Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 582
Filtrar
1.
Arch Microbiol ; 206(6): 253, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38727738

RESUMEN

Candida auris is an invasive fungal pathogen of high concern due to acquired drug tolerance against antifungals used in clinics. The prolonged persistence on biotic and abiotic surfaces can result in onset of hospital outbreaks causing serious health threat. An in depth understanding of pathology of C. auris is highly desirable for development of efficient therapeutics. Non-coding RNAs play crucial role in fungal pathology. However, the information about ncRNAs is scanty to be utilized. Herein our aim is to identify long noncoding RNAs with potent role in pathobiology of C. auris. Thereby, we analyzed the transcriptomics data of C. auris infection in blood for identification of potential lncRNAs with regulatory role in determining invasion, survival or drug tolerance under infection conditions. Interestingly, we found 275 lncRNAs, out of which 253 matched with lncRNAs reported in Candidamine, corroborating for our accurate data analysis pipeline. Nevertheless, we obtained 23 novel lncRNAs not reported earlier. Three lncRNAs were found to be under expressed throughout the course of infection, in the transcriptomics data. 16 of potent lncRNAs were found to be coexpressed with coding genes, emphasizing for their functional role. Noteworthy, these ncRNAs are expressed from intergenic regions of the genes associated with transporters, metabolism, cell wall biogenesis. This study recommends for possible association between lncRNA expression and C. auris pathogenesis.


Asunto(s)
Candida auris , Candidiasis , Interacciones Microbiota-Huesped , ARN Largo no Codificante , ARN Largo no Codificante/genética , ARN Largo no Codificante/aislamiento & purificación , Perfilación de la Expresión Génica , Simulación por Computador , Estudio de Asociación del Genoma Completo , Candida auris/genética , Candida auris/patogenicidad , Candidiasis/sangre , Candidiasis/microbiología , Sepsis/microbiología , Interacciones Microbiota-Huesped/genética , Humanos
2.
Front Cell Infect Microbiol ; 14: 1379962, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38655281

RESUMEN

The notion that viruses played a crucial role in the evolution of life is not a new concept. However, more recent insights suggest that this perception might be even more expansive, highlighting the ongoing impact of viruses on host evolution. Endogenous retroviruses (ERVs) are considered genomic remnants of ancient viral infections acquired throughout vertebrate evolution. Their exogenous counterparts once infected the host's germline cells, eventually leading to the permanent endogenization of their respective proviruses. The success of ERV colonization is evident so that it constitutes 8% of the human genome. Emerging genomic studies indicate that endogenous retroviruses are not merely remnants of past infections but rather play a corollary role, despite not fully understood, in host genetic regulation. This review presents some evidence supporting the crucial role of endogenous retroviruses in regulating host genetics. We explore the involvement of human ERVs (HERVs) in key physiological processes, from their precise and orchestrated activities during cellular differentiation and pluripotency to their contributions to aging and cellular senescence. Additionally, we discuss the costs associated with hosting a substantial amount of preserved viral genetic material.


Asunto(s)
Retrovirus Endógenos , Retrovirus Endógenos/genética , Retrovirus Endógenos/fisiología , Humanos , Animales , Diferenciación Celular , Interacciones Huésped-Patógeno/genética , Interacciones Microbiota-Huesped/genética , Infecciones por Retroviridae/virología , Senescencia Celular/genética , Provirus/genética , Provirus/fisiología , Evolución Molecular
3.
mSystems ; 9(5): e0140523, 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38557130

RESUMEN

The gut microbiome affects the health status of the host through complex interactions with the host's intestinal wall. These host-microbiome interactions may spatially vary along the physical and chemical environment of the intestine, but these changes remain unknown. This study investigated these intricate relationships through a gene co-expression network analysis based on dual transcriptome profiling of different intestinal sites-cecum, transverse colon, and rectum-of the primate common marmoset. We proposed a gene module extraction algorithm based on the graph theory to find tightly interacting gene modules of the host and the microbiome from a vast co-expression network. The 27 gene modules identified by this method, which include both host and microbiome genes, not only produced results consistent with previous studies regarding the host-microbiome relationships, but also provided new insights into microbiome genes acting as potential mediators in host-microbiome interplays. Specifically, we discovered associations between the host gene FBP1, a cancer marker, and polysaccharide degradation-related genes (pfkA and fucI) coded by Bacteroides vulgatus, as well as relationships between host B cell-specific genes (CD19, CD22, CD79B, and PTPN6) and a tryptophan synthesis gene (trpB) coded by Parabacteroides distasonis. Furthermore, our proposed module extraction algorithm surpassed existing approaches by successfully defining more functionally related gene modules, providing insights for understanding the complex relationship between the host and the microbiome.IMPORTANCEWe unveiled the intricate dynamics of the host-microbiome interactions along the colon by identifying closely interacting gene modules from a vast gene co-expression network, constructed based on simultaneous profiling of both host and microbiome transcriptomes. Our proposed gene module extraction algorithm, designed to interpret inter-species interactions, enabled the identification of functionally related gene modules encompassing both host and microbiome genes, which was challenging with conventional modularity maximization algorithms. Through these identified gene modules, we discerned previously unrecognized bacterial genes that potentially mediate in known relationships between host genes and specific bacterial species. Our findings underscore the spatial variations in host-microbiome interactions along the colon, rather than displaying a uniform pattern throughout the colon.


Asunto(s)
Microbioma Gastrointestinal , Redes Reguladoras de Genes , Animales , Microbioma Gastrointestinal/genética , Callithrix/microbiología , Interacciones Microbiota-Huesped/genética , Perfilación de la Expresión Génica/métodos , Transcriptoma , Intestinos/microbiología , Algoritmos
4.
Cell Host Microbe ; 32(5): 727-738.e6, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38579715

RESUMEN

Many, if not all, bacteria use quorum sensing (QS) to control collective behaviors, and more recently, QS has also been discovered in bacteriophages (phages). Phages can produce communication molecules of their own, or "listen in" on the host's communication processes, to switch between lytic and lysogenic modes of infection. Here, we study the interaction of Vibrio cholerae with the lysogenic phage VP882, which is activated by the QS molecule DPO. We discover that induction of VP882 results in the binding of phage transcripts to the major RNA chaperone Hfq, which in turn outcompetes and downregulates host-encoded small RNAs (sRNAs). VP882 itself also encodes Hfq-binding sRNAs, and we demonstrate that one of these sRNAs, named VpdS, promotes phage replication by regulating host and phage mRNA levels. We further show that host-encoded sRNAs can antagonize phage replication by downregulating phage mRNA expression and thus might be part of the host's phage defense arsenal.


Asunto(s)
Bacteriófagos , Proteína de Factor 1 del Huésped , Percepción de Quorum , Vibrio cholerae , Vibrio cholerae/virología , Vibrio cholerae/genética , Percepción de Quorum/genética , Bacteriófagos/genética , Bacteriófagos/fisiología , Proteína de Factor 1 del Huésped/metabolismo , Proteína de Factor 1 del Huésped/genética , Replicación Viral , Lisogenia , ARN Viral/genética , ARN Viral/metabolismo , ARN Pequeño no Traducido/genética , ARN Pequeño no Traducido/metabolismo , Regulación Bacteriana de la Expresión Génica , ARN Bacteriano/genética , ARN Bacteriano/metabolismo , ARN Mensajero/metabolismo , ARN Mensajero/genética , Interacciones Microbiota-Huesped/genética
5.
Nat Commun ; 15(1): 1470, 2024 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-38368394

RESUMEN

Disrupted host-microbe interactions at the mucosal level are key to the pathophysiology of IBD. This study aimed to comprehensively examine crosstalk between mucosal gene expression and microbiota in patients with IBD. To study tissue-specific interactions, we perform transcriptomic (RNA-seq) and microbial (16S-rRNA-seq) profiling of 697 intestinal biopsies (645 derived from 335 patients with IBD and 52 from 16 non-IBD controls). Mucosal gene expression patterns in IBD are mainly determined by tissue location and inflammation, whereas the mucosal microbiota composition shows a high degree of individual specificity. Analysis of transcript-bacteria interactions identifies six distinct groups of inflammation-related pathways that are associated with intestinal microbiota (adjusted P < 0.05). An increased abundance of Bifidobacterium is associated with higher expression of genes involved in fatty acid metabolism, while Bacteroides correlates with increased metallothionein signaling. In patients with fibrostenosis, a transcriptional network dominated by immunoregulatory genes is associated with Lachnoclostridium bacteria in non-stenotic tissue (adjusted P < 0.05), while being absent in CD without fibrostenosis. In patients using TNF-α-antagonists, a transcriptional network dominated by fatty acid metabolism genes is linked to Ruminococcaceae (adjusted P < 0.05). Mucosal microbiota composition correlates with enrichment of intestinal epithelial cells, macrophages, and NK-cells. Overall, these data demonstrate the presence of context-specific mucosal host-microbe interactions in IBD, revealing significantly altered inflammation-associated gene-taxa modules, particularly in patients with fibrostenotic CD and patients using TNF-α-antagonists. This study provides compelling insights into host-microbe interactions that may guide microbiota-directed precision medicine and fuels the rationale for microbiota-targeted therapeutics as a strategy to alter disease course in IBD.


Asunto(s)
Interacciones Microbiota-Huesped , Enfermedades Inflamatorias del Intestino , Humanos , Interacciones Microbiota-Huesped/genética , Factor de Necrosis Tumoral alfa/genética , Enfermedades Inflamatorias del Intestino/patología , Fenotipo , Inflamación/genética , Inflamación/patología , Ácidos Grasos , Mucosa Intestinal/patología
6.
J Virol ; 98(3): e0180523, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38323810

RESUMEN

Shrimp hemocytes are the vital immune cells participating in innate immune response to defend against viruses. However, the lack of specific molecular markers for shrimp hemocyte hindered the insightful understanding of their functional clusters and differential roles in combating microbial infections. In this study, we used single-cell RNA sequencing to map the transcriptomic landscape of hemocytes from the white spot syndrome virus (WSSV)-infected Litopenaeus vannamei and conjointly analyzed with our previous published single-cell RNA sequencing technology data from the healthy hemocytes. A total of 16 transcriptionally distinct cell clusters were identified, which occupied different proportions in healthy and WSSV-infected hemocytes and exerted differential roles in antiviral immune response. Following mapping of the sequencing data to the WSSV genome, we found that all types of hemocytes could be invaded by WSSV virions, especially the cluster 8, which showed the highest transcriptional levels of WSSV genes and exhibited a cell type-specific antiviral response to the viral infection. Further evaluation of the cell clusters revealed the delicate dynamic balance between hemocyte immune response and viral infestation. Unsupervised pseudo-time analysis of hemocytes showed that the hemocytes in immune-resting state could be significantly activated upon WSSV infection and then functionally differentiated to different hemocyte subsets. Collectively, our results revealed the differential responses of shrimp hemocytes and the process of immune-functional differentiation post-WSSV infection, providing essential resource for the systematic insight into the synergistic immune response mechanism against viral infection among hemocyte subtypes. IMPORTANCE: Current knowledge of shrimp hemocyte classification mainly comes from morphology, which hinder in-depth characterization of cell lineage development, functional differentiation, and different immune response of hemocyte types during pathogenic infections. Here, single-cell RNA sequencing was used for mapping hemocytes during white spot syndrome virus (WSSV) infection in Litopenaeus vannamei, identifying 16 cell clusters and evaluating their potential antiviral functional characteristics. We have described the dynamic balance between viral infestation and hemocyte immunity. And the functional differentiation of hemocytes under WSSV stimulation was further characterized. Our results provided a comprehensive transcriptional landscape and revealed the heterogeneous immune response in shrimp hemocytes during WSSV infection.


Asunto(s)
Proteínas de Artrópodos , Hemocitos , Interacciones Microbiota-Huesped , Penaeidae , RNA-Seq , Análisis de Expresión Génica de una Sola Célula , Virus del Síndrome de la Mancha Blanca 1 , Animales , Proteínas de Artrópodos/genética , Diferenciación Celular/genética , Diferenciación Celular/inmunología , Regulación de la Expresión Génica , Hemocitos/citología , Hemocitos/inmunología , Hemocitos/metabolismo , Hemocitos/virología , Interacciones Microbiota-Huesped/genética , Interacciones Microbiota-Huesped/inmunología , Penaeidae/citología , Penaeidae/genética , Penaeidae/inmunología , Penaeidae/virología , Virus del Síndrome de la Mancha Blanca 1/genética , Virus del Síndrome de la Mancha Blanca 1/inmunología
7.
Nature ; 625(7996): 813-821, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38172637

RESUMEN

Although the impact of host genetics on gut microbial diversity and the abundance of specific taxa is well established1-6, little is known about how host genetics regulates the genetic diversity of gut microorganisms. Here we conducted a meta-analysis of associations between human genetic variation and gut microbial structural variation in 9,015 individuals from four Dutch cohorts. Strikingly, the presence rate of a structural variation segment in Faecalibacterium prausnitzii that harbours an N-acetylgalactosamine (GalNAc) utilization gene cluster is higher in individuals who secrete the type A oligosaccharide antigen terminating in GalNAc, a feature that is jointly determined by human ABO and FUT2 genotypes, and we could replicate this association in a Tanzanian cohort. In vitro experiments demonstrated that GalNAc can be used as the sole carbohydrate source for F. prausnitzii strains that carry the GalNAc-metabolizing pathway. Further in silico and in vitro studies demonstrated that other ABO-associated species can also utilize GalNAc, particularly Collinsella aerofaciens. The GalNAc utilization genes are also associated with the host's cardiometabolic health, particularly in individuals with mucosal A-antigen. Together, the findings of our study demonstrate that genetic associations across the human genome and bacterial metagenome can provide functional insights into the reciprocal host-microbiome relationship.


Asunto(s)
Bacterias , Microbioma Gastrointestinal , Interacciones Microbiota-Huesped , Metagenoma , Humanos , Acetilgalactosamina/metabolismo , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , Estudios de Cohortes , Simulación por Computador , Faecalibacterium prausnitzii/genética , Microbioma Gastrointestinal/genética , Genoma Humano/genética , Genotipo , Interacciones Microbiota-Huesped/genética , Técnicas In Vitro , Metagenoma/genética , Familia de Multigenes , Países Bajos , Tanzanía
8.
J Virol ; 98(2): e0150423, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38289119

RESUMEN

Coxsackievirus B3 (CVB3) is known to cause acute myocarditis and pancreatitis in humans. We investigated the microRNAs (miRNAs) that can potentially govern the viral life cycle by binding to the untranslated regions (UTRs) of CVB3 RNA. MicroRNA-22-3p was short-listed, as its potential binding site overlapped with the region crucial for recruiting internal ribosome entry site trans-acting factors (ITAFs) and ribosomes. We demonstrate that miR-22-3p binds CVB3 5' UTR, hinders recruitment of key ITAFs on viral mRNA, disrupts the spatial structure required for ribosome recruitment, and ultimately blocks translation. Likewise, cells lacking miR-22-3p exhibited heightened CVB3 infection compared to wild type, confirming its role in controlling infection. Interestingly, miR-22-3p level was found to be increased at 4 hours post-infection, potentially due to the accumulation of viral 2A protease in the early phase of infection. 2Apro enhances the miR-22-3p level to dislodge the ITAFs from the SD-like sequence, rendering the viral RNA accessible for binding of replication factors to switch to replication. Furthermore, one of the cellular targets of miR-22-3p, protocadherin-1 (PCDH1), was significantly downregulated during CVB3 infection. Partial silencing of PCDH1 reduced viral replication, demonstrating its proviral role. Interestingly, upon CVB3 infection in mice, miR-22-3p level was found to be downregulated only in the small intestine, the primary target organ, indicating its possible role in influencing tissue tropism. It appears miR-22-3p plays a dual role during infection by binding viral RNA to aid its life cycle as a viral strategy and by targeting a proviral protein to restrict viral replication as a host response.IMPORTANCECVB3 infection is associated with the development of end-stage heart diseases. Lack of effective anti-viral treatments and vaccines for CVB3 necessitates comprehensive understanding of the molecular players during CVB3 infection. miRNAs have emerged as promising targets for anti-viral strategies. Here, we demonstrate that miR-22-3p binds to 5' UTR and inhibits viral RNA translation at the later stage of infection to promote viral RNA replication. Conversely, as host response, it targets PCDH1, a proviral factor, to discourage viral propagation. miR-22-3p also influences CVB3 tissue tropism. Deciphering the multifaced role of miR-22-3p during CVB3 infection unravels the necessary molecular insights, which can be exploited for novel intervening strategies to curb infection and restrict viral pathogenesis.


Asunto(s)
Regiones no Traducidas 5' , Infecciones por Coxsackievirus , Enterovirus Humano B , Interacciones Microbiota-Huesped , MicroARNs , Biosíntesis de Proteínas , ARN Viral , Animales , Humanos , Ratones , Regiones no Traducidas 5'/genética , Antivirales/metabolismo , Infecciones por Coxsackievirus/genética , Infecciones por Coxsackievirus/virología , Enterovirus Humano B/genética , Enterovirus Humano B/patogenicidad , Enterovirus Humano B/fisiología , Células HeLa , Intestino Delgado/metabolismo , Intestino Delgado/virología , MicroARNs/genética , MicroARNs/metabolismo , ARN Viral/genética , ARN Viral/metabolismo , Tropismo Viral/genética , Replicación Viral/genética , Cisteína Endopeptidasas/metabolismo , Protocadherinas/deficiencia , Protocadherinas/genética , Miocarditis , Interacciones Microbiota-Huesped/genética
9.
Virol Sin ; 39(1): 1-8, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38008383

RESUMEN

Single-cell RNA sequencing (scRNA-seq) has allowed for the profiling of host and virus transcripts and host-virus interactions at single-cell resolution. This review summarizes the existing scRNA-seq technologies together with their strengths and weaknesses. The applications of scRNA-seq in various virological studies are discussed in depth, which broaden the understanding of the immune atlas, host-virus interactions, and immune repertoire. scRNA-seq can be widely used for virology in the near future to better understand the pathogenic mechanisms and discover more effective therapeutic strategies.


Asunto(s)
Perfilación de la Expresión Génica , Interacciones Microbiota-Huesped , Análisis de Secuencia de ARN , Interacciones Microbiota-Huesped/genética
10.
Subcell Biochem ; 106: 365-385, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38159234

RESUMEN

RNA is a central molecule in the life cycle of viruses, acting not only as messenger (m)RNA but also as a genome. Given these critical roles, it is not surprising that viral RNA is a hub for host-virus interactions. However, the interactome of viral RNAs remains largely unknown. This chapter discusses the importance of cellular RNA-binding proteins in virus infection and the emergent approaches developed to uncover and characterise them.


Asunto(s)
Interacciones Microbiota-Huesped , ARN Viral , ARN Viral/genética , ARN Viral/metabolismo , Interacciones Microbiota-Huesped/genética , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Interacciones Huésped-Patógeno/genética , Replicación Viral
11.
mSystems ; 8(6): e0081723, 2023 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-37843256

RESUMEN

IMPORTANCE: The elucidation of the molecular basis of virus-host coevolutionary interactions is boosted with state-of-the-art sequencing technologies. However, the sequence-only information is often insufficient to output a conclusive argument without biochemical characterizations. We proposed a 1-day and one-pot approach to confirm the exact function of putative restriction-modification (R-M) genes that presumably mediate microbial coevolution. The experiments mainly focused on a series of putative R-M enzymes from a deep-sea virus and its host bacterium. The results quickly unveiled unambiguous substrate specificities, superior catalytic performance, and unique sequence preferences for two new restriction enzymes (capable of cleaving DNA) and two new methyltransferases (capable of modifying DNA with methyl groups). The reality of the functional R-M system reinforced a model of mutually beneficial interactions with the virus in the deep-sea microbial ecosystem. The cell culture-independent approach also holds great potential for exploring novel and biotechnologically significant R-M enzymes from microbial dark matter.


Asunto(s)
Bacterias , Enzimas de Restricción-Modificación del ADN , Interacciones Microbiota-Huesped , Virus , ADN , Enzimas de Restricción del ADN/química , Enzimas de Restricción-Modificación del ADN/genética , Ecosistema , Metiltransferasas , Océanos y Mares , Bacterias/genética , Bacterias/virología , Virus/genética , Interacciones Microbiota-Huesped/genética
12.
J Virol ; 97(11): e0122523, 2023 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-37877718

RESUMEN

IMPORTANCE: Alphavirus replicons are being developed as self-amplifying RNAs aimed at improving the efficacy of mRNA vaccines. These replicons are convenient for genetic manipulations and can express heterologous genetic information more efficiently and for a longer time than standard mRNAs. However, replicons mimic many aspects of viral replication in terms of induction of innate immune response, modification of cellular transcription and translation, and expression of nonstructural viral genes. Moreover, all replicons used in this study demonstrated expression of heterologous genes in cell- and replicon's origin-specific modes. Thus, many aspects of the interactions between replicons and the host remain insufficiently investigated, and further studies are needed to understand the biology of the replicons and their applicability for designing a new generation of mRNA vaccines. On the other hand, our data show that replicons are very flexible expression systems, and additional modifications may have strong positive impacts on protein expression.


Asunto(s)
Alphavirus , Regulación Viral de la Expresión Génica , Interacciones Microbiota-Huesped , Replicón , Proteínas Virales , Alphavirus/genética , Alphavirus/metabolismo , Vacunas de ARNm/genética , Replicón/genética , Replicación Viral/genética , ARN Viral/biosíntesis , ARN Viral/genética , Interacciones Microbiota-Huesped/genética , Proteínas Virales/biosíntesis , Proteínas Virales/genética
13.
J Virol ; 97(10): e0083023, 2023 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-37796130

RESUMEN

IMPORTANCE: Herpesviruses present a major global disease burden. Understanding the host cell mechanisms that block viral infections, as well as how viruses can evolve to counteract these host defenses, is critically important for understanding viral disease pathogenesis. This study reveals that the major human variant of the antiviral protein myxovirus resistance protein B (MxB) inhibits the human pathogen herpes simplex virus (HSV-1), whereas a minor human variant and orthologous MxB genes from even closely related primates do not. Thus, in contrast to the many antagonistic virus-host interactions in which the virus is successful in thwarting the host's defense systems, here the human gene appears to be at least temporarily winning at this interface of the primate-herpesvirus evolutionary arms race. Our findings further show that a polymorphism at amino acid 83 in a small fraction of the human population is sufficient to abrogate MxB's ability to inhibit HSV-1, which could have important implications for human susceptibility to HSV-1 pathogenesis.


Asunto(s)
Herpesvirus Humano 1 , Interacciones Microbiota-Huesped , Proteínas de Resistencia a Mixovirus , Polimorfismo Genético , Animales , Humanos , Herpesvirus Humano 1/patogenicidad , Herpesvirus Humano 1/fisiología , Interacciones Microbiota-Huesped/genética , Proteínas de Resistencia a Mixovirus/genética , Proteínas de Resistencia a Mixovirus/metabolismo , Primates/genética , Primates/virología , Especificidad de la Especie
14.
Nat Microbiol ; 8(8): 1450-1467, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37337046

RESUMEN

Akkermansia muciniphila, a mucophilic member of the gut microbiota, protects its host against metabolic disorders. Because it is genetically intractable, the mechanisms underlying mucin metabolism, gut colonization and its impact on host physiology are not well understood. Here we developed and applied transposon mutagenesis to identify genes important for intestinal colonization and for the use of mucin. An analysis of transposon mutants indicated that de novo biosynthesis of amino acids was required for A. muciniphila growth on mucin medium and that many glycoside hydrolases are redundant. We observed that mucin degradation products accumulate in internal compartments within bacteria in a process that requires genes encoding pili and a periplasmic protein complex, which we term mucin utilization locus (MUL) genes. We determined that MUL genes were required for intestinal colonization in mice but only when competing with other microbes. In germ-free mice, MUL genes were required for A. muciniphila to repress genes important for cholesterol biosynthesis in the colon. Our genetic system for A. muciniphila provides an important tool with which to uncover molecular links between the metabolism of mucins, regulation of lipid homeostasis and potential probiotic activities.


Asunto(s)
Intestinos , Mucinas , Verrucomicrobia , Animales , Ratones , Mucinas/metabolismo , Esteroles/biosíntesis , Verrucomicrobia/genética , Verrucomicrobia/crecimiento & desarrollo , Verrucomicrobia/metabolismo , Intestinos/microbiología , Organismos Libres de Patógenos Específicos , Elementos Transponibles de ADN/genética , Mutagénesis , Interacciones Microbiota-Huesped/genética , Espacio Intracelular/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Transcripción Genética
15.
J Biol Chem ; 299(8): 104955, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37354973

RESUMEN

Recovery from COVID-19 depends on the ability of the host to effectively neutralize virions and infected cells, a process largely driven by antibody-mediated immunity. However, with the newly emerging variants that evade Spike-targeting antibodies, re-infections and breakthrough infections are increasingly common. A full characterization of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) mechanisms counteracting antibody-mediated immunity is therefore needed. Here, we report that ORF8 is a virally encoded SARS-CoV-2 factor that controls cellular Spike antigen levels. We show that ORF8 limits the availability of mature Spike by inhibiting host protein synthesis and retaining Spike at the endoplasmic reticulum, reducing cell-surface Spike levels and recognition by anti-SARS-CoV-2 antibodies. In conditions of limited Spike availability, we found ORF8 restricts Spike incorporation during viral assembly, reducing Spike levels in virions. Cell entry of these virions then leaves fewer Spike molecules at the cell surface, limiting antibody recognition of infected cells. Based on these findings, we propose that SARS-CoV-2 variants may adopt an ORF8-dependent strategy that facilitates immune evasion of infected cells for extended viral production.


Asunto(s)
COVID-19 , Regulación Viral de la Expresión Génica , Evasión Inmune , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Humanos , Anticuerpos Antivirales , COVID-19/inmunología , COVID-19/virología , Evasión Inmune/genética , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/genética , Regulación Viral de la Expresión Génica/genética , Células A549 , Células HEK293 , Retículo Endoplásmico/virología , Interacciones Microbiota-Huesped/genética , Interacciones Microbiota-Huesped/inmunología
16.
J Virol ; 97(4): e0024523, 2023 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-37017521

RESUMEN

Viruses constantly evolve and adapt to the antiviral defenses of their hosts. The biology of viral circumvention of these selective pressures can often be attributed to the acquisition of novel antagonistic gene products or by rapid genome change that prevents host recognition. To study viral evasion of RNA interference (RNAi)-based defenses, we established a robust antiviral system in mammalian cells using recombinant Sendai virus designed to be targeted by endogenous host microRNAs (miRNAs) with perfect complementarity. Using this system, we previously demonstrated the intrinsic ability of positive-strand RNA viruses to escape this selective pressure via homologous recombination, which was not observed in negative-strand RNA viruses. Here, we show that given extensive time, escape of miRNA-targeted Sendai virus was enabled by host adenosine deaminase acting on RNA 1 (ADAR1). Independent of the viral transcript targeted, ADAR1 editing resulted in disruption of the miRNA-silencing motif, suggesting an intolerance for extensive RNA-RNA interactions necessary for antiviral RNAi. This was further supported in Nicotiana benthamiana, where exogenous expression of ADAR1 interfered with endogenous RNAi. Together, these results suggest that ADAR1 diminishes the effectiveness of RNAi and may explain why it is absent in species that utilize this antiviral defense system. IMPORTANCE All life at the cellular level has the capacity to induce an antiviral response. Here, we examine the result of imposing the antiviral response of one branch of life onto another and find evidence for conflict. To determine the consequences of eliciting an RNAi-like defense in mammals, we applied this pressure to a recombinant Sendai virus in cell culture. We find that ADAR1, a host gene involved in regulation of the mammalian response to virus, prevented RNAi-mediated silencing and subsequently allowed for viral replication. In addition, the expression of ADAR1 in Nicotiana benthamiana, which lacks ADARs and has an endogenous RNAi system, suppresses gene silencing. These data indicate that ADAR1 is disruptive to RNAi biology and provide insight into the evolutionary relationship between ADARs and antiviral defenses in eukaryotic life.


Asunto(s)
Adenosina Desaminasa , Interacciones Microbiota-Huesped , MicroARNs , Interferencia de ARN , Infecciones por Respirovirus , Animales , Adenosina Desaminasa/genética , Adenosina Desaminasa/metabolismo , Antivirales/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Replicación Viral/genética , Virus Sendai/clasificación , Silenciador del Gen , Humanos , Mutación , Sistemas de Lectura Abierta , Evolución Biológica , Interacciones Microbiota-Huesped/genética , Infecciones por Respirovirus/metabolismo , Infecciones por Respirovirus/virología
17.
Bull Exp Biol Med ; 174(4): 527-532, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36899205

RESUMEN

RNA interference in vertebrates acts as an antiviral mechanism only in undifferentiated embryonic stem cells and is mediated by microRNAs. In somatic cells, host microRNAs also bind to the genomes of RNA viruses, regulating their translation and replication. It has been shown that viral (+)RNA can evolve under the influence of host cell miRNAs. In more than two years of the pandemic, the SARS-CoV-2 virus has mutated significantly. It is quite possible that some mutations could be retained in the virus genome under the influence of miRNAs produced by alveolar cells. We demonstrated that microRNAs in human lung tissue exert evolutionary pressure on the SARS-CoV-2 genome. Moreover, a significant number of sites of host microRNA binding with the virus genome are located in the NSP3-NSP5 region responsible for autoproteolysis of viral polypeptides.


Asunto(s)
Células Epiteliales Alveolares , COVID-19 , MicroARNs , SARS-CoV-2 , Humanos , Células Epiteliales Alveolares/metabolismo , COVID-19/genética , Interacciones Microbiota-Huesped/genética , Pulmón/metabolismo , Pulmón/virología , MicroARNs/genética , MicroARNs/metabolismo , Mutación , SARS-CoV-2/genética
18.
Viruses ; 15(3)2023 03 11.
Artículo en Inglés | MEDLINE | ID: mdl-36992435

RESUMEN

During reactivation from latency, gammaherpesviruses radically restructure their host cell to produce virion particles. To achieve this and thwart cellular defenses, they induce rapid degradation of cytoplasmic mRNAs, suppressing host gene expression. In this article, we review mechanisms of shutoff by Epstein-Barr virus (EBV) and other gammaherpesviruses. In EBV, canonical host shutoff is accomplished through the action of the versatile BGLF5 nuclease expressed during lytic reactivation. We explore how BGLF5 induces mRNA degradation, the mechanisms by which specificity is achieved, and the consequences for host gene expression. We also consider non-canonical mechanisms of EBV-induced host shutoff. Finally, we summarize the limitations and barriers to accurate measurements of the EBV host shutoff phenomenon.


Asunto(s)
Infecciones por Virus de Epstein-Barr , Herpesvirus Humano 4 , Interacciones Microbiota-Huesped , Activación Viral , Humanos , Infecciones por Virus de Epstein-Barr/metabolismo , Infecciones por Virus de Epstein-Barr/virología , Gammaherpesvirinae/genética , Herpesvirus Humano 4/fisiología , ARN Mensajero/metabolismo , Proteínas Virales/genética , Proteínas Virales/metabolismo , Activación Viral/fisiología , Latencia del Virus , Interacciones Microbiota-Huesped/genética , Desoxirribonucleasas/metabolismo , Expresión Génica , Estabilidad del ARN
19.
Nature ; 615(7953): 720-727, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36922599

RESUMEN

Engineering the genetic code of an organism has been proposed to provide a firewall from natural ecosystems by preventing viral infections and gene transfer1-6. However, numerous viruses and mobile genetic elements encode parts of the translational apparatus7-9, potentially rendering a genetic-code-based firewall ineffective. Here we show that such mobile transfer RNAs (tRNAs) enable gene transfer and allow viral replication in Escherichia coli despite the genome-wide removal of 3 of the 64 codons and the previously essential cognate tRNA and release factor genes. We then establish a genetic firewall by discovering viral tRNAs that provide exceptionally efficient codon reassignment allowing us to develop cells bearing an amino acid-swapped genetic code that reassigns two of the six serine codons to leucine during translation. This amino acid-swapped genetic code renders cells resistant to viral infections by mistranslating viral proteomes and prevents the escape of synthetic genetic information by engineered reliance on serine codons to produce leucine-requiring proteins. As these cells may have a selective advantage over wild organisms due to virus resistance, we also repurpose a third codon to biocontain this virus-resistant host through dependence on an amino acid not found in nature10. Our results may provide the basis for a general strategy to make any organism safely resistant to all natural viruses and prevent genetic information flow into and out of genetically modified organisms.


Asunto(s)
Aminoácidos , Escherichia coli , Transferencia de Gen Horizontal , Código Genético , Interacciones Microbiota-Huesped , Biosíntesis de Proteínas , Virosis , Aminoácidos/genética , Aminoácidos/metabolismo , Codón/genética , Ecosistema , Escherichia coli/genética , Escherichia coli/virología , Código Genético/genética , Leucina/genética , Leucina/metabolismo , Biosíntesis de Proteínas/genética , ARN de Transferencia/genética , ARN de Transferencia/metabolismo , Serina/genética , Virosis/genética , Virosis/prevención & control , Interacciones Microbiota-Huesped/genética , Organismos Modificados Genéticamente/genética , Genoma Bacteriano/genética , Transferencia de Gen Horizontal/genética , Proteínas Virales/genética , Proteínas Virales/metabolismo
20.
J Virol ; 97(3): e0146322, 2023 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-36779754

RESUMEN

Entry of influenza A viruses (IAVs) into host cells is initiated by binding to sialic acids (Sias), their primary host cell receptor, followed by endocytosis and membrane fusion to release the viral genome into the cytoplasm of the host cell. Host tropism is affected by these entry processes, with a primary factor being receptor specificity. Sias exist in several different chemical forms, including the hydroxylated N-glycolylneuraminic acid (Neu5Gc), which is found in many hosts; however, it has not been clear how modified Sias affect viral binding and entry. Neu5Gc is commonly found in many natural influenza hosts, including pigs and horses, but not in humans or ferrets. Here, we engineered HEK293 cells to express the hydoxylase gene (CMAH) that converts Neu5Ac to Neu5Gc, or knocked out the Sia-CMP transport gene (SLC35A1), resulting in cells that express 95% Neu5Gc or minimal level of Sias, respectively. H3N2 (X-31) showed significantly reduced infectivity in Neu5Gc-rich cells compared to wild-type HEK293 (>95% Neu5Ac). To determine the effects on binding and fusion, we generated supported lipid bilayers (SLBs) derived from the plasma membranes of these cells and carried out single particle microscopy. H3N2 (X-31) exhibited decreased binding to Neu5Gc-containing SLBs, but no significant difference in H3N2 (X-31)'s fusion kinetics to either SLB type, suggesting that reduced receptor binding does not affect subsequent membrane fusion. This finding suggests that for this virus to adapt to host cells rich in Neu5Gc, only receptor affinity changes are required without further adaptation of virus fusion machinery. IMPORTANCE Influenza A virus (IAV) infections continue to threaten human health, causing over 300,000 deaths yearly. IAV infection is initiated by the binding of influenza glycoprotein hemagglutinin (HA) to host cell sialic acids (Sias) and the subsequent viral-host membrane fusion. Generally, human IAVs preferentially bind to the Sia N-acetylneuraminic acid (Neu5Ac). Yet, other mammalian hosts, including pigs, express diverse nonhuman Sias, including N-glycolylneuraminic acid (Neu5Gc). The role of Neu5Gc in human IAV infections in those hosts is not well-understood, and the variant form may play a role in incidents of cross-species transmission and emergence of new epidemic variants. Therefore, it is important to investigate how human IAVs interact with Neu5Ac and Neu5Gc. Here, we use membrane platforms that mimic the host cell surface to examine receptor binding and membrane fusion events of human IAV H3N2. Our findings improve the understanding of viral entry mechanisms that can affect host tropism and virus evolution.


Asunto(s)
Interacciones Microbiota-Huesped , Subtipo H3N2 del Virus de la Influenza A , Ácidos Siálicos , Internalización del Virus , Animales , Humanos , Células HEK293 , Subtipo H3N2 del Virus de la Influenza A/genética , Subtipo H3N2 del Virus de la Influenza A/metabolismo , Fusión de Membrana , Proteínas de Transporte de Nucleótidos/genética , Proteínas de Transporte de Nucleótidos/metabolismo , Ácidos Siálicos/química , Ácidos Siálicos/farmacología , Imagen Individual de Molécula , Acoplamiento Viral/efectos de los fármacos , Internalización del Virus/efectos de los fármacos , Interacciones Microbiota-Huesped/genética , Infecciones por Orthomyxoviridae/metabolismo , Infecciones por Orthomyxoviridae/virología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA