 activity, however, retain the ability to restrict C. burnetii replication when stimulated with IFNγ, which suggests additional mechanisms of host defense. This study identified syntaxin 11 (STX11) as a host protein that contributes to IFNγ-mediated suppression of C. burnetii replication. STX11 is a SNARE protein; SNARE proteins are proteins that mediate fusion of host vesicles with specific subcellular organelles. Depletion of STX11 using either small interfering RNA (siRNA)- or CRISPR-based approaches enhanced C. burnetii replication intracellularly. Stable expression of STX11 reduced C. burnetii replication in epithelial cells and macrophages, which indicates that this STX11-dependent cell-autonomous response is operational in multiple cell types and can function independently of other IFNγ-induced factors. Fluorescently tagged STX11 localized to the Coxiella-containing vacuole (CCV), and STX11 restriction was found to involve an interaction with STX8. Thus, STX11 regulates a vesicle fusion pathway that limits replication of this intracellular pathogen in a lysosome-derived organelle. IMPORTANCE Cell intrinsic defense mechanisms are used by eukaryotic cells to restrict the replication and dissemination of pathogens. This study identified a human protein called syntaxin 11 (STX11) as a host restriction factor that inhibits the intracellular replication of Coxiella burnetii. Syntaxins regulate the delivery of cargo inside vesicles by promoting specific membrane fusion events between donor and acceptor vesicles. Data presented here demonstrate that STX11 regulates an immunological defense pathway that controls replication of pathogens in lysosome-derived organelles, which provides new insight into the function of this SNARE protein.


Asunto(s)
Coxiella burnetii , Fiebre Q , Humanos , Interacciones Huésped-Patógeno/fisiología , Interferón gamma/metabolismo , Interferones/metabolismo , Fiebre Q/metabolismo , Proteínas Qa-SNARE/genética , Proteínas Qa-SNARE/metabolismo , ARN Interferente Pequeño/metabolismo , Vacuolas/metabolismo
7.
Int J Mol Sci ; 24(2)2023 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-36674655

RESUMEN

Mycobacterium tuberculosis is able to establish a chronic colonization of lung macrophages in a controlled replication manner, giving rise to a so-called latent infection. Conversely, when intracellular bacteria undergo actively uncontrolled replication rates, they provide the switch for the active infection called tuberculosis to occur. Our group found that the pathogen is able to manipulate the activity of endolysosomal enzymes, cathepsins, directly at the level of gene expression or indirectly by regulating their natural inhibitors, cystatins. To provide evidence for the crucial role of cathepsin manipulation for the success of tuberculosis bacilli in their intracellular survival, we used liposomal delivery of saquinavir. This protease inhibitor was previously found to be able to increase cathepsin proteolytic activity, overcoming the pathogen induced blockade. In this study, we demonstrate that incorporation in liposomes was able to increase the efficiency of saquinavir internalization in macrophages, reducing cytotoxicity at higher concentrations. Consequently, our results show a significant impact on the intracellular killing not only to reference and clinical strains susceptible to current antibiotic therapy but also to multidrug- and extensively drug-resistant (XDR) Mtb strains. Altogether, this indicates the manipulation of cathepsins as a fine-tuning strategy used by the pathogen to survive and replicate in host cells.


Asunto(s)
Mycobacterium tuberculosis , Tuberculosis , Humanos , Mycobacterium tuberculosis/metabolismo , Catepsinas/metabolismo , Saquinavir/farmacología , Saquinavir/metabolismo , Liposomas/metabolismo , Macrófagos/metabolismo , Tuberculosis/microbiología , Interacciones Huésped-Patógeno/fisiología
8.
Curr Opin Microbiol ; 71: 102241, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36442349

RESUMEN

Manipulation of the host cell plasma membrane is critical during infection by intracellular bacterial pathogens, particularly during bacterial entry into and exit from host cells. To manipulate host cells, bacteria deploy secreted proteins that modulate or modify host cell components. Here, we review recent advances that suggest common themes by which bacteria manipulate the host cell plasma membrane. One theme is that bacteria use diverse strategies to target or influence host cell plasma membrane composition and shape. A second theme is that bacteria take advantage of host cell plasma membrane-associated pathways such as signal transduction, endocytosis, and exocytosis. Future investigation into how bacterial and host factors contribute to plasma membrane manipulation by bacterial pathogens will reveal new insights into pathogenesis and fundamental principles of plasma membrane biology.


Asunto(s)
Bacterias , Endocitosis , Bacterias/genética , Bacterias/metabolismo , Membrana Celular/metabolismo , Transducción de Señal , Interacciones Huésped-Patógeno/fisiología
9.
J Med Virol ; 95(1): e28383, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36477795

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a global coronavirus disease 2019 (COVID-19) pandemic that has affected the lives of billions of individuals. However, the host-virus interactions still need further investigation to reveal the underling mechanism of SARS-CoV-2 pathogenesis. Here, transcriptomics analysis of SARS-CoV-2 infection highlighted possible correlation between host-associated signaling pathway and virus. In detail, cAMP-protein kinase (PKA) pathway has an essential role in SARS-CoV-2 infection, followed by the interaction between cyclic AMP response element binding protein (CREB) and CREB-binding protein (CBP) could be induced and leading to the enhancement of CREB/CBP transcriptional activity. The replication of Delta and Omicron BA.5 were inhibited by about 49.4% and 44.7% after knockdown of CREB and CBP with small interfering RNAs, respectively. Furthermore, a small organic molecule naphthol AS-E (nAS-E), which targets on the interaction between CREB and CBP, potently inhibited SARS-CoV-2 wild-type (WT) infection with comparable the half-maximal effective concentration (EC50 ) 1.04 µM to Remdesivir 0.57 µM. Compared with WT virus, EC50 in Calu-3 cells against Delta, Omicron BA.2, and Omicron BA.5 were, on average, 1.5-fold, 1.1-fold, and 1.5-fold higher, respectively, nAS-E had a satisfied antiviral effect against Omicron variants. Taken together, our study demonstrated the importance of CREB/CBP induced by cAMP-PKA pathway during SARS-CoV-2 infection, and further provided a novel CREB/CBP interaction therapeutic drug targets for COVID-19.


Asunto(s)
COVID-19 , Proteína de Unión a Elemento de Respuesta al AMP Cíclico , Interacciones Huésped-Patógeno , Humanos , COVID-19/metabolismo , AMP Cíclico/metabolismo , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , SARS-CoV-2/metabolismo , SARS-CoV-2/patogenicidad , Proteína de Unión a CREB/metabolismo , Interacciones Huésped-Patógeno/genética , Interacciones Huésped-Patógeno/fisiología
10.
J Med Virol ; 95(1): e28386, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36477858

RESUMEN

Zika virus (ZIKV) is a neurotropic flavivirus. The outbreak of ZIKV in 2016 created a global health emergency. However, the underlying pathogenic mechanisms remain elusive. We investigated the host response features of in vivo replication in a mouse model of ZIKV infection, by performing a series of transcriptomic and bioinformatic analyses of ZIKV and mock-infected brain tissue. Tissue damage, inflammatory cells infiltration and high viral replication were observed in the brain tissue of ZIKV infected mice. RNA-Seq of the brain indicated the activation of ferroptosis pathways. Enrichment analysis of ferroptosis regulators revealed their involvement in pathways such as mineral absorption, fatty acid biosynthesis, fatty acid degradation, PPAR signaling pathway, peroxidase, and adipokinesine signalling pathway. We then identified 12 interacted hub ferroptosis regulators (CYBB, HMOX1, CP, SAT1, TF, SLC39A14, FTL, LPCAT3, FTH1, SLC3A2, TP53, and SLC40A1) that were related to the differential expression of CD8+ T cells, microglia and monocytes. CYBB, HMOX1, SALT, and SLAC40A1 were selected as potential biomarkers of ZIKV infection. Finally, we validated our results using RT-qPCR and outside available datasets. For the first time, we proposed a possible mechanism of ferroptosis in brain tissue infected by ZIKV in mice and identified the four key ferroptosis regulators.


Asunto(s)
Ferroptosis , Interacciones Huésped-Patógeno , Infección por el Virus Zika , Virus Zika , Animales , Ratones , 1-Acilglicerofosfocolina O-Aciltransferasa , Proteínas de Transporte de Catión , Linfocitos T CD8-positivos , Modelos Animales de Enfermedad , Ácidos Grasos , Ferroptosis/genética , Ferroptosis/fisiología , Transcriptoma , Replicación Viral , Virus Zika/patogenicidad , Infección por el Virus Zika/genética , Infección por el Virus Zika/metabolismo , Interacciones Huésped-Patógeno/genética , Interacciones Huésped-Patógeno/fisiología
11.
Microbiol Spectr ; 10(4): e0248421, 2022 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-35913176

RESUMEN

Coxiella burnetii requires a type IVB secretion system (T4SS) to promote intracellular replication and virulence. We hypothesized that Coxiella employs its T4SS to secrete effectors that enable stealthy colonization of immune cells. To address this, we used RNA sequencing to compare the transcriptional response of murine bone marrow-derived macrophages (BMDM) infected with those of wild-type Coxiella and a T4SS-null mutant at 8 and 24 h postinfection. We found a T4SS-independent upregulation of proinflammatory transcripts which was consistent with a proinflammatory polarization phenotype. Despite this, infected BMDM failed to completely polarize, as evidenced by modest surface expression of CD38 and CD11c, nitrate production, and reduced proinflammatory cytokine and chemokine secretion compared to positive controls. As these BMDM permitted replication of C. burnetii, we employed them to identify T4SS effectors that are essential in the specific cellular context of a primary macrophage. We found five Himar1 transposon mutants in T4SS effectors that had a replication defect in BMDM but not J774A.1 cells. The mutants were also attenuated in a SCID mouse model of infection. Among these candidate virulence factors, we found that CBU1639 contributed to the inhibition of macrophage proinflammatory responses to Coxiella infection. These data demonstrate that while T4SS is dispensable for the stealthy invasion of primary macrophages, Coxiella has evolved multiple T4SS effectors that specifically target macrophage function to proliferate within that specific cellular context. IMPORTANCE Coxiella burnetii, the causative agent of Q fever, preferentially infects macrophages of the respiratory tract when causing human disease. This work describes how primary macrophages respond to C. burnetii at the earliest stages of infection, before bacterial replication. We found that while infected macrophages increase expression of proinflammatory genes after bacterial entry, they fail to activate the accompanying antibacterial functions that might ultimately control the infection. This disconnect between initial response and downstream function was not mediated by the bacterium's type IVB secretion system, suggesting that Coxiella has other virulence factors that dampen host responses early in the infection process. Nevertheless, we were able to identify several type IVB secreted effectors that were specifically required for survival in macrophages and mice. This work is the first to identify type IVB secretion effectors that are specifically required for infection and replication within primary macrophages.


Asunto(s)
Coxiella burnetii , Fiebre Q , Animales , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Coxiella burnetii/genética , Interacciones Huésped-Patógeno/fisiología , Humanos , Macrófagos/microbiología , Ratones , Ratones SCID , Fiebre Q/metabolismo , Fiebre Q/microbiología , Factores de Virulencia/genética , Factores de Virulencia/metabolismo
12.
Database (Oxford) ; 20222022 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-35776535

RESUMEN

During infection, the pathogen's entry into the host organism, breaching the host immune defense, spread and multiplication are frequently mediated by multiple interactions between the host and pathogen proteins. Systematic studying of host-pathogen interactions (HPIs) is a challenging task for both experimental and computational approaches and is critically dependent on the previously obtained knowledge about these interactions found in the biomedical literature. While several HPI databases exist that manually filter HPI protein-protein interactions from the generic databases and curated experimental interactomic studies, no comprehensive database on HPIs obtained from the biomedical literature is currently available. Here, we introduce a high-throughput literature-mining platform for extracting HPI data that includes the most comprehensive to date collection of HPIs obtained from the PubMed abstracts. Our HPI data portal, PHILM2Web (Pathogen-Host Interactions by Literature Mining on the Web), integrates an automatically generated database of interactions extracted by PHILM, our high-precision HPI literature-mining algorithm. Currently, the database contains 23 581 generic HPIs between 157 host and 403 pathogen organisms from 11 609 abstracts. The interactions were obtained from processing 608 972 PubMed abstracts, each containing mentions of at least one host and one pathogen organisms. In response to the coronavirus disease 2019 (COVID-19) pandemic, we also utilized PHILM to process 25 796 PubMed abstracts obtained by the same query as the COVID-19 Open Research Dataset. This COVID-19 processing batch resulted in 257 HPIs between 19 host and 31 pathogen organisms from 167 abstracts. The access to the entire HPI dataset is available via a searchable PHILM2Web interface; scientists can also download the entire database in bulk for offline processing. Database URL: http://philm2web.live.


Asunto(s)
COVID-19 , Bases de Datos Factuales , Interacciones Huésped-Patógeno/fisiología , Humanos , Proteínas/metabolismo , PubMed
13.
Amino Acids ; 54(6): 923-934, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35487995

RESUMEN

Molecular mimicry of host proteins by pathogens constitutes a strategy to hijack the host pathways. At present, there is no dedicated resource for mimicked domains and motifs in the host-pathogen interactome. In this work, the experimental host-pathogen (HP) and host-host (HH) protein-protein interactions (PPIs) were collated. The domains and motifs of these proteins were annotated using CD Search and ScanProsite, respectively. Host and pathogen proteins with a shared host interactor and similar domain/motif constitute a mimicry pair exhibiting global structural similarity (domain mimicry pair; DMP) or local sequence motif similarity (motif mimicry pair; MMP). Mimicry pairs are likely to be co-expressed and co-localized. 1,97,607 DMPs and 32,67,568 MMPs were identified in 49,265 experimental HP-PPIs and organized in a web-based resource, ImitateDB ( http://imitatedb.sblab-nsit.net ) that can be easily queried. The results are externally integrated using hyperlinked domain PSSM ID, motif ID, protein ID and PubMed ID. Kinase, UL36, Smc and DEXDc were frequent DMP domains whereas protein kinase C phosphorylation, casein kinase 2 phosphorylation, glycosylation and myristoylation sites were frequent MMP motifs. Novel DMP domains SANT, Tudor, PhoX and MMP motif microbody C-terminal targeting signal, cornichon signature and lipocalin signature were proposed. ImitateDB is a novel resource for identifying mimicry in interacting host and pathogen proteins.


Asunto(s)
Interacciones Huésped-Patógeno , Proteínas , Interacciones Huésped-Patógeno/fisiología , Imitación Molecular , Proteínas/metabolismo
15.
Cell Rep ; 38(7): 110376, 2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-35172163

RESUMEN

Bacteriophages (phages) are diverse and abundant constituents of microbial communities worldwide, capable of modulating bacterial populations in diverse ways. Here, we describe the phage HNL01, which infects the marine bacterium Vibrio fischeri. We use culture-based approaches to demonstrate that mutations in the exopolysaccharide locus of V. fischeri render this bacterium resistant to infection by HNL01, highlighting the extracellular matrix as a key determinant of HNL01 infection. Additionally, using the natural symbiosis between V. fischeri and the squid Euprymna scolopes, we show that, during colonization, V. fischeri is protected from phages present in the ambient seawater. Taken together, these findings shed light on independent yet synergistic host- and bacterium-based strategies for resisting symbiosis-disrupting phage predation, and we present important implications for understanding these strategies in the context of diverse host-associated microbial ecosystems.


Asunto(s)
Bacteriófagos/fisiología , Decapodiformes/microbiología , Interacciones Huésped-Patógeno/fisiología , Modelos Biológicos , Simbiosis/fisiología , Aliivibrio fischeri/virología , Animales , Bacteriófagos/genética , Bacteriófagos/aislamiento & purificación , Bacteriófagos/ultraestructura , Matriz Extracelular de Sustancias Poliméricas/metabolismo , Mutación/genética , Plancton/metabolismo
16.
Trends Microbiol ; 30(8): 736-748, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35168833

RESUMEN

Invasive bacteria colonise their host tissues by establishing niches inside eukaryotic cells, where they grow either in the cytosol or inside a specialised vacuole. These two distinct intracellular lifestyles both present benefits but also impose various constraints on pathogenic microorganisms, in terms of nutrient acquisition, space requirements, exposure to immune responses, and ability to disseminate. Here we review the major characteristics of cytosolic and vacuolar lifestyles and the strategies used by bacteria to overcome challenges specific to each compartment. Recent research providing evidence that these scenarios are not mutually exclusive is presented, with the dual lifestyles of two foodborne pathogens, Listeria monocytogenes and Salmonella Typhimurium, discussed in detail. Finally, we elaborate on the conceptual implications of polyvalence from the perspective of host-pathogen interactions.


Asunto(s)
Listeria monocytogenes , Vacuolas , Citosol/microbiología , Interacciones Huésped-Patógeno/fisiología , Salmonella typhimurium , Vacuolas/microbiología
17.
Int J Mol Sci ; 23(4)2022 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-35216122

RESUMEN

Pseudomonas species infect a variety of organisms, including mammals and plants. Mammalian pathogens of the Pseudomonas family modify their lipid A during host entry to evade immune responses and to create an effective barrier against different environments, for example by removal of primary acyl chains, addition of phosphoethanolamine (P-EtN) to primary phosphates, and hydroxylation of secondary acyl chains. For Pseudomonas syringae pv. phaseolicola (Pph) 1448A, an economically important pathogen of beans, we observed similar lipid A modifications by mass spectrometric analysis. Therefore, we investigated predicted proteomes of various plant-associated Pseudomonas spp. for putative lipid A-modifying proteins using the well-studied mammalian pathogen Pseudomonas aeruginosa as a reference. We generated isogenic mutant strains of candidate genes and analyzed their lipid A. We show that the function of PagL, LpxO, and EptA is generally conserved in Pph 1448A. PagL-mediated de-acylation occurs at the distal glucosamine, whereas LpxO hydroxylates the secondary acyl chain on the distal glucosamine. The addition of P-EtN catalyzed by EptA occurs at both phosphates of lipid A. Our study characterizes lipid A modifications in vitro and provides a useful set of mutant strains relevant for further functional studies on lipid A modifications in Pph 1448A.


Asunto(s)
Lípido A/metabolismo , Pseudomonas syringae/metabolismo , Proteínas Bacterianas/metabolismo , Interacciones Huésped-Patógeno/fisiología , Enfermedades de las Plantas/microbiología , Virulencia/fisiología
18.
Sci Adv ; 8(8): eabi6110, 2022 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-35050692

RESUMEN

The spread of SARS-CoV-2 and ongoing COVID-19 pandemic underscores the need for new treatments. Here we report that cannabidiol (CBD) inhibits infection of SARS-CoV-2 in cells and mice. CBD and its metabolite 7-OH-CBD, but not THC or other congeneric cannabinoids tested, potently block SARS-CoV-2 replication in lung epithelial cells. CBD acts after viral entry, inhibiting viral gene expression and reversing many effects of SARS-CoV-2 on host gene transcription. CBD inhibits SARS-CoV-2 replication in part by up-regulating the host IRE1α RNase endoplasmic reticulum (ER) stress response and interferon signaling pathways. In matched groups of human patients from the National COVID Cohort Collaborative, CBD (100 mg/ml oral solution per medical records) had a significant negative association with positive SARS-CoV-2 tests. This study highlights CBD as a potential preventative agent for early-stage SARS-CoV-2 infection and merits future clinical trials. We caution against use of non-medical formulations including edibles, inhalants or topicals as a preventative or treatment therapy at the present time.


Asunto(s)
Antivirales/farmacología , Cannabidiol/farmacología , Interacciones Huésped-Patógeno/efectos de los fármacos , Inmunidad Innata/efectos de los fármacos , SARS-CoV-2/efectos de los fármacos , Células A549 , Animales , Antivirales/química , COVID-19/virología , Cannabidiol/química , Cannabidiol/metabolismo , Chlorocebus aethiops , Estrés del Retículo Endoplásmico/efectos de los fármacos , Endorribonucleasas/genética , Endorribonucleasas/metabolismo , Células Epiteliales/virología , Femenino , Regulación Viral de la Expresión Génica/efectos de los fármacos , Interacciones Huésped-Patógeno/fisiología , Humanos , Interferones/metabolismo , Ratones , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , SARS-CoV-2/fisiología , Células Vero , Internalización del Virus/efectos de los fármacos , Replicación Viral/efectos de los fármacos , Tratamiento Farmacológico de COVID-19
19.
Int J Mol Sci ; 23(2)2022 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-35054880

RESUMEN

Small RNAs are significant regulators of gene expression, which play multiple roles in plant development, growth, reproductive and stress response. It is generally believed that the regulation of plants' endogenous genes by small RNAs has evolved from a cellular defense mechanism for RNA viruses and transposons. Most small RNAs have well-established roles in the defense response, such as viral response. During viral infection, plant endogenous small RNAs can direct virus resistance by regulating the gene expression in the host defense pathway, while the small RNAs derived from viruses are the core of the conserved and effective RNAi resistance mechanism. As a counter strategy, viruses evolve suppressors of the RNAi pathway to disrupt host plant silencing against viruses. Currently, several studies have been published elucidating the mechanisms by which small RNAs regulate viral defense in different crops. This paper reviews the distinct pathways of small RNAs biogenesis and the molecular mechanisms of small RNAs mediating antiviral immunity in plants, as well as summarizes the coping strategies used by viruses to override this immune response. Finally, we discuss the current development state of the new applications in virus defense based on small RNA silencing.


Asunto(s)
Interacciones Huésped-Patógeno/fisiología , Virus de Plantas/fisiología , Regulación de la Expresión Génica de las Plantas , MicroARNs/genética , MicroARNs/metabolismo , Modelos Biológicos , Interferencia de ARN
20.
Viruses ; 14(1)2022 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-35062347

RESUMEN

Ebola virus disease (EVD) is a lethal disease caused by the highly pathogenic Ebola virus (EBOV), and its major symptoms in severe cases include vascular leakage and hemorrhage. These symptoms are caused by abnormal activation and disruption of endothelial cells (ECs) whose mediators include EBOV glycoprotein (GP) without the need for viral replication. However, the detailed molecular mechanisms underlying virus-host interactions remain largely unknown. Here, we show that EBOV-like particles (VLPs) formed by GP, VP40, and NP activate ECs in a GP-dependent manner, as demonstrated by the upregulation of intercellular adhesion molecules-1 (ICAM-1) expression. VLPs-mediated ECs activation showed a different kinetic pattern from that of TNF-α-mediated activation and was associated with apoptotic ECs disruption. In contrast to TNF-α, VLPs induced ICAM-1 overexpression at late time points. Furthermore, screening of host cytoskeletal signaling inhibitors revealed that focal adhesion kinase inhibitors were found to be potent inhibitors of ICAM-1 expression mediated by both TNF-α and VLPs. Our results suggest that EBOV GP stimulates ECs to induce endothelial activation and dysfunction with the involvement of host cytoskeletal signaling factors, which represent potential therapeutic targets for EVD.


Asunto(s)
Ebolavirus/fisiología , Células Endoteliales/metabolismo , Glicoproteínas/metabolismo , Interacciones Huésped-Patógeno/fisiología , Transducción de Señal , Apoptosis , Supervivencia Celular , Citoesqueleto , Células HEK293 , Fiebre Hemorrágica Ebola/tratamiento farmacológico , Fiebre Hemorrágica Ebola/virología , Humanos , Factores de Integración del Huésped , Molécula 1 de Adhesión Intercelular/genética , Molécula 1 de Adhesión Intercelular/metabolismo , Cinética , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/metabolismo , Replicación Viral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA