Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.084
Filtrar
1.
Cancer Immunol Immunother ; 73(6): 110, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38662248

RESUMEN

Interleukin (IL)-33 is an important cytokine in the tumour microenvironment; it is known to promote the growth and metastasis of solid cancers, such as gastric, colorectal, ovarian and breast cancer. Our group demonstrated that the IL-33/ST2 pathway enhances the development of squamous cell carcinoma (SCC). Conversely, other researchers have reported that IL-33 inhibits tumour progression. In addition, the crosstalk between IL-33, cancer cells and immune cells in SCC remains unknown. The aim of this study was to investigate the effect of IL-33 on the biology of head and neck SCC lines and to evaluate the impact of IL-33 neutralisation on the T cell response in a preclinical model of SCC. First, we identified epithelial and peritumoural cells as a major local source of IL-33 in human SCC samples. Next, in vitro experiments demonstrated that the addition of IL-33 significantly increased the proliferative index, motility and invasiveness of SCC-25 cells, and downregulated MYC gene expression in SCC cell lines. Finally, IL-33 blockade significantly delayed SCC growth and led to a marked decrease in the severity of skin lesions. Importantly, anti-IL-33 monoclonal antibody therapy increase the percentage of CD4+IFNγ+ T cells and decreased CD4+ and CD8+ T cells secreting IL-4 in tumour-draining lymph nodes. Together, these data suggest that the IL-33/ST2 pathway may be involved in the crosstalk between the tumour and immune cells by modulating the phenotype of head and neck SCC and T cell activity. IL-33 neutralisation may offer a novel therapeutic strategy for SCC.


Asunto(s)
Carcinoma de Células Escamosas , Movimiento Celular , Proliferación Celular , Interleucina-33 , Activación de Linfocitos , Interleucina-33/metabolismo , Humanos , Carcinoma de Células Escamosas/patología , Carcinoma de Células Escamosas/inmunología , Carcinoma de Células Escamosas/metabolismo , Animales , Activación de Linfocitos/inmunología , Invasividad Neoplásica , Ratones , Línea Celular Tumoral , Neoplasias de Cabeza y Cuello/inmunología , Neoplasias de Cabeza y Cuello/patología , Neoplasias de Cabeza y Cuello/metabolismo , Linfocitos T/inmunología , Linfocitos T/metabolismo , Microambiente Tumoral/inmunología , Femenino
2.
BMC Pharmacol Toxicol ; 25(1): 30, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38650035

RESUMEN

BACKGROUND: Calycosin, a flavonoid compound extracted from Astragalus membranaceus, has shown anti-asthma benefits in house dust mite-induced asthma. Recent studies have suggested that innate-type cells, including group 2 innate lymphoid cells (ILC2s) and macrophages, serve as incentives for type 2 immunity and targets for drug development in asthma. This work focuses on the effects of calycosin on the dysregulated ILC2s and macrophages in allergic asthma. METHODS: In vivo, the asthmatic mouse model was established with ovalbumin (OVA) sensitization and challenge, and calycosin was intraperitoneally administered at doses of 20 and 40 mg/kg. In vivo, mouse primary ILC2s were stimulated with interleukin (IL)-33 and mouse RAW264.7 macrophages were stimulated with IL-4 and IL-13 to establish the cell models. Cells were treated with calycosin at doses of 5 and 10 µM. RESULTS: In vivo, we observed significantly reduced numbers of eosinophils, neutrophils, monocyte macrophages and lymphocytes in the bronchoalveolar lavage fluid (BALF) of OVA-exposed mice with 40 mg/kg calycosin. Histopathological assessment showed that calycosin inhibited the airway inflammation and remodeling caused by OVA. Calycosin markedly decreased the up-regulated IL-4, IL-5, IL-13, IL-33, and suppression tumorigenicity 2 (ST2) induced by OVA in BALF and/or lung tissues of asthmatic mice. Calycosin repressed the augment of arginase 1 (ARG1), IL-10, chitinase-like 3 (YM1) and mannose receptor C-type 1 (MRC1) levels in the lung tissues of asthmatic mice. In vivo, calycosin inhibited the IL-33-induced activation as well as the increase of IL-4, IL-5, IL-13 and ST2 in ILC2s. Calycosin also repressed the increase of ARG1, IL-10, YM1 and MRC1 induced by IL-4 and IL-13 in RAW264.7 macrophages. In addition, we found that these changes were more significant in 40 mg/kg calycosin treatment than 20 mg/kg calycosin. CONCLUSIONS: Collectively, this study showed that calycosin might attenuate OVA-induced airway inflammation and remodeling in asthmatic mice via preventing ILC2 activation and macrophage M2 polarization. Our study might contribute to further study of asthmatic therapy.


Asunto(s)
Asma , Isoflavonas , Linfocitos , Macrófagos , Ratones Endogámicos BALB C , Ovalbúmina , Animales , Asma/tratamiento farmacológico , Asma/inmunología , Ratones , Macrófagos/efectos de los fármacos , Macrófagos/inmunología , Isoflavonas/farmacología , Isoflavonas/uso terapéutico , Células RAW 264.7 , Linfocitos/efectos de los fármacos , Linfocitos/inmunología , Inmunidad Innata/efectos de los fármacos , Femenino , Antiasmáticos/farmacología , Antiasmáticos/uso terapéutico , Líquido del Lavado Bronquioalveolar/citología , Líquido del Lavado Bronquioalveolar/inmunología , Pulmón/efectos de los fármacos , Pulmón/inmunología , Pulmón/patología , Interleucina-33
3.
Front Immunol ; 15: 1335651, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38566998

RESUMEN

Regulatory T cells (Tregs) residing in visceral adipose tissue (VAT) play a pivotal role in regulating tissue inflammation and metabolic dysfunction associated with obesity. However, the specific phenotypic and functional characteristics of Tregs in obese VAT, as well as the regulatory mechanisms shaping them, remain elusive. This study demonstrates that obesity selectively reduces Tregs in VAT, characterized by restrained proliferation, heightened PD-1 expression, and diminished ST2 expression. Additionally, obese VAT displays distinctive maturation of dendritic cells (DCs), marked by elevated expressions of MHC-II, CD86, and PD-L1, which are inversely correlated with VAT Tregs. In an in vitro co-culture experiment, only obese VAT DCs, not macrophages or DCs from subcutaneous adipose tissue (SAT) and spleen, result in decreased Treg differentiation and proliferation. Furthermore, Tregs differentiated by obese VAT DCs exhibit distinct characteristics resembling those of Tregs in obese VAT, such as reduced ST2 and IL-10 expression. Mechanistically, obesity lowers IL-33 production in VAT DCs, contributing to the diminished Treg differentiation. These findings collectively underscore the critical role of VAT DCs in modulating Treg generation and shaping Treg phenotype and function during obesity, potentially contributing to the regulation of VAT Treg populations.


Asunto(s)
Interleucina-33 , Linfocitos T Reguladores , Humanos , Linfocitos T Reguladores/metabolismo , Interleucina-33/metabolismo , Proteína 1 Similar al Receptor de Interleucina-1/metabolismo , Obesidad/metabolismo , Células Dendríticas/metabolismo
4.
Int J Biol Sci ; 20(6): 2323-2338, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38617533

RESUMEN

Chronic atrophic gastritis (CAG) is a complex disease characterized by atrophy and inflammation in gastric mucosal tissue, especially with high expression of interleukins. However, the interaction and mechanisms between interleukins and gastric mucosal epithelial cells in CAG remain largely elusive. Here, we elucidate that IL-33 stands out as the predominant inflammatory factor in CAG, and its expression is induced by H. pylori and MNNG through the ROS-STAT3 signaling pathway. Furthermore, our findings reveal that the IL-33/ST2 axis is intricately involved in the progression of CAG. Utilizing phosphoproteomics mass spectrometry, we demonstrate that IL-33 enhances autophagy in gastric epithelial cells through the phosphorylation of AMPK-ULK1 axis. Notably, inhibiting autophagy alleviates CAG severity, while augmentation of autophagy exacerbates the disease. Additionally, ROS scavenging emerges as a promising strategy to ameliorate CAG by reducing IL-33 expression and inhibiting autophagy. Intriguingly, IL-33 stimulation promotes GKN1 degradation through the autolysosomal pathway. Clinically, the combined measurement of IL-33 and GKN1 in serum shows potential as diagnostic markers. Our findings unveil an IL-33-AMPK-ULK1 regulatory mechanism governing GKN1 protein stability in CAG, presenting potential therapeutic targets for its treatment.


Asunto(s)
Gastritis Atrófica , Helicobacter pylori , Hormonas Peptídicas , Humanos , Proteínas Quinasas Activadas por AMP , Homólogo de la Proteína 1 Relacionada con la Autofagia/genética , Mucosa Gástrica , Interleucina-33 , Péptidos y Proteínas de Señalización Intracelular , Especies Reactivas de Oxígeno
5.
J Exp Med ; 221(6)2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38597952

RESUMEN

Epithelium-derived cytokines or alarmins, such as interleukin-33 (IL-33) and thymic stromal lymphopoietin (TSLP), are major players in type 2 immunity and asthma. Here, we demonstrate that TNF-like ligand 1A (TL1A) is an epithelial alarmin, constitutively expressed in alveolar epithelium at steady state in both mice and humans, which cooperates with IL-33 for early induction of IL-9high ILC2s during the initiation of allergic airway inflammation. Upon synergistic activation by IL-33 and TL1A, lung ILC2s acquire a transient IL-9highGATA3low "ILC9" phenotype and produce prodigious amounts of IL-9. A combination of large-scale proteomic analyses, lung intravital microscopy, and adoptive transfer of ILC9 cells revealed that high IL-9 expression distinguishes a multicytokine-producing state-of-activated ILC2s with an increased capacity to initiate IL-5-dependent allergic airway inflammation. Similar to IL-33 and TSLP, TL1A is expressed in airway basal cells in healthy and asthmatic human lungs. Together, these results indicate that TL1A is an epithelium-derived cytokine and an important cofactor of IL-33 in the airways.


Asunto(s)
Asma , Interleucina-33 , Animales , Humanos , Ratones , Alarminas , Citocinas , Inmunidad Innata , Inflamación , Interleucina-9 , Linfocitos , Proteómica
6.
Skelet Muscle ; 14(1): 6, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38561845

RESUMEN

BACKGROUND: The regenerative and adaptive capacity of skeletal muscles reduces with age, leading to severe disability and frailty in the elderly. Therefore, development of effective therapeutic interventions for muscle wasting is important both medically and socioeconomically. In the present study, we aimed to elucidate the potential contribution of fibro-adipogenic progenitors (FAPs), which are mesenchymal stem cells in skeletal muscles, to immobilization-induced muscle atrophy. METHODS: Young (2-3 months), adult (12-14 months), and aged (20-22 months) mice were used for analysis. Muscle atrophy was induced by immobilizing the hind limbs with a steel wire. FAPs were isolated from the hind limbs on days 0, 3, and 14 after immobilization for transcriptome analysis. The expression of ST2 and IL-33 in FAPs was evaluated by flow cytometry and immunostaining, respectively. To examine the role of IL-33-ST2 signaling in vivo, we intraperitoneally administered recombinant IL-33 or soluble ST2 (sST2) twice a week throughout the 2-week immobilization period. After 2-week immobilization, the tibialis anterior muscles were harvested and the cross-sectional area of muscle fibers was evaluated. RESULTS: The number of FAPs increased with the progression of muscle atrophy after immobilization in all age-groups. Transcriptome analysis of FAPs collected before and after immobilization revealed that Il33 and Il1rl1 transcripts, which encode the IL-33 receptor ST2, were transiently induced in young mice and, to a lesser extent, in aged mice. The number of FAPs positive for ST2 increased after immobilization in young mice. The number of ST2-positive FAPs also increased after immobilization in aged mice, but the difference from the baseline was not statistically significant. Immunostaining for IL-33 in the muscle sections revealed a significant increase in the number of FAPs expressing IL-33 after immobilization. Administration of recombinant IL-33 suppressed immobilization-induced muscle atrophy in aged mice but not in young mice. CONCLUSIONS: Our data reveal a previously unknown protective role of IL-33-ST2 signaling against immobilization-induced muscle atrophy in FAPs and suggest that IL-33-ST2 signaling is a potential new therapeutic target for alleviating disuse muscle atrophy, particularly in older adults.


Asunto(s)
Proteína 1 Similar al Receptor de Interleucina-1 , Interleucina-33 , Humanos , Anciano , Ratones , Animales , Interleucina-33/metabolismo , Proteína 1 Similar al Receptor de Interleucina-1/genética , Proteína 1 Similar al Receptor de Interleucina-1/metabolismo , Adipogénesis , Músculo Esquelético/metabolismo , Atrofia Muscular/etiología , Atrofia Muscular/prevención & control , Atrofia Muscular/metabolismo , Diferenciación Celular/fisiología
7.
Nutrients ; 16(8)2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38674885

RESUMEN

The cellular and molecular mechanisms of atherosclerosis are still unclear. Type 2 innate lymphocytes (ILC2) exhibit anti-inflammatory properties and protect against atherosclerosis. This study aimed to elucidate the pathogenesis of atherosclerosis development using atherosclerosis model mice (ApoE KO mice) and mice deficient in IL-33 receptor ST2 (ApoEST2 DKO mice). Sixteen-week-old male ApoE KO and ApoEST2 DKO mice were subjected to an 8-week regimen of a high-fat, high-sucrose diet. Atherosclerotic foci were assessed histologically at the aortic valve ring. Chronic inflammation was assessed using flow cytometry and real-time polymerase chain reaction. In addition, saturated fatty acids (palmitic acid) and IL-33 were administered to human aortic endothelial cells (HAECs) to assess fatty acid metabolism. ApoEST2 DKO mice with attenuated ILC2 had significantly worse atherosclerosis than ApoE KO mice. The levels of saturated fatty acids, including palmitic acid, were significantly elevated in the arteries and serum of ApoEST2 DKO mice. Furthermore, on treating HAECs with saturated fatty acids with or without IL-33, the Oil Red O staining area significantly decreased in the IL-33-treated group compared to that in the non-treated group. IL-33 potentially prevented the accumulation of saturated fatty acids within atherosclerotic foci.


Asunto(s)
Aterosclerosis , Ácidos Grasos , Interleucina-33 , Ratones Noqueados , Animales , Interleucina-33/metabolismo , Interleucina-33/genética , Aterosclerosis/metabolismo , Masculino , Ratones , Ácidos Grasos/metabolismo , Humanos , Modelos Animales de Enfermedad , Ácido Palmítico/farmacología , Apolipoproteínas E/genética , Apolipoproteínas E/deficiencia , Dieta Alta en Grasa , Proteína 1 Similar al Receptor de Interleucina-1/metabolismo , Proteína 1 Similar al Receptor de Interleucina-1/genética , Células Endoteliales/metabolismo , Ratones Noqueados para ApoE , Linfocitos/metabolismo , Ratones Endogámicos C57BL , Aorta/metabolismo , Aorta/patología , Inmunidad Innata
8.
Immun Inflamm Dis ; 12(4): e1252, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38652015

RESUMEN

We developed pulmonary emphysema and a type 2 airway inflammation overlap mouse model. The bronchoalveolar lavage (BAL) interleukin 13 (IL-13), IL-4, and IL-5 levels in the overlap model were higher than in the pulmonary emphysema model and lower than in the type 2 airway inflammation model, but IL-33 level in the lung was higher than in other models. IL-33 and interferon-γ (IFNγ) in lungs may control the severity of a type 2 airway inflammation in lung.


Asunto(s)
Modelos Animales de Enfermedad , Interleucina-33 , Enfisema Pulmonar , Animales , Interleucina-33/metabolismo , Ratones , Enfisema Pulmonar/metabolismo , Enfisema Pulmonar/patología , Enfisema Pulmonar/etiología , Enfisema Pulmonar/inmunología , Líquido del Lavado Bronquioalveolar/inmunología , Pulmón/patología , Pulmón/inmunología , Pulmón/metabolismo , Inflamación/inmunología , Inflamación/metabolismo , Interferón gamma/metabolismo , Interferón gamma/inmunología , Ratones Endogámicos C57BL
9.
Mol Biol Rep ; 51(1): 499, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38598121

RESUMEN

INTRODUCTION: Aerobic physical training (APT) reduces eosinophilic airway inflammation, but its effects and mechanisms in severe asthma remain unknown. METHODS: An in vitro study employing key cells involved in the pathogenesis of severe asthma, such as freshly isolated human eosinophils, neutrophils, and bronchial epithelial cell lineage (BEAS-2B) and lung fibroblasts (MRC-5 cells), was conducted. Additionally, an in vivo study using male C57Bl/6 mice, including Control (Co; n = 10), Trained (Exe; n = 10), house dust mite (HDM; n = 10), and HDM + Trained (HDM + Exe; n = 10) groups, was carried out, with APT performed at moderate intensity, 5x/week, for 4 weeks. RESULTS: HDM and bradykinin, either alone or in combination, induced hyperactivation in human neutrophils, eosinophils, BEAS-2B, and MRC-5 cells. In contrast, IL-10, the primary anti-inflammatory molecule released during APT, inhibited these inflammatory effects, as evidenced by the suppression of numerous cytokines and reduced mRNA expression of the B1 receptor and ACE-2. The in vivo study demonstrated that APT decreased bronchoalveolar lavage levels of bradykinin, IL-1ß, IL-4, IL-5, IL-17, IL-33, TNF-α, and IL-13, while increasing levels of IL-10, klotho, and IL-1RA. APT reduced the accumulation of polymorphonuclear cells, lymphocytes, and macrophages in the peribronchial space, as well as collagen fiber accumulation, epithelial thickness, and mucus accumulation. Furthermore, APT lowered the expression of the B1 receptor and ACE-2 in lung tissue and reduced bradykinin levels in the lung tissue homogenate compared to the HDM group. It also improved airway resistance, tissue resistance, and tissue damping. On a systemic level, APT reduced total leukocytes, eosinophils, neutrophils, basophils, lymphocytes, and monocytes in the blood, as well as plasma levels of IL-1ß, IL-4, IL-5, IL-17, TNF-α, and IL-33, while elevating the levels of IL-10 and IL-1RA. CONCLUSION: These findings indicate that APT inhibits the severe asthma phenotype by targeting kinin signaling.


Asunto(s)
Asma , Bradiquinina , Humanos , Animales , Ratones , Masculino , Interleucina-10 , Proteína Antagonista del Receptor de Interleucina 1 , Interleucina-17 , Interleucina-33 , Interleucina-4 , Interleucina-5 , Factor de Necrosis Tumoral alfa
10.
Front Immunol ; 15: 1351405, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38571949

RESUMEN

Introduction: The alarmin IL-33 has been implicated in the pathology of immune-mediated liver diseases. IL-33 activates regulatory T cells (Tregs) and type 2 innate lymphoid cells (ILC2s) expressing the IL-33 receptor ST2. We have previously shown that endogenous IL-33/ST2 signaling activates ILC2s that aggravate liver injury in murine immune-mediated hepatitis. However, treatment of mice with exogenous IL-33 before induction of hepatitis ameliorated disease severity. Since IL-33 induces expression of amphiregulin (AREG) crucial for Treg function, we investigated the immunoregulatory role of the ST2+ Treg/AREG axis in immune-mediated hepatitis. Methods: C57BL/6, ST2-deficient (Il1rl1-/-) and Areg-/- mice received concanavalin A to induce immune-mediated hepatitis. Foxp3Cre+ x ST2fl/fl mice were pre-treated with IL-33 before induction of immune-mediated hepatitis. Treg function was assessed by adoptive transfer experiments and suppression assays. The effects of AREG and IL-33 on ST2+ Tregs and ILC2s were investigated in vitro. Immune cell phenotype was analyzed by flow cytometry. Results and discussion: We identified IL-33-responsive ST2+ Tregs as an effector Treg subset in the murine liver, which was highly activated in immune-mediated hepatitis. Lack of endogenous IL-33 signaling in Il1rl1-/- mice aggravated disease pathology. This was associated with reduced Treg activation. Adoptive transfer of exogenous IL-33-activated ST2+ Tregs before induction of hepatitis suppressed inflammatory T-cell responses and ameliorated disease pathology. We further showed increased expression of AREG by hepatic ST2+ Tregs and ILC2s in immune-mediated hepatitis. Areg-/- mice developed more severe liver injury, which was associated with enhanced ILC2 activation and less ST2+ Tregs in the inflamed liver. Exogenous AREG suppressed ILC2 cytokine expression and enhanced ST2+ Treg activation in vitro. In addition, Tregs from Areg-/- mice were impaired in their capacity to suppress CD4+ T-cell activation in vitro. Moreover, application of exogenous IL-33 before disease induction did not protect Foxp3Cre+ x ST2fl/fl mice lacking ST2+ Tregs from immune-mediated hepatitis. In summary, we describe an immunoregulatory role of the ST2+ Treg/AREG axis in immune-mediated hepatitis, in which AREG suppresses the activation of hepatic ILC2s while maintaining ST2+ Tregs and reinforcing their immunosuppressive capacity in liver inflammation.


Asunto(s)
Hepatitis , Inmunidad Innata , Animales , Ratones , Anfirregulina/metabolismo , Proteína 1 Similar al Receptor de Interleucina-1/metabolismo , Interleucina-33 , Linfocitos , Ratones Endogámicos C57BL , Linfocitos T Reguladores
11.
Biomed Pharmacother ; 174: 116596, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38631146

RESUMEN

Particulate matter (PM) significantly contributes to the global health crisis of respiratory diseases. It is known to induce and exacerbate conditions such as asthma and respiratory infections. Long exposure to PM can increase the risk of combined allergic rhinitis and asthma syndrome (CARAS). Although therapeutic drugs can be used to improve symptoms of respiratory diseases caused by PM, their usage is often accompanied by side effects. Therefore, many studies are being conducted to discover functional food materials that can more effectively treat respiratory diseases while minimizing the side effects of these therapeutic drugs. This study was conducted to investigate the efficacy of Hydrangea serrata extract (HSE) in airway inflammation in a mouse model of CARAS exacerbated by PM. In the CARAS mouse model worsened by PM, the airway inflammation improvement effect of HSE was evaluated by analyzing allergic nasal symptoms, changes in inflammatory cells, OVA-specific immunoglobulin (Ig) levels, cytokines, mast cell activation, and histopathological findings of both nasal mucosa and lung tissue. HSE effectively reduced OVA-specific IgE and IgG1 and inhibited the production of T helper type 2 (Th2)-related cytokines such as IL-4 and IL-5. Importantly, HSE reduced IL-33 and ST2 expression and inhibited the activation of the NF-κB signaling pathway. In addition, HSE inhibited airway hypersensitivity, mucus production, and inflammatory cell infiltration. These results suggest that HSE may inhibit airway inflammation in CARAS/PM mice by regulating the IL-33/ST2/NF-κB signaling pathway, opening avenues for considering HSE as a potential material for treating allergic airway inflammation diseases in the future.


Asunto(s)
Asma , Modelos Animales de Enfermedad , Hydrangea , Proteína 1 Similar al Receptor de Interleucina-1 , Interleucina-33 , Ratones Endogámicos BALB C , FN-kappa B , Material Particulado , Extractos Vegetales , Transducción de Señal , Animales , FN-kappa B/metabolismo , Transducción de Señal/efectos de los fármacos , Extractos Vegetales/farmacología , Interleucina-33/metabolismo , Material Particulado/toxicidad , Material Particulado/efectos adversos , Asma/tratamiento farmacológico , Asma/inducido químicamente , Ratones , Hydrangea/química , Proteína 1 Similar al Receptor de Interleucina-1/metabolismo , Rinitis Alérgica/tratamiento farmacológico , Rinitis Alérgica/inducido químicamente , Femenino , Inflamación/tratamiento farmacológico , Inflamación/patología , Citocinas/metabolismo , Ovalbúmina , Pulmón/efectos de los fármacos , Pulmón/patología , Pulmón/metabolismo
12.
J Transl Med ; 22(1): 363, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38632591

RESUMEN

Interleukin-33 (IL-33), an emerging cytokine within the IL-1 family, assumes a pivotal function in the control of obesity. However, the specific mechanism of its regulation of obesity formation remains unclear. In this study, we found that the expression level of IL-33 increased in visceral adipose tissue in mice fed with a high-fat diet (HFD) compared with that in mice fed with a normal diet (ND). In vitro, we also found the expression level of IL-33 was upregulated during the adipogenesis of 3T3-L1 cells. Functional test results showed that knockdown of IL-33 in 3T3-L1 cells differentiation could promote the accumulation of lipid droplets, the content of triglyceride and the expression of adipogenic-related genes (i.e. PPAR-γ, C/EBPα, FABP4, LPL, Adipoq and CD36). In contrast, overexpression of IL-33 inhibits adipogenic differentiation. Meanwhile, the above tests were repeated after over-differentiation of 3T3-L1 cells induced by oleic acid, and the results showed that IL-33 played a more significant role in the regulation of adipogenesis. To explore the mechanism, transcriptome sequencing was performed and results showed that IL-33 regulated the PPAR signaling pathway in 3T3-L1 cells. Further, Western blot and confocal microscopy showed that the inhibition of IL-33 could promote PPAR-γ expression by inhibiting the Wnt/ß-catenin signal in 3T3-L1 cells. This study demonstrated that IL-33 was an important regulator of preadipocyte differentiation and inhibited adipogenesis by regulating the Wnt/ß-catenin/PPAR-γ signaling pathway, which provided a new insight for further research on IL-33 as a new intervention target for metabolic disorders.


Asunto(s)
Adipogénesis , Interleucina-33 , Vía de Señalización Wnt , Animales , Ratones , Adipocitos/metabolismo , Adipogénesis/genética , beta Catenina/metabolismo , Diferenciación Celular , Interleucina-33/metabolismo , Obesidad/metabolismo , PPAR gamma/genética , PPAR gamma/metabolismo
13.
Biochim Biophys Acta Mol Basis Dis ; 1870(4): 167121, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38471652

RESUMEN

BACKGROUND: Sjögren's syndrome (SS) is a chronic autoimmune disease that predominantly affects exocrine glands. Previous studies have demonstrated that upregulated interferon-gamma (IFN-γ) in SS triggers ferroptosis in salivary gland epithelial cells (SGECs), resulting in impaired salivary gland secretion. However, the immune cells responsible for secreting IFN-γ remain unclear. Therefore, this study conducted bioinformatics analysis and molecular validation to identify the origin of IFN-γ in SS salivary gland. METHODS: The 'limma' package in R software was utilized to identify differentially expressed genes (DEGs) in the human SS dataset. Subsequently, the identified DEGs were compared with the ferroptosis database and screened through Cytoscape to determine candidate genes. The cellular localization and expression patterns of candidate genes were further confirmed in the salivary gland single-cell RNA sequence (scRNA-seq) data set from healthy control and SS mice. Furthermore, in vitro and in vivo studies were performed to analyze the effect of CD4 T-secreted IFN-γ on SGECs' ferroptosis and functions. RESULTS: Upregulated TLR4, IFNG, and IL33 were screened as candidates ferroptosis ferroptosis-inducing genes in SS salivary glands. The association of IFNG and IL33 with CD4 T cells was established through immune infiltration analysis. The expression of IFN-γ on CD4 T cells was robustly higher compared with that of IL33 as evidenced by scRNA-seq and immunofluorescence co-localization. Subsequent experiments conducted on candidate genes consistently demonstrated the potent ability of IFN-γ to induce SGECs' ferroptosis and inhibit AQP5 expression. CONCLUSIONS: Our findings indicate that CD4 T cell-secreted IFN-γ in SS induces SGECs' ferroptosis and inhibits AQP5 expression.


Asunto(s)
Ferroptosis , Síndrome de Sjögren , Humanos , Animales , Ratones , Interferón gamma/metabolismo , Linfocitos T CD4-Positivos , Interleucina-33/metabolismo , Glándulas Salivales , Células Epiteliales/metabolismo
14.
J Immunol ; 212(9): 1407-1419, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38497670

RESUMEN

Mast cells (MCs) play critical roles in the establishment of allergic diseases. We recently demonstrated an unexpected, proinflammatory role for IL-10 in regulating MC responses. IL-10 enhanced MC activation and promoted IgE-dependent responses during food allergy. However, whether these effects extend to IgE-independent stimuli is not clear. In this article, we demonstrate that IL-10 plays a critical role in driving IL-33-mediated MC responses. IL-10 stimulation enhanced MC expansion and degranulation, ST2 expression, IL-13 production, and phospho-relA upregulation in IL-33-treated cells while suppressing TNF-α. These effects were partly dependent on endogenous IL-10 and further amplified in MCs coactivated with both IL-33 and IgE/Ag. IL-10's divergent effects also extended in vivo. In a MC-dependent model of IL-33-induced neutrophilia, IL-10 treatment enhanced MC responsiveness, leading to suppression of neutrophils and decreased TNF-α. In contrast, during IL-33-induced type 2 inflammation, IL-10 priming exacerbated MC activity, resulting in MC recruitment to various tissues, enhanced ST2 expression, induction of hypothermia, recruitment of eosinophils, and increased MCPT-1 and IL-13 levels. Our data elucidate an important role for IL-10 as an augmenter of IL-33-mediated MC responses, with implications during both allergic diseases and other MC-dependent disorders. IL-10 induction is routinely used as a prognostic marker of disease improvement. Our data suggest instead that IL-10 can enhance ST2 responsiveness in IL-33-activated MCs, with the potential to both aggravate or suppress disease severity depending on the inflammatory context.


Asunto(s)
Hipersensibilidad a los Alimentos , Mastocitos , Humanos , Mastocitos/metabolismo , Interleucina-10/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Inmunoglobulina E/metabolismo , Interleucina-33/metabolismo , Interleucina-13/metabolismo , Proteína 1 Similar al Receptor de Interleucina-1/metabolismo , Inflamación/metabolismo , Degranulación de la Célula
16.
PLoS Pathog ; 20(3): e1012071, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38457461

RESUMEN

BACKGROUND: Eosinophilia is a hallmark of helminth infections and eosinophils are essential in the protective immune responses against helminths. Nevertheless, the distinct role of eosinophils during parasitic filarial infection, allergy and autoimmune disease-driven pathology is still not sufficiently understood. In this study, we established a mouse model for microfilariae-induced eosinophilic lung disease (ELD), a manifestation caused by eosinophil hyper-responsiveness within the lung. METHODS: Wild-type (WT) BALB/c mice were sensitized with dead microfilariae (MF) of the rodent filarial nematode Litomosoides sigmodontis three times at weekly intervals and subsequently challenged with viable MF to induce ELD. The resulting immune response was compared to non-sensitized WT mice as well as sensitized eosinophil-deficient dblGATA mice using flow cytometry, lung histology and ELISA. Additionally, the impact of IL-33 signaling on ELD development was investigated using the IL-33 antagonist HpARI2. RESULTS: ELD-induced WT mice displayed an increased type 2 immune response in the lung with increased frequencies of eosinophils, alternatively activated macrophages and group 2 innate lymphoid cells, as well as higher peripheral blood IgE, IL-5 and IL-33 levels in comparison to mice challenged only with viable MF or PBS. ELD mice had an increased MF retention in lung tissue, which was in line with an enhanced MF clearance from peripheral blood. Using eosinophil-deficient dblGATA mice, we demonstrate that eosinophils are essentially involved in driving the type 2 immune response and retention of MF in the lung of ELD mice. Furthermore, we demonstrate that IL-33 drives eosinophil activation in vitro and inhibition of IL-33 signaling during ELD induction reduces pulmonary type 2 immune responses, eosinophil activation and alleviates lung lacunarity. In conclusion, we demonstrate that IL-33 signaling is essentially involved in MF-induced ELD development. SUMMARY: Our study demonstrates that repeated sensitization of BALB/c mice with L. sigmodontis MF induces pulmonary eosinophilia in an IL-33-dependent manner. The newly established model recapitulates the characteristic features known to occur during eosinophilic lung diseases (ELD) such as human tropical pulmonary eosinophilia (TPE), which includes the retention of microfilariae in the lung tissue and induction of pulmonary eosinophilia and type 2 immune responses. Our study provides compelling evidence that IL-33 drives eosinophil activation during ELD and that blocking IL-33 signaling using HpARI2 reduces eosinophil activation, eosinophil accumulation in the lung tissue, suppresses type 2 immune responses and mitigates the development of structural damage to the lung. Consequently, IL-33 is a potential therapeutic target to reduce eosinophil-mediated pulmonary pathology.


Asunto(s)
Asma , Filariasis , Filarioidea , Eosinofilia Pulmonar , Humanos , Animales , Ratones , Microfilarias , Inmunidad Innata , Filariasis/parasitología , Interleucina-33 , Linfocitos/patología , Filarioidea/fisiología , Eosinófilos , Ratones Endogámicos BALB C
17.
Int J Mol Sci ; 25(5)2024 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-38473835

RESUMEN

Multiple sclerosis is a disabling inflammatory disorder of the central nervous system characterized by demyelination and neurodegeneration. Given that multiple sclerosis remains an incurable disease, the management of MS predominantly focuses on reducing relapses and decelerating the progression of both physical and cognitive decline. The continuous autoimmune process modulated by cytokines seems to be a vital contributing factor to the development and relapse of multiple sclerosis. This review sought to summarize the role of selected interleukins in the pathogenesis and advancement of MS. Patients with MS in the active disease phase seem to exhibit an increased serum level of IL-2, IL-4, IL-6, IL-13, IL-17, IL-21, IL-22 and IL-33 compared to healthy controls and patients in remission, while IL-10 appears to have a beneficial impact in preventing the progression of the disease. Despite being usually associated with proinflammatory activity, several studies have additionally recognized a neuroprotective role of IL-13, IL-22 and IL-33. Moreover, selected gene polymorphisms of IL-2R, IL-4, IL-6, IL-13 and IL-22 were identified as a possible risk factor related to MS development. Treatment strategies of multiple sclerosis that either target or utilize these cytokines seem rather promising, but more comprehensive research is necessary to gain a clearer understanding of how these cytokines precisely affect MS development and progression.


Asunto(s)
Interleucinas , Esclerosis Múltiple , Humanos , Citocinas , Interleucina-13 , Interleucina-33 , Interleucina-4 , Interleucina-6 , Esclerosis Múltiple/patología
18.
J Exp Med ; 221(5)2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38506708

RESUMEN

Innate lymphoid cells (ILCs) can promote host defense, chronic inflammation, or tissue protection and are regulated by cytokines and neuropeptides. However, their regulation by diet and microbiota-derived signals remains unclear. We show that an inulin fiber diet promotes Tph1-expressing inflammatory ILC2s (ILC2INFLAM) in the colon, which produce IL-5 but not tissue-protective amphiregulin (AREG), resulting in the accumulation of eosinophils. This exacerbates inflammation in a murine model of intestinal damage and inflammation in an ILC2- and eosinophil-dependent manner. Mechanistically, the inulin fiber diet elevated microbiota-derived bile acids, including cholic acid (CA) that induced expression of ILC2-activating IL-33. In IBD patients, bile acids, their receptor farnesoid X receptor (FXR), IL-33, and eosinophils were all upregulated compared with controls, implicating this diet-microbiota-ILC2 axis in human IBD pathogenesis. Together, these data reveal that dietary fiber-induced changes in microbial metabolites operate as a rheostat that governs protective versus pathologic ILC2 responses with relevance to precision nutrition for inflammatory diseases.


Asunto(s)
Inmunidad Innata , Enfermedades Inflamatorias del Intestino , Humanos , Animales , Ratones , Interleucina-33 , Inulina , Linfocitos , Fibras de la Dieta , Ácidos y Sales Biliares , Inflamación
19.
Mol Med ; 30(1): 42, 2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38519881

RESUMEN

BACKGROUND: The formation and accumulation of cholesterol crystals (CC) at the lesion site is a hallmark of atherosclerosis. Although studies have shown the importance of vascular smooth muscle cells (VSMCs) in the disease atherosclerosis, little is known about the molecular mechanism behind the uptake of CC in VSMCs and their role in modulating immune response. METHODS: Human aortic smooth muscle cells were cultured and treated with CC. CC uptake and CC mediated signaling pathway and protein induction were studied using flow cytometry, confocal microscopy, western blot and Olink proteomics. Conditioned medium from CC treated VSMCs was used to study neutrophil adhesion, ROS production and phagocytosis. Neutrophil extracellular traps (NETs) formations were visualized using confocal microscopy. RESULTS: VSMCs and macrophages were found around CC clefts in human carotid plaques. CC uptake in VSMCs are largely through micropinocytosis and phagocytosis via PI3K-AkT dependent pathway. The uptake of CC in VSMCs induce the release inflammatory proteins, including IL-33, an alarming cytokine. Conditioned medium from CC treated VSMCs can induce neutrophil adhesion, neutrophil reactive oxygen species (ROS) and neutrophil extracellular traps (NETs) formation. IL-33 neutralization in conditioned medium from CC treated VSMCs inhibited neutrophil ROS production and NETs formation. CONCLUSION: We demonstrate that VSMCs due to its vicinity to CC clefts in human atherosclerotic lesion can modulate local immune response and we further reveal that the interaction between CC and VSMCs impart an inflammatory milieu in the atherosclerotic microenvironment by promoting IL-33 dependent neutrophil influx and NETs formation.


Asunto(s)
Aterosclerosis , Trampas Extracelulares , Humanos , Trampas Extracelulares/metabolismo , Citocinas/metabolismo , Músculo Liso Vascular/metabolismo , Interleucina-33 , Especies Reactivas de Oxígeno/metabolismo , Medios de Cultivo Condicionados/farmacología , Medios de Cultivo Condicionados/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Aterosclerosis/metabolismo , Colesterol/metabolismo , Miocitos del Músculo Liso/metabolismo
20.
Int Immunopharmacol ; 130: 111775, 2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38430805

RESUMEN

Helper Th2-type immune responses are essential in allergic airway diseases, including asthma and allergic rhinitis. Recent studies have indicated that group 2 innate lymphoid cells (ILC2s) play a crucial role in the occurrence and development of asthma. However, the metabolic profile of ILC2s and their regulatory mechanisms in asthma remain unclear. Therefore, we established two asthma mouse models: an ovalbumin (OVA)-induced asthma model and an IL-33-induced asthma model. We then used ultra-high-performance liquid chromatography/mass spectrometry (UHPLC/MS) to conduct high-throughput untargeted metabolic analysis of ILC2s in the lung tissues of the asthma models. The identified metabolites primarily consisted of lipids, lipid-like molecules, benzene, organic acids, derivatives, and organic oxidation compounds. Specifically, 34 differentially accumulated metabolites influenced the metabolic profiles of the control and OVA-induced asthma model groups. Moreover, the accumulation of 39 metabolites significantly differed between the Interleukin 33 (IL-33) and control groups. These differentially accumulated metabolites were mainly involved in pathways such as sphingolipid, oxidative phosphorylation, and fatty acid metabolism. This metabolomic study revealed, for the first time, the key metabolites and metabolic pathways of ILC2s, revealing new aspects of cellular metabolism in the context of airway inflammation. These findings not only contribute to unraveling the pathogenesis of asthma but also provide a crucial theoretical foundation for the future development of therapeutic strategies targeting ILC2s.


Asunto(s)
Asma , Hipersensibilidad , Animales , Ratones , Inmunidad Innata , Interleucina-33 , Cromatografía Líquida de Alta Presión , Linfocitos , Citocinas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA