Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.785
Filtrar
1.
Yi Chuan ; 46(6): 478-489, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38886151

RESUMEN

Metronidazole (MTZ), a commonly used anti-infective drug in clinical practice, has also been employed as a prodrug in cell-targeted ablation systems in scientific research, exhibiting significant application value. However, it has been demonstrated that MTZ can induce neurotoxic symptoms to some extent during its use, and there is currently a lack of effective means to circumvent its toxicity in both clinical and research settings, which limits its application. Therefore, exploring the specific mechanisms underlying MTZ-induced neurotoxic symptoms and elucidating countermeasures will enhance the practical value of MTZ. In this study, using a zebrafish spinal cord injury regeneration model, we confirmed that MTZ neurotoxicity leads to impaired axon regeneration in the central nervous system. By overexpressing il34 in the central nervous system of zebrafish, we eliminated the inhibitory effect of MTZ on axonal regeneration and demonstrated that the pro-regenerative effect against MTZ neurotoxicity is not caused by excessive macrophages/microglia chemoattracted by interleukin 34(Il34). Transcriptome sequencing analysis and GO enrichment analysis of differentially expressed genes between groups revealed that Il34 may counteract MTZ neurotoxicity and promote spinal cord injury repair through biological processes that enhance cellular adhesion and cell location. In summary, our work uncovers a possible cause of MTZ neurotoxicity and provides a new perspective for eliminating MTZ toxicity.


Asunto(s)
Metronidazol , Traumatismos de la Médula Espinal , Regeneración de la Medula Espinal , Pez Cebra , Animales , Metronidazol/farmacología , Metronidazol/efectos adversos , Regeneración de la Medula Espinal/efectos de los fármacos , Traumatismos de la Médula Espinal/metabolismo , Interleucinas/genética , Interleucinas/metabolismo , Sistema Nervioso Central/efectos de los fármacos , Sistema Nervioso Central/metabolismo , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo , Médula Espinal/efectos de los fármacos , Médula Espinal/metabolismo
2.
Int J Biol Sci ; 20(8): 3094-3112, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38904012

RESUMEN

Atopic dermatitis (AD) is a common inflammation skin disease that involves dysregulated interplay between immune cells and keratinocytes. Interleukin-38 (IL-38), a poorly characterized IL-1 family cytokine, its role and mechanism in the pathogenesis of AD is elusive. Here, we show that IL-38 is mainly secreted by epidermal keratinocytes and highly expressed in the skin and downregulated in AD lesions. We generated IL-38 keratinocyte-specific knockout mice (K14Cre/+-IL-38f/f ) and induced AD models by 2,4-dinitrofluorobenzene (DNFB). Unexpectedly, after treatment with DNFB, K14Cre/+-IL-38f/f mice were less susceptible to cutaneous inflammation of AD. Moreover, keratinocyte-specific deletion of IL-38 suppressed the migration of Langerhans cells (LCs) into lymph nodes which results in disturbed differentiation of CD4+T cells and decreased the infiltration of immune cells into AD lesions. LCs are a type of dendritic cell that reside specifically in the epidermis and regulate immune responses. We developed LC-like cells in vitro from mouse bone marrow (BM) and treated with recombined IL-38. The results show that IL-38 depended on IL-36R, activated the phosphorylated expression of IRAK4 and NF-κB P65 and upregulated the expression of CCR7 to promoting the migration of LCs, nevertheless, the upregulation disappeared with the addition of IL-36 receptor antagonist (IL-36RA), IRAK4 or NF-κB P65 inhibitor. Furthermore, after treatment with IRAK4 inhibitors, the experimental AD phenotypes were alleviated and so IRAK4 is considered a promising target for the treatment of inflammatory diseases. Overall, our findings indicated a potential pathway that IL-38 depends on IL-36R, leading to LCs migration to promote AD by upregulating CCR7 via IRAK4/NF-κB and implied the prevention and treatment of AD, supporting potential clinical utilization of IRAK4 inhibitors in AD treatment.


Asunto(s)
Movimiento Celular , Dermatitis Atópica , Células de Langerhans , Animales , Dermatitis Atópica/metabolismo , Células de Langerhans/metabolismo , Ratones , Ratones Noqueados , Interleucina-1/metabolismo , Queratinocitos/metabolismo , Dinitrofluorobenceno , FN-kappa B/metabolismo , Interleucinas/metabolismo
4.
Cell Commun Signal ; 22(1): 307, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38831315

RESUMEN

BACKGROUND: Interleukin 24 (IL-24) has been implicated in the nociceptive signaling. However, direct evidence and the precise molecular mechanism underlying IL-24's role in peripheral nociception remain unclear. METHODS: Using patch clamp recording, molecular biological analysis, immunofluorescence labeling, siRNA-mediated knockdown approach and behavior tests, we elucidated the effects of IL-24 on sensory neuronal excitability and peripheral pain sensitivity mediated by T-type Ca2+ channels (T-type channels). RESULTS: IL-24 enhances T-type channel currents (T-currents) in trigeminal ganglion (TG) neurons in a reversible and dose-dependent manner, primarily by activating the interleukin-22 receptor 1 (IL-22R1). Furthermore, we found that the IL-24-induced T-type channel response is mediated through tyrosine-protein kinase Lyn, but not its common downstream target JAK1. IL-24 application significantly activated protein kinase A; this effect was independent of cAMP and prevented by Lyn antagonism. Inhibition of PKA prevented the IL-24-induced T-current response, whereas inhibition of protein kinase C or MAPK kinases had no effect. Functionally, IL-24 increased TG neuronal excitability and enhanced pain sensitivity to mechanical stimuli in mice, both of which were suppressed by blocking T-type channels. In a trigeminal neuropathic pain model induced by chronic constriction injury of the infraorbital nerve, inhibiting IL-22R1 signaling alleviated mechanical allodynia, which was reversed by blocking T-type channels or knocking down Cav3.2. CONCLUSION: Our findings reveal that IL-24 enhances T-currents by stimulating IL-22R1 coupled to Lyn-dependent PKA signaling, leading to TG neuronal hyperexcitability and pain hypersensitivity. Understanding the mechanism of IL-24/IL-22R1 signaling in sensory neurons may pave the way for innovative therapeutic strategies in pain management.


Asunto(s)
Canales de Calcio Tipo T , Proteínas Quinasas Dependientes de AMP Cíclico , Receptores de Interleucina , Células Receptoras Sensoriales , Transducción de Señal , Ganglio del Trigémino , Familia-src Quinasas , Animales , Canales de Calcio Tipo T/metabolismo , Canales de Calcio Tipo T/genética , Familia-src Quinasas/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Ganglio del Trigémino/metabolismo , Masculino , Células Receptoras Sensoriales/metabolismo , Células Receptoras Sensoriales/efectos de los fármacos , Células Receptoras Sensoriales/fisiología , Receptores de Interleucina/metabolismo , Ratones , Ratones Endogámicos C57BL , Interleucinas/metabolismo
5.
Sci Rep ; 14(1): 13133, 2024 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-38849432

RESUMEN

The short-lived nature and heterogeneity of Natural Killer (NK) cells limit the development of NK cell-based therapies, despite their proven safety and efficacy against cancer. Here, we describe the biological basis, detailed phenotype and function of long-lived anti-tumour human NK cells (CD56highCD16+), obtained without cell sorting or feeder cells, after priming of peripheral blood cells with Bacillus Calmette-Guérin (BCG). Further, we demonstrate that survival doses of a cytokine combination, excluding IL18, administered just weekly to BCG-primed NK cells avoids innate lymphocyte exhaustion and leads to specific long-term proliferation of innate cells that exert potent cytotoxic function against a broad range of solid tumours, mainly through NKG2D. Strikingly, a NKG2C+CD57-FcεRIγ+ NK cell population expands after BCG and cytokine stimulation, independently of HCMV serology. This strategy was exploited to rescue anti-tumour NK cells even from the suppressor environment of cancer patients' bone marrow, demonstrating that BCG confers durable anti-tumour features to NK cells.


Asunto(s)
Proliferación Celular , Células Asesinas Naturales , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/efectos de los fármacos , Humanos , Proliferación Celular/efectos de los fármacos , Neoplasias/inmunología , Neoplasias/tratamiento farmacológico , Vacuna BCG/inmunología , Vacuna BCG/administración & dosificación , Mycobacterium bovis/inmunología , Activación de Linfocitos/efectos de los fármacos , Subfamilia K de Receptores Similares a Lectina de Células NK/metabolismo , Interleucinas/metabolismo , Antígeno CD56/metabolismo , Subfamília C de Receptores Similares a Lectina de Células NK/metabolismo
6.
Front Immunol ; 15: 1388496, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38873613

RESUMEN

The intricate immune mechanisms governing mucosal healing following intestinal damage induced by cytotoxic drugs remain poorly understood. The goal of this study was to investigate the role of lymphotoxin beta receptor (LTßR) signaling in chemotherapy-induced intestinal damage. LTßR deficient mice exhibited heightened body weight loss, exacerbated intestinal pathology, increased proinflammatory cytokine expression, reduced IL-22 expression, and proliferation of intestinal epithelial cells following methotrexate (MTX) treatment. Furthermore, LTßR-/-IL-22-/- mice succumbed to MTX treatment, suggesting that LTßR- and IL-22- dependent pathways jointly promote mucosal repair. Although both LTßR ligands LIGHT and LTß were upregulated in the intestine early after MTX treatment, LIGHT-/- mice, but not LTß-/- mice, displayed exacerbated disease. Further, we revealed the critical role of T cells in mucosal repair as T cell-deficient mice failed to upregulate intestinal LIGHT expression and exhibited increased body weight loss and intestinal pathology. Analysis of mice with conditional inactivation of LTßR revealed that LTßR signaling in intestinal epithelial cells, but not in Lgr5+ intestinal stem cells, macrophages or dendritic cells was critical for mucosal repair. Furthermore, inactivation of the non-canonical NF-kB pathway member RelB in intestinal epithelial cells promoted MTX-induced disease. Based on these results, we propose a model wherein LIGHT produced by T cells activates LTßR-RelB signaling in intestinal epithelial cells to facilitate mucosal repair following chemotherapy treatment.


Asunto(s)
Mucosa Intestinal , Receptor beta de Linfotoxina , Metotrexato , Ratones Noqueados , Transducción de Señal , Factor de Transcripción ReIB , Animales , Mucosa Intestinal/metabolismo , Mucosa Intestinal/inmunología , Mucosa Intestinal/patología , Mucosa Intestinal/efectos de los fármacos , Receptor beta de Linfotoxina/metabolismo , Receptor beta de Linfotoxina/genética , Ratones , Factor de Transcripción ReIB/metabolismo , Factor de Transcripción ReIB/genética , Metotrexato/efectos adversos , Células Epiteliales/metabolismo , Ratones Endogámicos C57BL , Interleucina-22 , Interleucinas/metabolismo , Interleucinas/genética
7.
J Exp Med ; 221(8)2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-38861030

RESUMEN

Germline gain-of-function (GOF) variants in STAT3 cause an inborn error of immunity associated with early-onset poly-autoimmunity and immune dysregulation. To study tissue-specific immune dysregulation, we used a mouse model carrying a missense variant (p.G421R) that causes human disease. We observed spontaneous and imiquimod (IMQ)-induced skin inflammation associated with cell-intrinsic local Th17 responses in STAT3 GOF mice. CD4+ T cells were sufficient to drive skin inflammation and showed increased Il22 expression in expanded clones. Certain aspects of disease, including increased epidermal thickness, also required the presence of STAT3 GOF in epithelial cells. Treatment with a JAK inhibitor improved skin disease without affecting local Th17 recruitment and cytokine production. These findings collectively support the involvement of Th17 responses in the development of organ-specific immune dysregulation in STAT3 GOF and suggest that the presence of STAT3 GOF in tissues is important for disease and can be targeted with JAK inhibition.


Asunto(s)
Mutación con Ganancia de Función , Imiquimod , Factor de Transcripción STAT3 , Células Th17 , Animales , Factor de Transcripción STAT3/metabolismo , Factor de Transcripción STAT3/genética , Células Th17/inmunología , Ratones , Humanos , Imiquimod/farmacología , Piel/patología , Piel/metabolismo , Piel/inmunología , Interleucina-22 , Dermatitis/inmunología , Dermatitis/genética , Dermatitis/patología , Dermatitis/metabolismo , Ratones Endogámicos C57BL , Interleucinas/genética , Interleucinas/metabolismo , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/metabolismo , Inflamación/genética , Inflamación/metabolismo , Inflamación/inmunología , Inflamación/patología
8.
Int Immunopharmacol ; 136: 112305, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-38823178

RESUMEN

The second-leading cause of death, cancer, poses a significant threat to human life. Innovations in cancer therapies are crucial due to limitations in traditional approaches. Newcastle disease virus (NDV), a nonpathogenic oncolytic virus, exhibits multifunctional anticancer properties by selectively infecting, replicating, and eliminating tumor cells. To enhance NDV's antitumor activity, four oncolytic NDV viruses were developed, incorporating IL24 and/or GM-CSF genes at different gene loci using reverse genetics. In vitro experiments revealed that oncolytic NDV virus augmented the antitumor efficacy of the parental virus rClone30, inhibiting tumor cell proliferation, inducing tumor cell fusion, and promoting apoptosis. Moreover, NDV carrying the IL24 gene inhibited microvessel formation in CAM experiments. Evaluation in a mouse model of liver cancer confirmed the therapeutic efficacy of oncolytic NDV viral therapy. Tumors in mice treated with oncolytic NDV virus significantly decreased in size, accompanied by tumor cell detachment and apoptosis evident in pathological sections. Furthermore, oncolytic NDV virus enhanced T cell and dendritic cell production and substantially improved the survival rate of mice with hepatocellular carcinoma, with rClone30-IL24(P/M) demonstrating significant therapeutic effects. This study establishes a basis for utilizing oncolytic NDV virus as an antitumor agent in clinical practice.


Asunto(s)
Interleucinas , Virus de la Enfermedad de Newcastle , Viroterapia Oncolítica , Virus Oncolíticos , Animales , Virus de la Enfermedad de Newcastle/genética , Virus de la Enfermedad de Newcastle/fisiología , Viroterapia Oncolítica/métodos , Virus Oncolíticos/genética , Virus Oncolíticos/fisiología , Humanos , Ratones , Línea Celular Tumoral , Interleucinas/genética , Interleucinas/metabolismo , Neoplasias Hepáticas/terapia , Ratones Endogámicos BALB C , Carcinoma Hepatocelular/terapia , Apoptosis , Neovascularización Patológica/terapia , Proliferación Celular , Factor Estimulante de Colonias de Granulocitos y Macrófagos/genética , Factor Estimulante de Colonias de Granulocitos y Macrófagos/metabolismo , Células Dendríticas/inmunología , Linfocitos T/inmunología
9.
Cancer Immunol Immunother ; 73(8): 138, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38833177

RESUMEN

Despite the success of immune checkpoint inhibitors (ICIs) in treating solid tumors, lots of patients remain unresponsive to this therapy. Microwave ablation (MWA) stimulates systemic adaptive immunity against tumor cells by releasing tumor antigens. Additionally, IL-21 has demonstrated importance in stimulating T-cell effector function. The combination of these three therapies-MWA, IL-21, and anti-PD-1 monoclonal antibodies (mAbs)-has yet to be explored in the context of cancer treatment.In this study, we explored the impact of thermal ablation on IL-21R expression in tumor-infiltrating lymphocytes (TILs). Subsequently, we assessed alterations in the tumor microenvironment (TME) and peripheral lymphoid organs. Additionally, we conducted a thorough examination of tumor-infiltrating CD45+ immune cells across various treatment groups using single-cell RNA sequencing (scRNA-seq). Moreover, we determined the potential anti-tumor effects of the triple combination involving MWA, IL-21, and anti-PD-1 mAbs.Our findings revealed that MWA upregulated the expression of IL-21R on various immune cells in the untreated tumors. The combination of MWA with IL-21 exhibited a robust abscopal anti-tumor effect, enhancing the effector function of CD8+ T cells and facilitating dendritic cells' maturation and antigen presentation in the untreated tumor. Notably, the observed abscopal anti-tumor effect resulting from the combination is contingent upon T-cell recirculation, indicating the reliance of systemic adaptive immunity for this treatment regimen. Additionally, the combination of MWA, IL-21, and PD-1 mAbs demonstrated profound abscopal anti-tumor efficacy. Our findings provide support for further clinical investigation into a triple combination therapy involving MWA, IL-21, and ICIs for the treatment of metastatic cancer.


Asunto(s)
Inhibidores de Puntos de Control Inmunológico , Interleucinas , Receptor de Muerte Celular Programada 1 , Microambiente Tumoral , Interleucinas/metabolismo , Animales , Ratones , Inhibidores de Puntos de Control Inmunológico/farmacología , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Receptor de Muerte Celular Programada 1/inmunología , Humanos , Microambiente Tumoral/inmunología , Terapia Combinada , Linfocitos Infiltrantes de Tumor/inmunología , Linfocitos Infiltrantes de Tumor/metabolismo , Femenino , Neoplasias/inmunología , Neoplasias/terapia , Ratones Endogámicos C57BL , Línea Celular Tumoral
10.
Exp Dermatol ; 33(6): e15115, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38855893

RESUMEN

Itchy skin or pruritus is a common cutaneous symptom that causes an urge to scratch, and the role of interleukins (IL) in itchy skin has been widely studied. IL-4 and IL-13 are known to induce chronic itch. Similarly, the direct role of IL-31 in inducing itch has been demonstrated in clinical situations such as atopic dermatitis and prurigo nodularis. Moreover, IL-4 receptor α antibodies (dupilumab) and IL-31 receptor A antibodies (nemolizumab) inhibit pruritus. However, the interplay between these ILs in pruritus remains unclear. Therefore, we investigated the reciprocal effects of these cytokines on pruritus in mice. The intradermal administration of IL-31 induced itch-associated scratching behaviour in a dose-dependent manner. Interestingly, the amount of IL-31 and IL-4/IL-13, co-administration or 30 min pre-administration of IL-4/IL-13 and intradermal or intravenous pre-administration of IL-4 did not affect IL-31-induced itch-associated scratching behaviour when it was observed for 30 min, 2 h, 24 h or 48 h. Pre-administration of neutralising antibodies against IL-4 and IL-13 also did not affect IL-31-induced itch-associated scratching behaviour. These results suggest that IL-31 can induce itching independently of IL-4 and IL-13 in vivo.


Asunto(s)
Interleucina-13 , Interleucina-4 , Interleucinas , Prurito , Animales , Prurito/etiología , Interleucina-13/metabolismo , Interleucina-4/metabolismo , Ratones , Interleucinas/metabolismo , Conducta Animal , Masculino , Anticuerpos Monoclonales Humanizados/farmacología
11.
Dev Comp Immunol ; 158: 105210, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38844187

RESUMEN

Interleukin (IL) 20 is a multifunctional cytokine and plays a vital role in regulating autoimmune diseases, inflammation, and immune responses. IL-20 homologs have been described in fish. However, due to the lack of antibodies, cellular sources and immunological functions of fish IL-20 in response to infections have not been fully characterized. In this study, a monoclonal antibody (mAb) was generated against the recombinant grass carp (Ctenopharyngodon idella) IL-20 protein and characterized by immunoblotting, immunofluorescent microscopy and flow cytometry. It was shown that the IL-20 mAb specifically recognized recombinant IL-20 proteins expressed in the E. coli cells and HEK293 cells. Using confocal microscopy, the IL-20+ cells were identified in the head kidney, gills and intestine of grass carp, and induced after infection with Aeromonas hydrophila. Moreover, the IL-20 protein was found to be secreted mainly by CD3γδ T cells which were located predominantly in the gill filaments and intestinal mucosa. Taken together, our results suggest that IL-20 producing T cells are required for the mucosal immunity against bacterial infection in fish.


Asunto(s)
Aeromonas hydrophila , Carpas , Enfermedades de los Peces , Proteínas de Peces , Infecciones por Bacterias Gramnegativas , Inmunidad Mucosa , Interleucinas , Animales , Carpas/inmunología , Carpas/microbiología , Aeromonas hydrophila/inmunología , Infecciones por Bacterias Gramnegativas/inmunología , Infecciones por Bacterias Gramnegativas/veterinaria , Enfermedades de los Peces/inmunología , Enfermedades de los Peces/microbiología , Proteínas de Peces/inmunología , Proteínas de Peces/metabolismo , Proteínas de Peces/genética , Humanos , Interleucinas/metabolismo , Interleucinas/inmunología , Células HEK293 , Branquias/inmunología , Branquias/metabolismo , Complejo CD3/inmunología , Complejo CD3/metabolismo , Anticuerpos Monoclonales/inmunología , Mucosa Intestinal/inmunología , Mucosa Intestinal/microbiología , Linfocitos T/inmunología , Membrana Mucosa/inmunología
12.
Arch Dermatol Res ; 316(7): 349, 2024 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-38850434

RESUMEN

Mycosis fungoides (MF) is the most common primary cutaneous T-cell lymphoma (CTCL) with its etiology not yet fully understood. Interleukin (IL)-35 is an inhibitory cytokine that belongs to the IL-12 family. Elevated IL-35 in the plasma and the tumor microenvironment increases tumorigenesis and indicates poor prognosis in different types of malignancies. The objective of this study is to estimate the expression levels of IL-35 in tissue and serum of MF patients versus healthy controls. This case-control study included 35 patients with patch, plaque, and tumor MF as well as 30 healthy controls. Patients were fully assessed, and serum samples and lesional skin biopsies were taken prior to starting treatment. The IL-35 levels were measured in both serum and tissue biopsies by ELISA technique. Both tissue and serum IL-35 levels were significantly higher in MF patients than in controls (P < 0.001) and tissue IL-35 was significantly higher than serum IL-35 in MF patients (P < 0.001). Tissue IL-35 was significantly higher in female patients and patients with recurrent MF compared to male patients and those without recurrent disease (P < 0.001). Since both tissue and serum IL-35 levels are increased in MF, IL-35 is suggested to have a possible role in MF pathogenesis. IL-35 can be a useful diagnostic marker for MF. Tissue IL-35 can also be an indicator of disease recurrence.


Asunto(s)
Interleucinas , Micosis Fungoide , Neoplasias Cutáneas , Humanos , Micosis Fungoide/sangre , Micosis Fungoide/diagnóstico , Micosis Fungoide/patología , Interleucinas/sangre , Interleucinas/metabolismo , Femenino , Masculino , Estudios de Casos y Controles , Persona de Mediana Edad , Neoplasias Cutáneas/sangre , Neoplasias Cutáneas/diagnóstico , Neoplasias Cutáneas/patología , Adulto , Piel/patología , Piel/metabolismo , Anciano , Biopsia , Biomarcadores de Tumor/sangre
13.
Life Sci ; 350: 122766, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38834097

RESUMEN

Psoriatic arthritis (PsA) is a chronic inflammatory arthropathy affecting the skin, entheses, and joints. Over the past decade, experimental evidence has revealed the activation of several immune cells and signaling cascades in modulating the pathophysiology of PsA. Recently, targeted therapies have been developed to combat the severity of disease. However, with diverse etiologies, flareups, and relapses, there has been an increased prevalence and mortality associated with PsA in recent years. Therefore, it is imperative to investigate new potential mediators and combination therapies to manage PsA pathogenesis. IL-21, an immunomodulatory cytokine, has pleiotropic effects on immune cells and the protein cascades involved in PsA pathogenesis. Recently, emerging evidence of increased IL-21 levels in patients with PsA has engendered much enthusiasm for its potential as a therapeutic target. Here, we unmasked IL-21 as a significant modulator of PsA pathogenesis and reviewed the comorbidities associated with the disease, further cataloging future therapeutic modalities to ameliorate PsA progression.


Asunto(s)
Artritis Psoriásica , Interleucinas , Artritis Psoriásica/metabolismo , Artritis Psoriásica/tratamiento farmacológico , Humanos , Interleucinas/metabolismo , Animales , Transducción de Señal
14.
Arch Dermatol Res ; 316(6): 208, 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38787443

RESUMEN

BACKGROUND: Psoriasis is a chronic inflammation-associated skin disorder, and interleukin-22 (IL-22) is involved in psoriasis pathogenesis by boosting the proliferation and migration of keratinocytes. Mounting evidence has shown that circRNAs might play an important role in several aspects of psoriasis. This study is designed to explore the role and mechanism of circ_0056856 in regulating the phenotypes of IL-22-induced keratinocytes (HaCaT cells). METHODS: Circ_0056856, microRNA-197-3p (miR-197-3p), Cyclin-dependent kinase 1 (CDK1), and Wilms tumor 1-associated protein (WTAP) levels were detected using real-time quantitative polymerase chain reaction (RT-qPCR). Cell viability, proliferation, migration, and invasion were analyzed using 3-(4, 5-dimethyl-2-thiazolyl)-2, 5-diphenyl-2-H-tetrazolium bromide (MTT), 5-ethynyl-2'-deoxyuridine (EdU), Wound scratch, and Transwell assays. After being predicted by Circinteractome or TargetScan, binding between miR-197-3p and circ_0056856 or CDK1 was verified by a dual-luciferase reporter assay. CDK1 and WTAP protein levels were determined using Western blot. Interaction between WTAP and circ_0056856 was assessed using methylated RNA immunoprecipitation (MeRIP) assay. RESULTS: Increased circ_0056856, CDK1, and WTAP were observed in psoriasis patients and IL-22-treated HaCaT cells. Moreover, circ_0056856 knockdown might repress IL-22-induced HaCaT cell proliferation, migration, and invasion in vitro. In mechanism, circ_0056856 might function as a sponge of miR-197-3p to modulate CDK1 expression, and WTAP improved circ_0056856 expression via m6A methylation. CONCLUSION: WTAP-guided m6A modified circ_0056856 facilitates IL-22-stimulated HaCaT cell damage through the miR-197-3p/CDK1 axis, which could provide novel insights into psoriasis treatment.


Asunto(s)
Proteína Quinasa CDC2 , Movimiento Celular , Proliferación Celular , Interleucina-22 , Interleucinas , Queratinocitos , MicroARNs , Psoriasis , ARN Circular , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Queratinocitos/metabolismo , ARN Circular/genética , ARN Circular/metabolismo , Interleucinas/metabolismo , Interleucinas/genética , Psoriasis/patología , Psoriasis/genética , Psoriasis/metabolismo , Movimiento Celular/genética , Proteína Quinasa CDC2/metabolismo , Proteína Quinasa CDC2/genética , Células HaCaT , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Transducción de Señal
15.
Clin Immunol ; 264: 110260, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38788885

RESUMEN

Sjögren's disease (SjD) is a chronic autoimmune disease characterized by focal lymphocytic inflammation in lacrimal and salivary glands. We recently identified IL-27 as a requisite signal for the spontaneous SjD-like manifestations in nonobese diabetic (NOD) mice. Here, we define T cell-intrinsic effects of IL-27 in lacrimal gland disease in NOD mice. IL-27 receptor was required by both CD4 T effector (Te) cells and CD8 T cells to mediate focal inflammation. Intrinsic IL-27 signaling was associated with PD-1 and ICOS expressing T follicular helper (Tfh)-like CD4 Te cells within lacrimal glands, including subsets defined by CD73 or CD39 expression. CD8 T cells capable of IL-27 signaling also expressed PD-1 with subsets expressing ICOS and CD73 demonstrating a T follicular cytotoxic (Tfc)-like cell phenotype and others expressing a CD39hi exhausted-like phenotype. These findings suggest IL-27 is a key early signal driving a follicular-type response in lacrimal gland inflammation in NOD mice.


Asunto(s)
Linfocitos T CD8-positivos , Modelos Animales de Enfermedad , Aparato Lagrimal , Ratones Endogámicos NOD , Síndrome de Sjögren , Animales , Síndrome de Sjögren/inmunología , Ratones , Linfocitos T CD8-positivos/inmunología , Aparato Lagrimal/inmunología , Aparato Lagrimal/patología , Interleucinas/inmunología , Interleucinas/metabolismo , Linfocitos T CD4-Positivos/inmunología , Receptor de Muerte Celular Programada 1/inmunología , Receptor de Muerte Celular Programada 1/metabolismo , Femenino , Transducción de Señal/inmunología , Receptores de Interleucina/inmunología , Interleucina-27/metabolismo , Interleucina-27/inmunología , Proteína Coestimuladora de Linfocitos T Inducibles/inmunología , Proteína Coestimuladora de Linfocitos T Inducibles/metabolismo , Apirasa/inmunología , Apirasa/metabolismo
16.
Biochem Biophys Res Commun ; 722: 150158, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-38795455

RESUMEN

The cytokine interleukin-38 (IL-38), a recently discovered member of the IL-1 family, has been shown to regulate inflammation and improve hepatic endoplasmic reticulum stress and lipid metabolism in individuals with obesity. However, its impact on insulin signaling in skeletal muscle cells and the underlying mechanisms remain unclear. In vitro obesity models were established using palmitate treatment, and Western blot analysis was performed to assess target proteins. Commercial kits were used to measure glucose uptake in cultured myocytes. Our study showed that IL-38 treatment alleviated the impairment of insulin signaling, including IRS-1 and Akt phosphorylation, and increased glucose uptake in palmitate-treated C2C12 myocytes. Increased levels of STAT3-mediated signaling and oxidative stress were observed in these cells following palmitate treatment, and these effects were reversed by IL-38 treatment. In addition, IL-38 treatment upregulated the expression of PPARδ, SIRT1 and antioxidants. Knockdown of PPARδ or SIRT1 using appropriate siRNAs abrogated the effects of IL-38 on insulin signaling, oxidative stress, and the STAT3-dependent pathway. These results suggest that IL-38 alleviates insulin resistance by inhibiting STAT3-mediated signaling and oxidative stress in skeletal muscle cells through PPARδ/SIRT1. This study provides fundamental evidence to support the potential use of IL-38 as a safe therapeutic agent for the treatment of insulin resistance and type 2 diabetes.


Asunto(s)
Hiperlipidemias , Resistencia a la Insulina , Estrés Oxidativo , Factor de Transcripción STAT3 , Transducción de Señal , Sirtuina 1 , Animales , Estrés Oxidativo/efectos de los fármacos , Sirtuina 1/metabolismo , Sirtuina 1/genética , Factor de Transcripción STAT3/metabolismo , Ratones , Transducción de Señal/efectos de los fármacos , Línea Celular , Hiperlipidemias/metabolismo , Hiperlipidemias/tratamiento farmacológico , PPAR delta/metabolismo , PPAR delta/genética , Músculo Esquelético/metabolismo , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/patología , Interleucinas/metabolismo , Interleucinas/genética , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/efectos de los fármacos , Interleucina-1/metabolismo , Interleucina-1/genética
17.
Nat Commun ; 15(1): 4182, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38755157

RESUMEN

Bone marrow plasma cells (BMPC) are the correlate of humoral immunity, consistently releasing antibodies into the bloodstream. It remains unclear if BMPC reflect different activation environments or maturation of their precursors. Here we define human BMPC heterogeneity and track the recruitment of antibody-secreting cells (ASC) from SARS-CoV-2 vaccine immune reactions to the bone marrow (BM). Trajectories based on single-cell transcriptomes and repertoires of peripheral and BM ASC reveal sequential colonisation of BMPC compartments. In activated B cells, IL-21 suppresses CD19 expression, indicating that CD19low-BMPC are derived from follicular, while CD19high-BMPC originate from extrafollicular immune reactions. In primary immune reactions, both CD19low- and CD19high-BMPC compartments are populated. In secondary immune reactions, most BMPC are recruited to CD19high-BMPC compartments, reflecting their origin from extrafollicular reactivations of memory B cells. A pattern also observable in vaccinated-convalescent individuals and upon diphtheria/tetanus/pertussis recall-vaccination. Thus, BMPC diversity reflects the evolution of a given humoral immune response.


Asunto(s)
Antígenos CD19 , Médula Ósea , Interleucinas , Células Plasmáticas , Humanos , Células Plasmáticas/inmunología , Interleucinas/inmunología , Interleucinas/metabolismo , Médula Ósea/inmunología , Antígenos CD19/inmunología , Antígenos CD19/metabolismo , Inmunidad Humoral/inmunología , COVID-19/inmunología , COVID-19/virología , SARS-CoV-2/inmunología , Células de la Médula Ósea/inmunología , Células de la Médula Ósea/citología , Análisis de la Célula Individual , Adulto , Linfocitos B/inmunología , Células Productoras de Anticuerpos/inmunología , Femenino , Masculino , Vacunación , Persona de Mediana Edad , Vacuna contra Difteria, Tétanos y Tos Ferina/inmunología
18.
Medicina (Kaunas) ; 60(5)2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38792924

RESUMEN

(1) Introduction: Despite documented clinical and pain discrepancies between male and female osteoarthritis (OA) patients, the underlying mechanisms remain unclear. Synovial myofibroblasts, implicated in synovial fibrosis and OA-related pain, offer a potential explanation for these sex differences. Additionally, interleukin-24 (IL24), known for its role in autoimmune disorders and potential myofibroblast production, adds complexity to understanding sex-specific variations in OA. We investigate its role in OA and its contribution to observed sex differences. (2) Methods: To assess gender-specific variations, we analyzed myofibroblast marker expression and IL24 levels in synovial tissue samples from propensity-matched male and female OA patients (each n = 34). Gene expression was quantified using quantitative polymerase chain reaction (qPCR). The association between IL24 expression levels and pain severity, measured by a visual analog scale (VAS), was examined to understand the link between IL24 and OA pain. Synovial fibroblast subsets, including CD45-CD31-CD39- (fibroblast) and CD45-CD31-CD39+ (myofibroblast), were magnetically isolated from female patients (n = 5), and IL24 expression was compared between these subsets. (3) Results: Females exhibited significantly higher expression of myofibroblast markers (MYH11, ET1, ENTPD2) and IL24 compared to males. IL24 expression positively correlated with pain severity in females, while no correlation was observed in males. Further exploration revealed that the myofibroblast fraction highly expressed IL24 compared to the fibroblast fraction in both male and female samples. There was no difference in the myofibroblast fraction between males and females. (4) Conclusions: Our study highlights the gender-specific role of myofibroblasts and IL24 in OA pathogenesis. Elevated IL24 levels in females, correlating with pain severity, suggest its involvement in OA pain experiences. The potential therapeutic implications of IL24, demonstrated in autoimmune disorders, open avenues for targeted interventions. Notwithstanding the limitations of the study, our findings contribute to understanding OA's multifaceted nature and advocate for future research exploring mechanistic underpinnings and clinical applications of IL24 in synovial myofibroblasts. Additionally, future research directions should focus on elucidating the precise mechanisms by which IL24 contributes to OA pathology and exploring its potential as a therapeutic target for personalized medicine approaches.


Asunto(s)
Interleucinas , Miofibroblastos , Osteoartritis , Membrana Sinovial , Humanos , Femenino , Masculino , Miofibroblastos/metabolismo , Interleucinas/metabolismo , Interleucinas/análisis , Membrana Sinovial/metabolismo , Osteoartritis/metabolismo , Persona de Mediana Edad , Anciano , Puntaje de Propensión , Factores Sexuales , Dolor/metabolismo
19.
Aging (Albany NY) ; 16(9): 7915-7927, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38728237

RESUMEN

OBJECTIVE: This research aimed to explore IL-21/miR-361-5p/MAP3K9 expression in shoulder arthritis and identify its regulatory pathways. METHODS: We established a rat shoulder arthritis model, then quantified IL21 and miR-361-5p in synovial fluid using ELISA and monitored the arthritis development. Additionally, IL21's effect on miR-361-5p levels in cultured human chondrocytes (HC-a) was assessed. Chondrocyte cell cycle status and apoptosis were measured via flow cytometry. Interactions between miR-361-5p and MAP3K9 were confirmed through dual-luciferase reporting and bioinformatic scrutiny. Protein levels of MAP3K9, p-ERK1/2, p-NF-κB, MMP1, and MMP9 were analyzed by Western blots. RESULTS: IL21 levels were elevated, while miR-361-5p was reduced in the synovial fluid from arthritic rats compared to healthy rats. IL21 was shown to suppress miR-361-5p in chondrocytes leading to hindered cell proliferation and increased apoptosis. Western blots indicated that miR-361-5p curbed MAP3K9 expression, reducing MMP activity by attenuating the ERK1/2/NF-κB pathway in chondrocytes. CONCLUSION: IL21 upregulation and miR-361-5p downregulation characterize shoulder arthritis, resulting in MAP3K9 overexpression. This chain of molecular events boosts MMP expression in chondrocytes and exacerbates the condition's progression.


Asunto(s)
Condrocitos , Quinasas Quinasa Quinasa PAM , MicroARNs , Animales , Humanos , Masculino , Ratas , Apoptosis/genética , Proliferación Celular/genética , Condrocitos/metabolismo , Progresión de la Enfermedad , Interleucinas/metabolismo , Interleucinas/genética , Quinasas Quinasa Quinasa PAM/metabolismo , Quinasas Quinasa Quinasa PAM/genética , MicroARNs/metabolismo , MicroARNs/genética , Ratas Sprague-Dawley
20.
Theranostics ; 14(7): 2897-2914, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38773985

RESUMEN

Background: IL-35 potently inhibits immune responses both in vivo and in vitro. However, the specific characteristics of IL-35-producing cells, including their developmental origin, cellular phenotype, and function, are unknown. Methods: By using a novel IL-35 reporter mouse (Ebi3-Dre-Thy1.1) and double transgenic fate-mapping reporter mice (35EbiT-Rosa26-rox-tdTomato reporter mice or Foxp3 fate-mapping system), we tracked and analyzed the differentiation and developmental trajectories of Tr35 cells in vivo. And then we investigated the therapeutic effects of OVA-specific Tr35 cells in an OVA-induced allergic airway disease model. Results: We identified a subset of cells, denoted Tr35 cells, that secrete IL-35 but do not express Foxp3. These cells have high expression of molecules associated with T-cell activation and can inhibit T-cell proliferation in vitro. Our analyses showed that Tr35 cells are a distinct subpopulation of cells that are independent of Tr1 cells. Tr35 cells exhibit a unique gene expression profile and tissue distribution. The presence of Thy1.1 (Ebi3) expression in Tr35 cells indicates their active secretion of IL-35. However, the proportion of ex-Tr35 cells (Thy1.1-) is significantly higher compared to Tr35 cells (Thy1.1+). This suggests that Tr35 cells possess the ability to regulate IL-35 expression rapidly in vivo. Tr35 cells downregulated the expression of the inflammatory cytokines IL-4, IFN-γ and IL-17A. However, once Tr35 cells lost IL-35 expression and became exTr35 cells, the expression of inflammatory cytokines was upregulated. Importantly, our findings indicate that Tr35 cells have therapeutic potential. In an OVA-induced allergic airway disease mouse model, Tr35 cell reinfusion significantly reduced airway hyperresponsiveness and histopathological airway and lung inflammation. Conclusions: We have identified a subset of Tregs, Tr35 cells, that are distinct from Tr1 cells. Tr35 cells can dynamically regulate the secretion of inflammatory cytokines by controlling IL-35 expression to regulate inflammatory immune responses.


Asunto(s)
Interleucinas , Ratones Transgénicos , Linfocitos T Reguladores , Animales , Linfocitos T Reguladores/inmunología , Linfocitos T Reguladores/metabolismo , Interleucinas/metabolismo , Interleucinas/genética , Ratones , Factores de Transcripción Forkhead/metabolismo , Factores de Transcripción Forkhead/genética , Modelos Animales de Enfermedad , Plasticidad de la Célula , Ratones Endogámicos C57BL , Activación de Linfocitos , Ovalbúmina/inmunología , Proliferación Celular , Diferenciación Celular , Femenino
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA