Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.058
Filtrar
1.
J Hypertens ; 42(6): 1027-1038, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38690904

RESUMEN

OBJECTIVE: Reno-renal reflexes are disturbed in cardiovascular and hypertensive conditions when elevated levels of pro-inflammatory mediators/cytokines are present within the kidney. We hypothesised that exogenously administered inflammatory cytokines tumour necrosis factor alpha (TNF-α) and interleukin (IL)-1ß modulate the renal sympatho-excitatory response to chemical stimulation of renal pelvic sensory nerves. METHODS: In anaesthetised rats, intrarenal pelvic infusions of vehicle [0.9% sodium chloride (NaCl)], TNF-α (500 and 1000 ng/kg) and IL-1ß (1000 ng/kg) were maintained for 30 min before chemical activation of renal pelvic sensory receptors was performed using randomized intrarenal pelvic infusions of hypertonic NaCl, potassium chloride (KCl), bradykinin, adenosine and capsaicin. RESULTS: The increase in renal sympathetic nerve activity (RSNA) in response to intrarenal pelvic hypertonic NaCl was enhanced during intrapelvic TNF-α (1000 ng/kg) and IL-1ß infusions by almost 800% above vehicle with minimal changes in mean arterial pressure (MAP) and heart rate (HR). Similarly, the RSNA response to intrarenal pelvic adenosine in the presence of TNF-α (500 ng/kg), but not IL-1ß, was almost 200% above vehicle but neither MAP nor HR were changed. There was a blunted sympatho-excitatory response to intrapelvic bradykinin in the presence of TNF-α (1000 ng/kg), but not IL-1ß, by almost 80% below vehicle, again without effect on either MAP or HR. CONCLUSION: The renal sympatho-excitatory response to renal pelvic chemoreceptor stimulation is modulated by exogenous TNF-α and IL-1ß. This suggests that inflammatory mediators within the kidney can play a significant role in modulating the renal afferent nerve-mediated sympatho-excitatory response.


Asunto(s)
Interleucina-1beta , Riñón , Sistema Nervioso Simpático , Factor de Necrosis Tumoral alfa , Animales , Interleucina-1beta/farmacología , Ratas , Riñón/inervación , Riñón/efectos de los fármacos , Masculino , Sistema Nervioso Simpático/efectos de los fármacos , Sistema Nervioso Simpático/fisiología , Ratas Sprague-Dawley , Frecuencia Cardíaca/efectos de los fármacos , Bradiquinina/farmacología , Reflejo/efectos de los fármacos , Presión Sanguínea/efectos de los fármacos , Adenosina/administración & dosificación , Adenosina/farmacología , Solución Salina Hipertónica/administración & dosificación , Solución Salina Hipertónica/farmacología
2.
J Orthop Surg Res ; 19(1): 239, 2024 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-38615043

RESUMEN

BACKGROUND: This study aims to explore how miR-98-5p affects osteoarthritis, focusing on its role in chondrocyte inflammation, apoptosis, and extracellular matrix (ECM) degradation. METHODS: Quantitative real-time PCR was used to measure miR-98-5p and CASP3 mRNA levels in OA cartilage tissues and IL-1ß-treated CHON-001 cells. We predicted miR-98-5p and CASP3 binding sites using TargetScan and confirmed them via luciferase reporter assays. Chondrocyte viability was analyzed using CCK-8 assays, while pro-inflammatory cytokines (IL-1ß, IL-6, TNF-α) were quantified via ELISA. Caspase-3 activity was examined to assess apoptosis, and Western blotting was conducted for protein marker quantification. RESULTS: Our results showed lower miR-98-5p levels in both OA cartilage and IL-1ß-stimulated cells. Increasing miR-98-5p resulted in reduced pro-inflammatory cytokines, decreased caspase-3 activity, and improved cell viability. Furthermore, miR-98-5p overexpression hindered IL-1ß-induced ECM degradation, evident from the decline in MMP-13 and ß-catenin levels, and an increase in COL2A1 expression. MiR-98-5p's impact on CASP3 mRNA directly influenced its expression. Mimicking miR-98-5p's effects, CASP3 knockdown also inhibited IL-1ß-induced inflammation, apoptosis, and ECM degradation. In contrast, CASP3 overexpression negated the suppressive effects of miR-98-5p. CONCLUSIONS: In conclusion, our data collectively suggest that miR-98-5p plays a protective role against IL-1ß-induced damage in chondrocytes by targeting CASP3, highlighting its potential as a therapeutic target for OA.


Asunto(s)
Caspasa 3 , MicroARNs , Osteoartritis , Humanos , Caspasa 3/genética , Caspasa 3/metabolismo , Condrocitos , Citocinas , Inflamación , Interleucina-1beta/farmacología , MicroARNs/genética , Osteoartritis/genética , Osteoartritis/metabolismo , Osteoartritis/patología , ARN Mensajero
3.
Clinics (Sao Paulo) ; 79: 100365, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38677194

RESUMEN

OBJECTIVE: This study explored the pharmacological mechanism of Tanshinone IIA (TAN IIA) in the treatment of Osteoarthritis (OA), which provided a certain reference for further research and clinical application of Tan IIA in OA. METHODS: CHON-001 cells were stimulated with 10 µg/mL IL-1ß for 48 h and treated with 10 µM TAN IIA for 48 h. Cellular viability and apoptosis were evaluated by CCK-8 assay and flow cytometry, and Cleaved caspase-3 was measured by Immunoblot assay and RT-qPCR. TNF-α, IL-6, and iNOS in CHON-001 cells were determined by RT-qPCR and ELISA. To further verify the effect of TAN IIA on OA, a rat model of OA in vivo was established by right anterior cruciate ligament transection. TAN IIA was administered at 50 mg/kg or 150 mg/kg for 7 weeks. The degree of cartilage destruction in OA rats was observed by TUNEL and HE staining. Cleaved caspase-3 and FBXO11 were measured by immunohistochemical staining, RT-qPCR, and Immunoblot. TNF-α, IL-6, and iNOS in chondrocytes of OA rats were detected by ELISA. RESULTS: IL-1ß stimulated CHON-001 cell apoptosis and inflammation, and TAN IIA had anti-apoptosis and anti-inflammatory effects on IL-1ß-regulated CHON-001 cells. TAN IIA down-regulated FBXO11 and inhibited PI3K/AKT and NF-κB pathways, thereby alleviating apoptotic and inflammatory reactions in CHON-001 cells under IL-1ß treatment. Moreover, TAN IIA treatment improved chondrocyte apoptosis and inflammations in OA rats. CONCLUSION: TAN IIA inhibits PI3K/Akt and NF-κB pathways by down-regulating FBXO11 expression, alleviates chondrocyte apoptosis and inflammation, and delays the progression of OA.


Asunto(s)
Abietanos , Apoptosis , Condrocitos , Interleucina-1beta , Osteoartritis , Condrocitos/efectos de los fármacos , Condrocitos/metabolismo , Animales , Abietanos/farmacología , Apoptosis/efectos de los fármacos , Interleucina-1beta/metabolismo , Interleucina-1beta/farmacología , Osteoartritis/tratamiento farmacológico , Osteoartritis/patología , Osteoartritis/metabolismo , Masculino , Proteínas F-Box/metabolismo , Ratas Sprague-Dawley , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , FN-kappa B/metabolismo , Supervivencia Celular/efectos de los fármacos , Ratas , Transducción de Señal/efectos de los fármacos , Modelos Animales de Enfermedad , Ensayo de Inmunoadsorción Enzimática , Citometría de Flujo , Caspasa 3/metabolismo
4.
Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi ; 38(3): 315-323, 2024 Mar 15.
Artículo en Chino | MEDLINE | ID: mdl-38500425

RESUMEN

Objective: To explore the molecular mechanism of miR-515-5p in inhibiting chondrocyte apoptosis and alleviating inflammatory response in osteoarthritis (OA). Methods: Human cartilage cell line C28/I2 was cultured in vitro and treated with 10 ng/mL interleukin 1ß (IL-1ß) for 24 hours to construct an in vitro OA model. C28/I2 cells were transfected with miR mimics, mimics negative control (NC), over expression (oe)-NC, and oe-Toll-like receptor 4 (TLR4), respectively, and then treated with 10 ng/mL IL-1ß for 24 hours to establish OA model. Cell proliferation capacity was detected by cell counting kit 8 and 5-Ethynyl-2'-deoxyuridine, cell apoptosis and cell cycle were detected by flow cytometry, and B-cell lymphoma 2 protion (Bcl-2), Bcl-2-associated X protein (Bax), cleaved-Caspase-3, TLR4, myeloid differentiation primary response gene 88 (MyD88), p65 and phosphorylated p65 (p-p65) protein expression levels were detected by Western blot. Real-time fluorescence quantitative PCR was used to detect mRNA expression levels of miR-515-5p and TLR4, and ELISA was used to detect pro-inflammatory factor prostaglandin E2 (PGE2), tumor necrosis factor α (TNF -α), and IL-6 levels in cell supernatant. The potential binding sites between miR-515-5p and TLR4 were predicted by BiBiServ2 database, and the targeting relationship between miR-515-5p and TLR4 was verified by dual luciferase reporting assay. Results: After the treatment of C28/I2 cells with IL-1ß, the expressions of miR-515-5p and Bcl-2 protein and the proliferation ability of C28/I2 cells significantly reduced. The expression levels of Bax and cleaved-Caspase-3 protein, the levels of pro-inflammatory factors (PGE2, TNF-α, IL-6) in the supernatant of C28/I2 cells, and the apoptosis of C28/I2 cells significantly increased. In addition, the proportion of the cells at S phase and G 2 phase decreased significantly, and the proportion of cells at G 1 phase increased significantly, suggesting that the cell cycle was blocked after IL-1ß treatment. After transfection with miR mimics, the expression level of miR-515-5p in the cells significantly up-regulated, partially reversing the apoptosis of OA chondrocytes induced by IL-1ß, and alleviating the cycle arrest and inflammatory response of OA chondrocytes. After treating C28/I2 cells with IL-1ß, the mRNA and protein levels of TLR4 significantly increased. Overexpression of miR-515-5p targeted inhibition of TLR4 expression and blocked activation of MyD88/nuclear factor κB (NF-κB) pathway. Overexpression of TLR4 could partially reverse the effect of miR mimics on IL-1ß-induced apoptosis and inflammation of OA chondrocytes. Conclusion: miR-515-5p negatively regulates the expression of TLR4, inhibits the activation of MyD88/NF-κB pathway and apoptosis of OA chondrocytes, and effectively alleviates the inflammatory response of the cells.


Asunto(s)
MicroARNs , Osteoartritis , Humanos , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Apoptosis , Proteína X Asociada a bcl-2/metabolismo , Caspasa 3/genética , Caspasa 3/metabolismo , Condrocitos/metabolismo , Dinoprostona/metabolismo , Interleucina-1beta/farmacología , Interleucina-1beta/metabolismo , Interleucina-6/genética , MicroARNs/genética , MicroARNs/metabolismo , Factor 88 de Diferenciación Mieloide/genética , Factor 88 de Diferenciación Mieloide/metabolismo , FN-kappa B/metabolismo , Osteoartritis/metabolismo , ARN Mensajero , Receptor Toll-Like 4/genética , Receptor Toll-Like 4/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
5.
J Cell Mol Med ; 28(7): e18173, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38494841

RESUMEN

Osteoarthritis (OA) is a chronic degenerative joint disease that affects worldwide. Oxidative stress plays a critical role in the chronic inflammation and OA progression. Scavenging overproduced reactive oxygen species (ROS) could be rational strategy for OA treatment. Bilirubin (BR) is a potent endogenous antioxidant that can scavenge various ROS and also exhibit anti-inflammatory effects. However, whether BR could exert protection on chondrocytes for OA treatment has not yet been elucidated. Here, chondrocytes were exposed to hydrogen peroxide with or without BR treatment. The cell viability was assessed, and the intracellular ROS, inflammation cytokines were monitored to indicate the state of chondrocytes. In addition, BR was also tested on LPS-treated Raw264.7 cells to test the anti-inflammation property. An in vitro bimimic OA microenvironment was constructed by LPS-treated Raw264.7 and chondrocytes, and BR also exert certain protection for chondrocytes by activating Nrf2/HO-1 pathway and suppressing NF-κB signalling. An ACLT-induced OA model was constructed to test the in vivo therapeutic efficacy of BR. Compared to the clinical used HA, BR significantly reduced cartilage degeneration and delayed OA progression. Overall, our data shows that BR has a protective effect on chondrocytes and can delay OA progression caused by oxidative stress.


Asunto(s)
FN-kappa B , Osteoartritis , Humanos , FN-kappa B/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Bilirrubina/farmacología , Lipopolisacáridos/farmacología , Osteoartritis/tratamiento farmacológico , Osteoartritis/metabolismo , Inflamación/tratamiento farmacológico , Condrocitos/metabolismo , Interleucina-1beta/farmacología
6.
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi ; 40(3): 193-198, 2024 Mar.
Artículo en Chino | MEDLINE | ID: mdl-38512028

RESUMEN

Objective To investigate the regulation of IL-1ß on the expression of CD200 in human umbilical cord mesenchymal stem cells (hUC-MSCs), its role in macrophage polarization and the underlying mechanism. Methods hUC-MSCs were isolated and cultured in serum-free medium. Morphological observation and the expressions of CD73, CD90, CD105, CD14, CD34, CD45 and HLA-DR were detected by flow cytometry to confirm the properties of mesenchymal stem cells. hUC-MSCs were treated with IL-1ß at the final concentration of 20 ng/mL for 24 hours. The proportion of CD200 positive cells was measured by flow cytometry. Real-time quantitative PCR and Western blot analysis were used to detect CD200 mRNA and protein expression levels. hUC-MSCs infected with CD200 overexpression (OE-CD200) and its negative control (OE-NC) lectin virus were treated with IL-1ß and co-cultured with PMA-activated THP-1 macrophages. The proportion of CD11c and CD206 positive cells was measured by flow cytometry. hUC-MSCs were treated with IL-1ß in combination with PD98059, and the expression of MAPK signaling pathway-related proteins and its effect on CD200 expression were detected by Western blot analysis. Results IL-1ß significantly down-regulated the expression of CD200 protein and the proportion of CD200 positive cells. Overexpression of CD200 significantly up-regulated the expression of CD200 in hUC-MSCs, and increased the proportion of CD206-positive macrophages. IL-1ß activated the ERK1/2 signaling pathway in hUC-MSCs, and PD98059 up-regulated the expression of CD200 protein in hUC-MSCs treated with IL-1ß. Conclusion IL-1ß inhibits the expression of CD200 by activating ERK1/2 signaling pathway, and reduces the immunosuppressive effect of hUC-MSCs on regulating the M2-type polarization of macrophages.


Asunto(s)
Cordón Umbilical , Humanos , Antígenos CD34 , Western Blotting , Técnicas de Cocultivo , Citometría de Flujo , Interleucina-1beta/farmacología
7.
Exp Cell Res ; 437(2): 114009, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38537745

RESUMEN

Osteoarthritis (OA) is a degenerative disease that affects millions of individuals worldwide. Despite its prevalence, the exact causes and mechanisms behind OA are still not fully understood, resulting in a lack of effective treatments to slow down or halt disease progression. Recent research has discovered that extracellular vesicles (EVs) present in the circulation of young mice have a remarkable ability to activate musculoskeletal stem cells in elderly mice. Conversely, EVs derived from elderly mice do not exhibit the same potential, indicating that EVs obtained from young individuals may hold promise to activate aging cells in degenerative tissue. However, it remains unknown whether EVs derived from young individuals can also address cartilage degeneration caused by aging. In this study, we first evaluated EVs derived from young human plasma (YEVs) and EVs derived from old human plasma (OEVs) in an in vitro experiment using chondrocytes. The results revealed that YEVs effectively stimulated chondrocyte proliferation and migration, while OEVs from old plasma did not exhibit a similar effect. Given that OA represents a more complex inflammatory microenvironment, we further determine whether the benefits of YEVs on chondrocytes can be maintained in this context. Our findings indicate that YEVs have the ability to positively regulate chondrocyte function and protect them against apoptosis induced by IL-1ß and TNF-α in an in vitro OA model. Furthermore, we discovered that lyophilized EVs could be stored under mild conditions without any alterations in their physical characteristics. Considering the exceptional therapeutic effects and the wide availability of EVs from young plasma, they hold significant promise as a potential approach to activate chondrocytes and promote cartilage regeneration in early-stage OA.


Asunto(s)
Vesículas Extracelulares , Osteoartritis , Humanos , Ratones , Animales , Condrocitos , Factor de Necrosis Tumoral alfa/farmacología , Cartílago , Interleucina-1beta/farmacología
8.
Discov Med ; 36(181): 266-277, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38409832

RESUMEN

BACKGROUND: Osteoarthritis (OA) is a common disease that causes pain to many older adults. Because the pathogenesis is not fully elucidated, effective drug therapies are currently lacking. This study aimed to determine how salidroside (Sal)-mediated reduction of osteoarthritis development in mice worked and to identify the underlying mechanism. METHODS: Using in vitro experiments, ATDC5 cells were treated with various concentrations of Sal and interleukin (IL)-1ß for 24 hours to mimic OA. An enzyme-linked immunosorbent assay (ELISA) was conducted to detect the production of pro-inflammatory cytokines and reactive oxygen species (ROS). Western blotting was performed to observe the nuclear factor-kappa B (NF-κB) and nuclear factor erythroid 2-related factor 2 (Nrf2) pathways. In in vivo experiments, pathological examination was used to assess the effects of Sal on alleviating OA progression in mice. Nrf2 signaling and its downstream proteins were further tested by immunofluorescence analysis. RESULTS: The results showed that both pro-inflammatory cytokines and ROS were significantly reduced following Sal treatment in a concentration-dependent manner. Western blotting revealed that Sal could inhibit the expression of the NF-κB/hypoxia-inducible factor-2α pathway and activate the Nrf2/heme oxygenase-1 pathway. In vivo experiments showed that the cartilage surface in the saline-treated group eroded to a greater extent than the Sal-treated groups (p < 0.001). Immunohistochemistry analysis revealed that matrix metallopeptidase (MMP) 9, MMP13, and a disintegrin and metalloproteinase with thrombospondin motifs-5 (ADAMTS-5) decreased expression level. In contrast, collagen-II and aggrecan increased in the Sal-treated groups compared to the saline-treated group. CONCLUSIONS: Our findings indicate that Sal can alleviate OA progression by promoting anti-oxidant expression and inhibiting degradation enzyme expression. These findings suggest that Sal inhibits the NF-κB pathway and its downstream targets through up-regulating the Nrf2 pathway.


Asunto(s)
Condrocitos , Glucósidos , Osteoartritis , Fenoles , Ratones , Animales , Condrocitos/metabolismo , FN-kappa B/metabolismo , FN-kappa B/farmacología , FN-kappa B/uso terapéutico , Factor 2 Relacionado con NF-E2/metabolismo , Factor 2 Relacionado con NF-E2/farmacología , Factor 2 Relacionado con NF-E2/uso terapéutico , Interleucina-1beta/farmacología , Interleucina-1beta/uso terapéutico , Especies Reactivas de Oxígeno , Antiinflamatorios , Osteoartritis/tratamiento farmacológico , Osteoartritis/patología , Citocinas/metabolismo , Inflamación/tratamiento farmacológico
9.
Cell Cycle ; 23(2): 205-217, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38389322

RESUMEN

The aim of this study was to explore the effect and mechanism of Sirt6 on DNA damage repair in OA chondrocytes. Cartilage tissues were collected from OA patients with knee arthroplasty and traumatic amputation patients without OA. Besides, 7-week-old male C57BL/6 mice were randomly divided into Control and OA groups; CHON-001 cells of corresponding groups were treated with 10 ng/ml interleukin (IL)-1ß, respectively. Subsequently, Sirt6 or siNrf2 was over-expressed in CHON-001 cells to observe the effect of Sirt6 on DNA damage and senescence of chondrocytes by IL-1ß through the nuclear factor E2-related factor 2 (Nrf2) signaling pathway. The expression level of Sirt6 in human and mouse OA cartilage tissues was significantly decreased. However, 24 h of treatment with IL-1ß significantly decreased the expression of Sirt6 in chondrocytes, induced DNA damage, and promoted cellular senescence. In addition, over-expression of Sirt6 promoted DNA damage repair and inhibited cellular senescence in IL-1ß-induced chondrocytes. Moreover, the overexpression of Sirt6 activated the Keap1/Nrf2/HO-1 signaling pathway in chondrocytes, while knockdown of Nrf2 expression inhibited the DNA damage repair and anti-senescence effects of Sirt6 on IL-1ß-treated chondrocytes. Sirt6 may reduce DNA damage and cellular senescence in OA chondrocytes induced by IL-1ß through activating the Keap1/Nrf2/HO-1 signaling pathway.


Asunto(s)
Condrocitos , Reparación del ADN , Osteoartritis , Transducción de Señal , Sirtuinas , Animales , Humanos , Masculino , Ratones , Cartílago Articular/patología , Cartílago Articular/metabolismo , Senescencia Celular/genética , Condrocitos/metabolismo , Condrocitos/efectos de los fármacos , Condrocitos/patología , Daño del ADN , Reparación del ADN/efectos de los fármacos , Hemo-Oxigenasa 1/metabolismo , Hemo-Oxigenasa 1/genética , Interleucina-1beta/metabolismo , Interleucina-1beta/farmacología , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Proteína 1 Asociada A ECH Tipo Kelch/genética , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Ratones Endogámicos C57BL , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Osteoartritis/patología , Osteoartritis/metabolismo , Sirtuinas/metabolismo , Sirtuinas/genética
10.
J Orthop Surg Res ; 19(1): 23, 2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38166985

RESUMEN

BACKGROUND: Osteoarthritis (OA) is a common degenerative disease involving articular cartilage, in which ferroptosis of chondrocytes plays an important role. Baicalin (BAI) exerts regulatory effects in a wide range of orthopedic diseases including OA, but its effect on ferroptosis of chondrocytes (CHs) is still unclear. The purpose of this study was to determine the effect of BAI on ferroptosis in human OA chondrocytes (OACs), and to explore its possible mechanism. METHODS: CHs were treated with IL-1ß (10 ng/mL) to simulate inflammation in vitro. Immunofluorescence, quantitative RT-PCR, Western blotting and cell viability assay were performed to evaluate the impacts of BAI on Fe2+ level, mitochondrial dysfunction, ferroptosis-related proteins, oxidative stress and cytotoxicity in CHs. Additionally, siRNA was made use of to knock out nuclear factor E2-related factor 2 (Nrf2) to analyze the role played by Nrf2 in BAI-induced CH ferroptosis. RESULTS: BAI eliminated IL-1ß-induced Fe2+ accumulation, changes in mitochondrial membrane potential and ferroptosis-related protein GPX4, SLC7A11, P53 and ACSL4 levels, as well as reactive oxygen species (ROS), lipid peroxidation (LPO) and malondialdehyde (MDA) accumulation in CHs. Besides, BAI reversed IL-1ß-induced decrease of Collagen II and increase of MMP13 in CHs. Meanwhile, BAI attenuated IL-1ß-induced CH toxicity and promoted Nrf2 antioxidant system activation. When Nrf2 was knocked down by siRNA, the effects of BAI on IL-1ß-induced ferroptosis-related proteins and antioxidant stress in CHs were significantly weakened. CONCLUSIONS: This study demonstrates that IL-1ß can induce CH ferroptosis. BAI is able to inhibit IL-1ß-induced CH ferroptosis and ECM degradation, and the specific mechanism may be that it can inhibit IL-1ß-induced CH ferroptosis by activating Nrf2 antioxidant system to attenuate the accumulation of intracellular ROS and lipid ROS.


Asunto(s)
Ferroptosis , Factor 2 Relacionado con NF-E2 , Osteoartritis , Humanos , Antioxidantes/farmacología , Condrocitos/metabolismo , Ferroptosis/efectos de los fármacos , Interleucina-1beta/farmacología , Interleucina-1beta/metabolismo , Factor 2 Relacionado con NF-E2/efectos de los fármacos , Factor 2 Relacionado con NF-E2/metabolismo , Osteoartritis/metabolismo , Especies Reactivas de Oxígeno/metabolismo , ARN Interferente Pequeño , Transducción de Señal
11.
J Histochem Cytochem ; 72(2): 95-108, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38213081

RESUMEN

This study aimed to evaluate the effects of general control non-derepressible 2 (GCN2) on osteoarthritis (OA) in vivo and in vitro. First, anterior cruciate ligament transection (ACLT)-induced rat model and interleukin (IL)-1ß-induced ATDC5 chondrocyte were established. Hematoxylin and eosin staining and safranin O/fast green staining were employed for analyzing the histological changes in the rat cartilage. In addition, immunohistochemistry, quantitative real-time polymerase chain reaction, enzyme-linked immunosorbent assay, western blot, and immunofluorescence staining were employed for examining cartilage degeneration-, inflammation-, autophagy-, and NLR family pyrin domain containing 3 (NLRP3) inflammasome-associated genes expression. Moreover, 2,7-dichlorodihydrofluorescein acetoacetic acid probe was utilized for examining the intracellular reactive oxygen species. In addition, 5-ethynyl-2'-deoxyuridine assay and flow cytometry were applied for detecting chondrocyte proliferation and apoptosis IL-1ß-treated ATDC5 chondrocytes. GCN2 overexpression ameliorated articular cartilage degeneration and inflammation but promoted chondrocyte autophagy in ACLT-induced OA rats. Similarly, we demonstrated that the upregulation of GCN2 could promote chondrocyte proliferation, suppress chondrocyte apoptosis, attenuate chondrocyte inflammation and extracellular matrix degradation, and promote chondrocyte autophagy. Moreover, GCN2 overexpression could inhibit the activation of NLRP3 inflammasome in IL-1ß-induced ATDC5 chondrocyte. Furthermore, 3-methyladenine neutralized the protective and autophagy-promoting effects of GCN2 overexpression on ATDC5 chondrocytes. GCN2 could attenuate inflammation and cartilage degeneration, promote chondrocyte autophagy, and inhibit NLRP3 inflammasome activation in OA.


Asunto(s)
Cartílago Articular , Osteoartritis , Ratas , Animales , Inflamasomas , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Osteoartritis/metabolismo , Osteoartritis/patología , Inflamación/patología , Apoptosis , Condrocitos , Interleucina-1beta/metabolismo , Interleucina-1beta/farmacología
12.
Nan Fang Yi Ke Da Xue Xue Bao ; 44(1): 108-118, 2024 Jan 20.
Artículo en Chino | MEDLINE | ID: mdl-38293982

RESUMEN

OBJECTIVE: To investigate the mechanism that mediates the inhibitory effect of Xinfeng Capsule (XFC) on interleukin (IL)-1ß-induced impairment of chondrocytes. METHODS: XFC-medicated serum was collected from SD rats with XFC gavage, and its optimal concentration for chondrocyte treatment was determined using Cell Counting Kit-8 assay and flow cytometry. Dual luciferase reporter analysis was performed to analyze the targeting relationship between miR-502-5p and TRAF2. In cultured human chondrocytes induced with IL-1ß, the effects of transfection with miR-502-5p inhibitor and XFC-medicated serum, alone or in combination, on expression levels of IL-1ß, tumor necrosis factor-α (TNF-α), IL-4, and IL-10 were examined with ELISA, and the changes in the expressions of collagen type Ⅱ alpha 1 (COL2A1), matrix metalloproteinase 13 (MMP13), adisintegrin and metalloproteinase with thrombospondin motifs 5 (ADAMTS5), and miR-502-5p/TRAF2/NF-κB axis gene expression were detected using RT-qPCR, Western blotting, and immunofluorescence assay. RESULTS: In cultured human chondrocytes, treatment with IL-1ß significantly decreased the cell viability, increased cell apoptosis rate, lowered miR-502-5p, IL-4, IL-10, and COL2A1 expressions, and enhanced IL-1ß, TNF-α, ADAMTS5, MMP13, TRAF2, and NF-κB p65 expressions (P < 0.05), and these changes were significantly improved by treatment with XFC-medicated serum at the optimal concentration of 20% (P < 0.05). Transfection of the chondrocytes with miR-502-5p inhibitor resulted in elevated expressions of IL-1ß, TNF-α, ADAMTS5, MMP13, TRAF2, and NF-κB p65 and lowered expressions of miR-502-5p, IL-4, IL-10, and COL2A1, and XFC-medicated serum obviously reversed the effects of miR-502-5p inhibitor. CONCLUSION: XFC can inhibit IL-1ß-induced inflammatory response and ECM degradation in cultured human chondrocytes possibly by regulating the miR-502-5p/TRAF2/NF-κB axis.


Asunto(s)
Medicamentos Herbarios Chinos , MicroARNs , FN-kappa B , Humanos , Animales , Ratas , FN-kappa B/metabolismo , Interleucina-10 , Factor 2 Asociado a Receptor de TNF/metabolismo , Factor 2 Asociado a Receptor de TNF/farmacología , Condrocitos/metabolismo , Interleucina-1beta/farmacología , Interleucina-1beta/metabolismo , Metaloproteinasa 13 de la Matriz/metabolismo , MicroARNs/metabolismo , Transducción de Señal , Factor de Necrosis Tumoral alfa/metabolismo , Interleucina-4/metabolismo , Ratas Sprague-Dawley , Inflamación/metabolismo , Matriz Extracelular/metabolismo
13.
J Cell Physiol ; 239(4): e31181, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38219076

RESUMEN

Stress-induced hair loss is a prevalent health concern, with mechanisms that remain unclear, and effective treatment options are not yet available. In this study, we investigated whether stress-induced hair loss was related to an imbalanced immune microenvironment. Screening the skin-infiltrated immune cells in a stressed mouse model, we discovered a significant increase in macrophages upon stress induction. Clearance of macrophages rescues mice from stress-induced hair shedding and depletion of hair follicle stem cells (HFSCs) in the skin, demonstrating the role of macrophages in triggering hair loss in response to stress. Further flow cytometry analysis revealed a significant increase in M1 phenotype macrophages in mice under stressed conditions. In searching for humoral factors mediating stress-induced macrophage polarization, we found that the hormone Norepinephrine (NE) was elevated in the blood of stressed mice. In addition, in-vivo and in-vitro studies confirm that NE can induce macrophage polarization toward M1 through the ß-adrenergic receptor, Adrb2. Transcriptome, enzyme-linked immunosorbent assay (ELISA), and western blot analyses reveal that the NLRP3/caspase-1 inflammasome signaling and its downstream effector interleukin 18 (IL-18) and interleukin 1 beta (IL-1ß) were significantly upregulated in the NE-treated macrophages. However, inhibition of the NE receptor Adrb2 with ICI118551 reversed the upregulation of NLRP3/caspase-1, IL-18, and IL-1ß. Indeed, IL-18 and IL-1ß treatments lead to apoptosis of HFSCs. More importantly, blocking IL-18 and IL-1ß signals reversed HFSCs depletion in skin organoid models and attenuated stress-induced hair shedding in mice. Taken together, this study demonstrates the role of the neural (stress)-endocrine (NE)-immune (M1 macrophages) axis in stress-induced hair shedding and suggestes that IL-18 or IL-1ß may be promising therapeutic targets.


Asunto(s)
Alopecia , Interleucina-18 , Interleucina-1beta , Proteína con Dominio Pirina 3 de la Familia NLR , Estrés Psicológico , Animales , Ratones , Alopecia/inmunología , Caspasas , Inflamasomas , Interleucina-18/genética , Interleucina-18/farmacología , Interleucina-18/uso terapéutico , Interleucina-1beta/genética , Interleucina-1beta/farmacología , Interleucina-1beta/uso terapéutico , Macrófagos , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Estrés Psicológico/complicaciones , Norepinefrina/uso terapéutico , Agonistas de Receptores Adrenérgicos alfa 2/uso terapéutico , Apoptosis/efectos de los fármacos
14.
Nat Genet ; 56(1): 85-99, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38092881

RESUMEN

Inflammation is characterized by a biphasic cycle consisting initially of a proinflammatory phase that is subsequently resolved by anti-inflammatory processes. Interleukin-1ß (IL-1ß) is a master regulator of proinflammation and is encoded within the same topologically associating domain (TAD) as IL-37, which is an anti-inflammatory cytokine that opposes the function of IL-1ß. Within this TAD, we identified a long noncoding RNA called AMANZI, which negatively regulates IL-1ß expression and trained immunity through the induction of IL37 transcription. We found that the activation of IL37 occurs through the formation of a dynamic long-range chromatin contact that leads to the temporal delay of anti-inflammatory responses. The common variant rs16944 present in AMANZI augments this regulatory circuit, predisposing individuals to enhanced proinflammation or immunosuppression. Our work illuminates a chromatin-mediated biphasic circuit coordinating expression of IL-1ß and IL-37, thereby regulating two functionally opposed states of inflammation from within a single TAD.


Asunto(s)
Cromatina , Inflamación , Humanos , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Interleucina-1beta/farmacología , Cromatina/genética , Inflamación/genética , Inflamación/metabolismo , Citocinas , Antiinflamatorios , Interleucina-1/metabolismo
15.
Pharmacol Res ; 200: 107050, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38159784

RESUMEN

BACKGROUND: Immune responses play a significant role in hypertension, though the importance of key inflammatory mediators remains to be defined. We used a systematic literature review and meta-analysis to study the associations between key cytokines and incident hypertension. METHODS: We performed a systematic search of Pubmed/Medline, Embase, Web of Science, and the Cochrane Central Register of Controlled Trials (CENTRAL), for peer-reviewed studies published up to August 2022. Incident hypertension was defined as systolic blood pressure ≥ 140 mmHg or diastolic blood pressure ≥ 90 mmHg and/or the use of antihypertensive medications. Random effects meta-analyses were used to calculate pooled hazard ratios (HRs)/risk ratios (RRs) and 95% confidence intervals by cytokine levels (highest vs. lowest quartile). RESULTS: Only IL-6 and IL-1ß levels have evidence allowing for quantitative evaluation concerning the onset of hypertension. Six studies (10406 participants, 2932 incident cases) examined the association of IL-6 with incident hypertension. The highest versus lowest quartile of circulating IL-6 was associated with a significant HR/RR of hypertension (1.61, 95% CI: 1.00 to 2.60; I2 =87%). After adjusting for potential confounders, including body mass index (BMI), HR/RR was no longer significant (HR/RR: 1.24; 95% CI, 0.96 to 1.61; I2 = 56%). About IL-1ß, neither the crude (HR/RR: 1.03; 95% CI, 0.60 to 1.76; n = 2) nor multivariate analysis (HR/RR: 0.97, 95% CI, 0.60 to 1.56; n = 2) suggested a significant association with the risk of developing hypertension. CONCLUSIONS: A limited number of studies suggest that higher IL-6, but not IL-1ß, might be associated with the development of hypertension.


Asunto(s)
Citocinas , Hipertensión , Humanos , Antihipertensivos/uso terapéutico , Presión Sanguínea , Citocinas/uso terapéutico , Hipertensión/epidemiología , Hipertensión/tratamiento farmacológico , Interleucina-1beta/farmacología , Interleucina-6
16.
Cytokine ; 173: 156407, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37924741

RESUMEN

Uveitis, or intraocular inflammation, is a potentially blinding condition that mostly affects the working-age population. The cytokines, tumor necrosis factor (TNF)-α and interleukin (IL)-1ß, play a role in the pathogenesis of non-infectious uveitis and have been linked to the breakdown of the inner blood-retinal barrier, composed mainly of retinal endothelial cells, leading to macular oedema and vascular leakage. However, the effects of TNF-α and IL-1ß on human retinal endothelial function are not fully understood. In this work, we investigated the impact of TNF-α and IL-1ß on several aspects of human retinal endothelial cell biology. Through a real-time biosensor, the impact of TNF-α and IL-1ß on formation of a retinal endothelial cell barrier was analyzed. Changes in junctional components were assessed via RT-qPCR and immunolabelling. Cell survival, necrosis and apoptosis were appraised via cell proliferation and flow cytometric studies. Tumor necrosis factor-α and IL-1ß impaired the electrical resistance of the retinal endothelial cell barrier, while the addition of a potentially barrier-impairing cytokine, IL-6, did not enhance the effect of TNF-α and IL-1ß. Level of the gene transcript encoding zonula occludens (ZO)-1 was diminished, while ZO-1 protein configuration was changed by TNF-α and IL-1ß. Both cytokines affected human retinal endothelial cell proliferation and viability, while only TNF-α increased rates of necrosis. These results indicate that TNF-α and IL-1ß are important drivers of retinal endothelial dysfunction in non-infectious uveitis, suggesting that targeting these cytokines is critical when treating complications of uveitis, such as macular oedema and vascular leakage.


Asunto(s)
Edema Macular , Uveítis , Humanos , Interleucina-1beta/farmacología , Interleucina-1beta/metabolismo , Factor de Necrosis Tumoral alfa/farmacología , Factor de Necrosis Tumoral alfa/metabolismo , Células Endoteliales/metabolismo , Edema Macular/metabolismo , Citocinas/metabolismo , Necrosis/metabolismo
17.
Exp Cell Res ; 433(2): 113854, 2023 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-37952573

RESUMEN

Osteoarthritis (OA) is a common musculoskeletal disorder that impairs function and reduces the quality of life. Extracellular matrix (ECM) degradation and inflammatory mechanisms are crucial to the progression of OA. In this study, we aimed to investigate the anti-inflammatory activity, anti-ECM degradation property, and glucose transport capacity of quercitrin (QCT) on IL-1ß-treated rat primary chondrocytes. Rat primary chondrocytes were treated with IL-1ß to simulate inflammatory environmental conditions and OA in vitro. We examined the effects of QCT at concentrations ranging from 0 to 200 µM on the viability of rat chondrocytes and selected 5 µM for further study. Using qRT-PCR, immunofluorescent, immunocytochemistry, and western blotting techniques, we identified the potential molecular mechanisms and signaling pathways that are responsible for these effects. We established an OA rat model through anterior cruciate ligament transection (ACLT). The animals were then periodically injected with QCT into the knee articular cavity. Our in vivo and in vitro study showed that QCT could inhibit IL-1ß-activated inflammation and ECM degradation in chondrocyte. Furthermore, QCT could inhibit the NF-κB signal pathway and enhance glucose transport capacity in the IL-1ß-stimulated chondrocytes. In vivo study proved that QCT attenuates OA progression in rats. Overall, QCT inhibited the activation of NF-κB and enhanced glucose transport capacity to alleviate the progression of OA.


Asunto(s)
FN-kappa B , Osteoartritis , Ratas , Animales , FN-kappa B/metabolismo , Calidad de Vida , Células Cultivadas , Transducción de Señal , Osteoartritis/tratamiento farmacológico , Osteoartritis/metabolismo , Inflamación/metabolismo , Condrocitos/metabolismo , Glucosa/farmacología , Interleucina-1beta/farmacología , Interleucina-1beta/metabolismo
18.
J Orthop Surg Res ; 18(1): 877, 2023 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-37980493

RESUMEN

BACKGROUND: Recent studies have shown that circRNAs are involved in the pathogenesis of osteoarthritis (OA) by affecting various fundamental cellular characteristics of chondrocytes. The purpose of this paper is to investigate the role and regulatory mechanism of hsa_circ_0020014 (circ_0020014) in chondrocytes of OA. METHODS: The inflammatory cytokine interleukin 1 beta (IL-1ß) was used to stimulate human chondrocytes. Cell viability, proliferation, and apoptosis were evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT), 5-Ethynyl-2'-deoxyuridine (EdU), and flow cytometry assays. Several protein levels were determined by western blotting (WB). Levels of inflammatory cytokines and malondialdehyde (MDA) were determined by enzyme-linked immunosorbent assay (ELISA). Relative expression of circ_0020014 was estimated by real-time polymerase quantitative chain reaction (RT-qPCR). Bioinformatics prediction combined with dual-luciferase reporter, RIP and RNA pull-down assays were done to probe into the regulatory mechanism of circ_0020014. RESULTS: Circ_0020014 was overexpressed in OA patient-derived articular cartilages and IL-1ß-stimulated chondrocytes. Silencing of circ_0020014 lighted IL-1ß-prompted chondrocyte proliferation repression, apoptosis, inflammation, and oxidative stress. Mechanically, circ_0020014 functioned as a miR-24-3p molecular sponge to regulate cathepsin B (CTSB) expression. Furthermore, miR-24-3p inhibition alleviated circ_0020014 knockdown-mediation repression of IL-1ß-urged chondrocyte injury. In addition, CTSB overexpression whittled miR-24-3p upregulation-mediated suppression of IL-1ß-urged chondrocyte injury. CONCLUSION: Our findings demonstrated that the circ_0020014/miR-24-3p/CTSB axis was associated with IL-1ß-prompted chondrocyte injury, supporting the involvement of circ_0020014 in the OA pathogenesis.


Asunto(s)
Condrocitos , MicroARNs , Humanos , Catepsina B , Interleucina-1beta/farmacología , Apoptosis/genética , Citocinas , MicroARNs/genética
19.
J Physiol ; 601(21): 4699-4721, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37815420

RESUMEN

Doxorubicin, a conventional chemotherapeutic agent prescribed for cancer, causes skeletal muscle atrophy and adversely affects mobility and strength. Given that doxorubicin-induced muscle atrophy is attributable primarily to oxidative stress, its effects could be mitigated by antioxidant-focused therapies; however, these protective therapeutic targets remain ambiguous. The aim of this study was to demonstrate that doxorubicin triggers severe muscle atrophy via upregulation of oxidative stress (4-hydroxynonenal and malondialdehyde) and atrogenes (atrogin-1/MAFbx and muscle RING finger-1) in association with decreased expression of the antioxidant enzyme extracellular superoxide dismutase (EcSOD), in cultured C2C12 myotubes and mouse skeletal muscle. Supplementation with EcSOD recombinant protein elevated EcSOD levels on the cellular membrane of cultured myotubes, consequently inhibiting doxorubicin-induced oxidative stress and myotube atrophy. Furthermore, doxorubicin treatment reduced interleukin-1ß (IL-1ß) mRNA expression in cultured myotubes and skeletal muscle, whereas transient IL-1ß treatment increased EcSOD protein expression on the myotube membrane. Notably, transient IL-1ß treatment of cultured myotubes and local administration in mouse skeletal muscle attenuated doxorubicin-induced muscle atrophy, which was associated with increased EcSOD expression. Collectively, these findings reveal that the regulation of skeletal muscle EcSOD via maintenance of IL-1ß signalling is a potential therapeutic approach to counteract the muscle atrophy mediated by doxorubicin and oxidative stress. KEY POINTS: Doxorubicin, a commonly prescribed chemotherapeutic agent for patients with cancer, induces severe muscle atrophy owing to increased expression of oxidative stress; however, protective therapeutic targets are poorly understood. Doxorubicin induced muscle atrophy owing to increased expression of oxidative stress and atrogenes in association with decreased protein expression of extracellular superoxide dismutase (EcSOD) in cultured C2C12 myotubes and mouse skeletal muscle. Supplementation with EcSOD recombinant protein increased EcSOD levels on the cellular membrane of cultured myotubes, resulting in inhibition of doxorubicin-induced oxidative stress and myotube atrophy. Doxorubicin treatment decreased interleukin-1ß (IL-1ß) expression in cultured myotubes and skeletal muscle, whereas transient IL-1ß treatment in vivo and in vitro increased EcSOD protein expression and attenuated doxorubicin-induced muscle atrophy. These findings reveal that regulation of skeletal muscle EcSOD via maintenance of IL-1ß signalling is a possible therapeutic approach for muscle atrophy mediated by doxorubicin and oxidative stress.


Asunto(s)
Antioxidantes , Neoplasias , Humanos , Ratones , Animales , Antioxidantes/farmacología , Interleucina-1beta/metabolismo , Interleucina-1beta/farmacología , Interleucina-1beta/uso terapéutico , Músculo Esquelético/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Atrofia Muscular/inducido químicamente , Atrofia Muscular/prevención & control , Doxorrubicina/toxicidad , Doxorrubicina/metabolismo , Neoplasias/metabolismo , Superóxido Dismutasa/genética , Superóxido Dismutasa/metabolismo , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/farmacología , Proteínas Recombinantes/uso terapéutico
20.
Eur Spine J ; 32(10): 3413-3424, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37563485

RESUMEN

PURPOSE: To elucidate whether pro-inflammatory cytokines might influence the commitment of intervertebral disc (IVD)- and ligamentum flavum (LF)-derived progenitor cells toward either osteogenesis or adipogenesis, specifically Interleukin-1ß (IL-1ß), IL-19, and IL-20. METHODS: Sixty patients with degenerative spondylolisthesis and lumbar or lumbosacral spinal stenosis were included in the study. Injuries to the spine, infections, and benign or malignant tumors were excluded. From nine patient samples, IVD- and LF-derived cells were isolated after primary culture, and two clinical samples were excluded due to mycoplasma infection. The effects of IL-1ß, IL-19, as well as IL-20 in regulating osteogenic and adipogenic differentiation in vitro were investigated. RESULTS: Primary IVD- and LF-derived cells were found to have a similar cell morphology and profile of surface markers (CD44, CD90, and CD105) as placenta-derived mesenchymal stem cells (MSCs). Primary IVD/LF cells have a high capacity to differentiate into osteocytes and adipocytes. IL-19 had a tendency to promote adipogenesis. IL-20 inhibited osteogenesis and promoted adipogenesis; IL-1ß promoted osteogenesis but inhibited adipogenesis. CONCLUSION: IL-1ß, IL-19, and IL-20 impact the adipogenic and osteogenic differentiation of IVD-derived and LF-derived cells. Modulating the expression of IL-1ß, IL-19, and IL-20 provides a potential avenue for controlling cell differentiation of IVD- and LF-derived cells, which might have beneficial effect for degenerative spondylolisthesis and spinal stenosis.


Asunto(s)
Ligamento Amarillo , Estenosis Espinal , Espondilolistesis , Humanos , Adipogénesis , Osteogénesis , Interleucina-1beta/farmacología , Estenosis Espinal/patología , Ligamento Amarillo/patología , Espondilolistesis/patología , Diferenciación Celular , Células Madre
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA