Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
J Trace Elem Med Biol ; 81: 127326, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37939525

RESUMEN

BACKGROUND: Manganese (Mn) overexposure can induce neurotoxicity and lead to manganism. Vitamin E (Vit E) has neuroprotective effects by acting as an ROS scavenger, preventing mitochondrial dysfunction and neuronal apoptosis. However, the effects of Vit E on Mn-induced nigrostriatal system lesions remains unknown. OBJECTIVES: We aim to investigate whether Vit E has protective effects on Mn-induced nigrostriatal system lesions and mRNA expression profiles in the SN of mice. METHODS: Sixty 8-week-old C57BL/6 male mice were randomly divided into the Control, MnCl2, MnCl2 +Vit E, and Vit E group. Twenty-four hours after the last injection, the behaviour test was performed. The numbers of dopaminergic neurons in Substantia nigra (SN), the contents of dopamine and its metabolite levels in striatium, and the morphology of mitochondria and nuclei in the dopaminergic neurons in SN were detected by immunofluorescence staining, high-performance liquid chromatography, and transmission electron microscopy. Transcriptome analysis was used to analyze the signaling pathways and RT-PCR was used to verify the mRNA levels. RESULTS: Vit E ameliorates behavioral disorders and attenuates the loss of nigral dopaminergic neurons in the Mn-induced mouse model. In addition, Vit E antagonized Mn-induced toxicity by restoring mitochondrial function. The results of transcriptome sequencing and RTPCR show that the protective effect of Vit E was related to the upregulation of CHRM1 and KCNJ4 mRNA in the SN. CONCLUSIONS: Vit E has neuroprotective effects on Mn-induced neurodegeneration in the nigrostriatal system. This effect may be related to the upregulation of CHRM1 and KCNJ4 mRNA stimulated by Vit E in the SN.


Asunto(s)
Neuronas Dopaminérgicas , Intoxicación por Manganeso , Manganeso , Fármacos Neuroprotectores , Vitamina E , Animales , Masculino , Ratones , Neuronas Dopaminérgicas/efectos de los fármacos , Neuronas Dopaminérgicas/patología , Manganeso/toxicidad , Intoxicación por Manganeso/prevención & control , Ratones Endogámicos C57BL , Fármacos Neuroprotectores/farmacología , ARN Mensajero/genética , ARN Mensajero/metabolismo , Vitamina E/farmacología
2.
Neurotoxicology ; 81: 66-69, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32890586

RESUMEN

Jean Rodier (1920-2003), distinguished researcher and scientist, directed the Toxicology Department of Hygiene Institute of Rabat under the French Protectorate. From 1946, he developed numerous lines of research in occupational health, in particular on Manganism, a neurological disorder that impacted miners in his home country of Morocco. His many papers on Manganism, only one of which was published in English, describe field and laboratory research studies that focused its prevention and management.


Asunto(s)
Investigación Biomédica/historia , Intoxicación por Manganeso/historia , Enfermedades Profesionales/historia , Toxicología/historia , Historia del Siglo XX , Historia del Siglo XXI , Humanos , Intoxicación por Manganeso/diagnóstico , Intoxicación por Manganeso/epidemiología , Intoxicación por Manganeso/prevención & control , Mineros/historia , Minería/historia , Marruecos/epidemiología , Enfermedades Profesionales/diagnóstico , Enfermedades Profesionales/epidemiología , Enfermedades Profesionales/prevención & control , Salud Laboral/historia , Medición de Riesgo , Factores de Riesgo
3.
Biomed Pharmacother ; 129: 110449, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32768944

RESUMEN

Manganese (Mn) exposure has been reported to cause neurodegenerative disorders. ß-Amyloid (Aß) induced Tau pathology in an NLRP3-dependent manner is at the heart of Alzheimer's and Parkinson's diseases. The gut microbiota plays a crucial role in the bidirectional gut-brain axis that integrates the gut and central nervous system (CNS) activities. In this study, we found that Mn exposure increases Aß1-40 and Tau production in brain, and causes hippocampal degeneration and necrosis. Meanwhile, Mn exposure can stimulate neurotoxicity by increasing inflammation either in peripheral blood and CNS. Importantly, we found that transplantation of gut microbiota from normal rats into Mn exposure rats reduced Aß and Tau expression, and the cerebral expression of NLRP3 was downregulated, and the expression of neuroinflammatory factors was also downregulated. Therefore, improving the composition of gut microbiota in Mn exposure rats can attenuate neuroinflammation, which is considered as a novel therapeutic strategy for Mn exposure by remodelling the gut microbiota.


Asunto(s)
Corteza Cerebral/metabolismo , Microbioma Gastrointestinal , Inflamasomas/metabolismo , Intestinos/microbiología , Intoxicación por Manganeso/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Péptidos beta-Amiloides/metabolismo , Animales , Corteza Cerebral/patología , Citocinas/metabolismo , Modelos Animales de Enfermedad , Trasplante de Microbiota Fecal , Masculino , Intoxicación por Manganeso/microbiología , Intoxicación por Manganeso/patología , Intoxicación por Manganeso/prevención & control , Fragmentos de Péptidos/metabolismo , Ratas Sprague-Dawley , Proteínas tau/metabolismo
4.
Toxicol Mech Methods ; 30(7): 497-507, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32441205

RESUMEN

Manganese (Mn) is essential for many physiological processes; however, its excessive accumulation in the brain causes severe dysfunctions in the nervous system. Oxidative stress is thought to be involved in Mn-induced neurotoxicity. The aim of this study was to evaluate the neurotoxic effects of Mn and the potential protective effects of alpha lipoic acid (ALA) and Spirulina platensis (SP), each alone and in combination. Sixty-four male albino rats were divided into eight equal groups: group 1 was used as control, group 2 received saline, which used as a vehicle, group 3 received ALA (50 mg/kg/day), group 4 received SP (300 mg/kg/day), group 5 received Mn (74 mg/kg, 5 days/week), group 6 received Mn + ALA, group 7 received Mn + SP, group 8 received Mn + ALA + SP. Groups 6, 7 and 8 received the same previously mentioned doses. All treatments were orally gavaged for 8 weeks. Mn administration caused neurobehavioral changes, increases of brain and serum Mn and malondialdehyde (MDA), with decreased glutathione peroxidase (GPx), dopamine and acetylcholine levels. The co-treatment with ALA and SP revealed their ability to protect against oxidative damage, neurobehavioral and biochemical changes induced by Mn.


Asunto(s)
Antioxidantes/farmacología , Encéfalo/efectos de los fármacos , Intoxicación por Manganeso/prevención & control , Fármacos Neuroprotectores/farmacología , Estrés Oxidativo/efectos de los fármacos , Spirulina/fisiología , Ácido Tióctico/farmacología , Animales , Conducta Animal/efectos de los fármacos , Encéfalo/metabolismo , Encéfalo/patología , Encéfalo/fisiopatología , Conducta Alimentaria/efectos de los fármacos , Masculino , Intoxicación por Manganeso/metabolismo , Intoxicación por Manganeso/patología , Intoxicación por Manganeso/fisiopatología , Prueba del Laberinto Acuático de Morris/efectos de los fármacos , Ratas
5.
Dev Comp Immunol ; 104: 103536, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31705914

RESUMEN

Manganese (Mn) is an essential trace metal for all organisms. However, in excess it causes toxic effects but the impact on aquatic environments has so far been highly overlooked. Manganese is abundant both in costal and deep sea sediments and becomes bioavailable (Mn2+) during redox conditions. This is an increasing phenomenon due to eutrophication-induced hypoxia and aggravated through the ongoing climate change. Intracellular accumulation of Mn2+ causes oxidative stress and activates evolutionary conserved pathways inducing apoptosis and cell cycle arrest. Here, studies are compiled on how excess of dissolved Mn suppresses the immune system of various aquatic organisms by adversely affecting both renewal of immunocytes and their functionality, such as phagocytosis and activation of pro-phenoloxidase. These impairments decrease the animal's bacteriostatic capacity, indicating higher susceptibility to infections. Increased distribution of pathogens, which is believed to accompany climate change, requires preserved immune sentinel functions and Mn can be crucial for the outcome of host-pathogen interactions.


Asunto(s)
Organismos Acuáticos , Exposición a Riesgos Ambientales/efectos adversos , Intoxicación por Manganeso/prevención & control , Manganeso/metabolismo , Animales , Puntos de Control del Ciclo Celular , Muerte Celular , Cambio Climático , Susceptibilidad a Enfermedades , Interacciones Huésped-Patógeno , Tolerancia Inmunológica , Estrés Oxidativo
6.
Medicine (Baltimore) ; 97(22): e10775, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29851783

RESUMEN

Alzheimer disease (AD) is a progressive neurodegenerative disease, the etiology of which remains largely unknown. Accumulating evidence indicates that elevated manganese (Mn) in brain exerts toxic effects on neurons and contributes to AD development. Thus, we aimed to explore the gene and pathway variations through analysis of high through-put data in this process.To screen the differentially expressed genes (DEGs) that may play critical roles in Mn-induced AD, public microarray data regarding Mn-treated neurocytes versus controls (GSE70845), and AD versus controls (GSE48350), were downloaded and the DEGs were screened out, respectively. The intersection of the DEGs of each datasets was obtained by using Venn analysis. Then, gene ontology (GO) function analysis and KEGG pathway analysis were carried out. For screening hub genes, protein-protein interaction network was constructed. At last, DEGs were analyzed in Connectivity Map (CMAP) for identification of small molecules that overcome Mn-induced neurotoxicity or AD development.The intersection of the DEGs obtained 140 upregulated and 267 downregulated genes. The top 5 items of biological processes of GO analysis were taxis, chemotaxis, cell-cell signaling, regulation of cellular physiological process, and response to wounding. The top 5 items of KEGG pathway analysis were cytokine-cytokine receptor interaction, apoptosis, oxidative phosphorylation, Toll-like receptor signaling pathway, and insulin signaling pathway. Afterwards, several hub genes such as INSR, VEGFA, PRKACB, DLG4, and BCL2 that might play key roles in Mn-induced AD were further screened out. Interestingly, tyrphostin AG-825, an inhibitor of tyrosine phosphorylation, was predicted to be a potential agent for overcoming Mn-induced neurotoxicity or AD development.The present study provided a novel insight into the molecular mechanisms of Mn-induced neurotoxicity or AD development and screened out several small molecular candidates that might be critical for Mn neurotoxicity prevention and Mn-induced AD treatment.


Asunto(s)
Enfermedad de Alzheimer/inducido químicamente , Enfermedad de Alzheimer/genética , Biología Computacional/métodos , Manganeso/toxicidad , Benzotiazoles/metabolismo , Perfilación de la Expresión Génica/métodos , Ontología de Genes , Ensayos Analíticos de Alto Rendimiento/métodos , Humanos , Manganeso/metabolismo , Intoxicación por Manganeso/metabolismo , Intoxicación por Manganeso/prevención & control , Fosforilación/genética , Mapas de Interacción de Proteínas/genética , Transducción de Señal/genética , Tirfostinos/metabolismo , Regulación hacia Arriba/genética
7.
Neurotoxicology ; 64: 1-4, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29429640

RESUMEN

Manganese is an essential trace element, but also at high levels a neurotoxicant. Manganese neurotoxicity has been extensively studied since its discovery in highly exposed workers. The International conference MANGANESE2016 held at the Icahn School of Medicine at Mount Sinai in New York provided relevant updates on manganese research in relation to both occupational and environmental exposures. Epidemiological, toxicological and cellular studies reported at the conference have yielded new insights on mechanisms of manganese toxicity and on opportunities for preventive intervention. Strong evidence now exists for causal associations between manganese and both neurodevelopmental and neurodegenerative disorders. The neurodevelopmental effects of early life exposures are an example of the developmental origin of health and disease (DOHAD) concept. Brain imaging has rapidly become an important tool for examining brain areas impacted by manganese at various life stages. Candidate biomarkers of exposure are being identified in hair, nails, and teeth and reflect different exposure windows and relate to different health outcomes. Sex differences were reported in several studies, suggesting that women are more susceptible. New evidence indicates that the transporter genes SLC30A10 and SLC39A8 influence both manganese homeostasis and toxicity. New potential chelation modalities are being developed.


Asunto(s)
Encéfalo/efectos de los fármacos , Intoxicación por Manganeso/prevención & control , Manganeso/toxicidad , Síndromes de Neurotoxicidad/prevención & control , Animales , Congresos como Asunto , Humanos , Intoxicación por Manganeso/epidemiología , Síndromes de Neurotoxicidad/epidemiología , Exposición Profesional/prevención & control , Salud Pública , Medición de Riesgo
8.
Neurotoxicology ; 65: 280-288, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29183790

RESUMEN

Chronic exposure to manganese (Mn) causes neurotoxicity, referred to as manganism, with common clinical features of parkinsonism. 17ß-estradiol (E2) and tamoxifen (TX), a selective estrogen receptor modulator (SERM), afford neuroprotection in several neurological disorders, including Parkinson's disease (PD). In the present study, we tested if E2 and TX attenuate Mn-induced neurotoxicity in mice, assessing motor deficit and dopaminergic neurodegeneration. We implanted E2 and TX pellets in the back of the neck of ovariectomized C57BL/6 mice two weeks prior to a single injection of Mn into the striatum. One week later, we assessed locomotor activity and molecular mechanisms by immunohistochemistry, real-time quantitative PCR, western blot and enzymatic biochemical analyses. The results showed that both E2 and TX attenuated Mn-induced motor deficits and reversed the Mn-induced loss of dopaminergic neurons in the substantia nigra. At the molecular level, E2 and TX reversed the Mn-induced decrease of (1) glutamate aspartate transporter (GLAST) and glutamate transporter 1 (GLT-1) mRNA and protein levels; (2) transforming growth factor-α (TGF-α) and estrogen receptor-α (ER-α) protein levels; and (3) catalase (CAT) activity and glutathione (GSH) levels, and Mn-increased (1) malondialdehyde (MDA) levels and (2) the Bax/Bcl-2 ratio. These results indicate that E2 and TX afford protection against Mn-induced neurotoxicity by reversing Mn-reduced GLT1/GLAST as well as Mn-induced oxidative stress. Our findings may offer estrogenic agents as potential candidates for the development of therapeutics to treat Mn-induced neurotoxicity.


Asunto(s)
Encéfalo/metabolismo , Neuronas Dopaminérgicas/efectos de los fármacos , Estradiol/farmacología , Intoxicación por Manganeso/prevención & control , Tamoxifeno/farmacología , Sistema de Transporte de Aminoácidos X-AG/biosíntesis , Animales , Catalasa/metabolismo , Receptor alfa de Estrógeno/metabolismo , Femenino , Glutatión/metabolismo , Locomoción/efectos de los fármacos , Malondialdehído/metabolismo , Intoxicación por Manganeso/metabolismo , Ratones , Degeneración Nerviosa/inducido químicamente , Degeneración Nerviosa/patología , Ovariectomía , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Factor de Crecimiento Transformador alfa/metabolismo , Proteína X Asociada a bcl-2/metabolismo
9.
BMC Pharmacol Toxicol ; 17(1): 57, 2016 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-27814772

RESUMEN

Manganese (Mn) is an essential heavy metal. However, Mn's nutritional aspects are paralleled by its role as a neurotoxicant upon excessive exposure. In this review, we covered recent advances in identifying mechanisms of Mn uptake and its molecular actions in the brain as well as promising neuroprotective strategies. The authors focused on reporting findings regarding Mn transport mechanisms, Mn effects on cholinergic system, behavioral alterations induced by Mn exposure and studies of neuroprotective strategies against Mn intoxication. We report that exposure to Mn may arise from environmental sources, occupational settings, food, total parenteral nutrition (TPN), methcathinone drug abuse or even genetic factors, such as mutation in the transporter SLC30A10. Accumulation of Mn occurs mainly in the basal ganglia and leads to a syndrome called manganism, whose symptoms of cognitive dysfunction and motor impairment resemble Parkinson's disease (PD). Various neurotransmitter systems may be impaired due to Mn, especially dopaminergic, but also cholinergic and GABAergic. Several proteins have been identified to transport Mn, including divalent metal tranporter-1 (DMT-1), SLC30A10, transferrin and ferroportin and allow its accumulation in the central nervous system. Parallel to identification of Mn neurotoxic properties, neuroprotective strategies have been reported, and these include endogenous antioxidants (for instance, vitamin E), plant extracts (complex mixtures containing polyphenols and non-characterized components), iron chelating agents, precursors of glutathione (GSH), and synthetic compounds that can experimentally afford protection against Mn-induced neurotoxicity.


Asunto(s)
Encéfalo/efectos de los fármacos , Trastornos del Conocimiento/prevención & control , Manganeso/toxicidad , Trastornos de la Destreza Motora/prevención & control , Fármacos Neuroprotectores/administración & dosificación , Animales , Encéfalo/metabolismo , Trastornos del Conocimiento/inducido químicamente , Trastornos del Conocimiento/metabolismo , Alimentos/efectos adversos , Humanos , Manganeso/metabolismo , Intoxicación por Manganeso/metabolismo , Intoxicación por Manganeso/prevención & control , Trastornos de la Destreza Motora/inducido químicamente , Trastornos de la Destreza Motora/metabolismo , Fármacos Neuroprotectores/metabolismo , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/prevención & control
10.
J Toxicol Sci ; 41(5): 573-81, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27665767

RESUMEN

Sodium para-aminosalicylate (PAS-Na) was first applied successfully in clinical treatment of two manganism patients with good prognosis. However, the mechanism of how PAS-Na protects against Mn-induced neurotoxicity is still elusive. The current study was conducted to explore the effects of PAS-Na on Mn-induced basal ganglia astrocyte injury, and the involvement of amino acid neurotransmitter in vitro. Basal ganglia astrocytes were exposed to 500 µM manganese chloride (MnCl2) for 24 hr, following by 50, 150, or 450 µM PAS-Na treatment for another 24 hr. MnCl2 significantly decreased viability of astrocytes and induced DNA damages via increasing the percentage of tail DNA and Olive tail moment of DNA. Moreover, Mn interrupted amino acid neurotransmitters by decreasing Gln levels and increasing Glu, Gly levels. In contrast, PAS-Na treatment reversed the aforementioned Mn-induced toxic effects on basal ganglia astrocytes. Taken together, our results demonstrated that excessive Mn exposure may induce toxic effects on basal ganglia astrocytes, while PAS-Na could protect basal ganglia astrocytes from Mn-induced neurotoxicity.


Asunto(s)
Ácido Aminosalicílico/farmacología , Astrocitos/efectos de los fármacos , Ganglios Basales/efectos de los fármacos , Cloruros/toxicidad , Daño del ADN/efectos de los fármacos , Ácido Glutámico/metabolismo , Glutamina/metabolismo , Glicina/metabolismo , Intoxicación por Manganeso/prevención & control , Sustancias Protectoras/farmacología , Animales , Animales Recién Nacidos , Astrocitos/metabolismo , Astrocitos/patología , Ganglios Basales/metabolismo , Ganglios Basales/patología , Células Cultivadas , Citoprotección , Relación Dosis-Respuesta a Droga , Compuestos de Manganeso , Intoxicación por Manganeso/genética , Intoxicación por Manganeso/metabolismo , Intoxicación por Manganeso/patología , Ratas Sprague-Dawley
11.
Toxicology ; 328: 168-78, 2015 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-25549921

RESUMEN

Welding fumes (WF) are a complex mixture of toxic metals and gases, inhalation of which can lead to adverse health effects among welders. The presence of manganese (Mn) in welding electrodes is cause for concern about the potential development of Parkinson's disease (PD)-like neurological disorder. Consequently, from an occupational safety perspective, there is a critical need to prevent adverse exposures to WF. As the fume generation rate and physicochemical characteristics of welding aerosols are influenced by welding process parameters like voltage, current or shielding gas, we sought to determine if changing such parameters can alter the fume profile and consequently its neurotoxic potential. Specifically, we evaluated the influence of voltage on fume composition and neurotoxic outcome. Rats were exposed by whole-body inhalation (40 mg/m(3); 3h/day × 5 d/week × 2 weeks) to fumes generated by gas-metal arc welding using stainless steel electrodes (GMA-SS) at standard/regular voltage (25 V; RVSS) or high voltage (30 V; HVSS). Fumes generated under these conditions exhibited similar particulate morphology, appearing as chain-like aggregates; however, HVSS fumes comprised of a larger fraction of ultrafine particulates that are generally considered to be more toxic than their fine counterparts. Paradoxically, exposure to HVSS fumes did not elicit dopaminergic neurotoxicity, as monitored by the expression of dopaminergic and PD-related markers. We show that the lack of neurotoxicity is due to reduced solubility of Mn in HVSS fumes. Our findings show promise for process control procedures in developing prevention strategies for Mn-related neurotoxicity during welding; however, it warrants additional investigations to determine if such modifications can be suitably adapted at the workplace to avert or reduce adverse neurological risks.


Asunto(s)
Contaminantes Ocupacionales del Aire/toxicidad , Encéfalo/efectos de los fármacos , Exposición por Inhalación/prevención & control , Intoxicación por Manganeso/prevención & control , Manganeso/toxicidad , Enfermedad de Parkinson Secundaria/prevención & control , Soldadura/métodos , Aerosoles , Contaminantes Ocupacionales del Aire/química , Animales , Carga Corporal (Radioterapia) , Encéfalo/metabolismo , Neuronas Dopaminérgicas/efectos de los fármacos , Neuronas Dopaminérgicas/metabolismo , Diseño de Equipo , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Exposición por Inhalación/efectos adversos , Masculino , Manganeso/química , Intoxicación por Manganeso/etiología , Intoxicación por Manganeso/genética , Intoxicación por Manganeso/metabolismo , Enfermedad de Parkinson Secundaria/etiología , Enfermedad de Parkinson Secundaria/genética , Enfermedad de Parkinson Secundaria/metabolismo , Tamaño de la Partícula , Ratas Sprague-Dawley , Medición de Riesgo , Solubilidad , Factores de Tiempo , Soldadura/instrumentación
12.
Toxicol Sci ; 143(2): 454-68, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25416158

RESUMEN

The pathological role of α-synuclein (α-Syn) aggregation in neurodegeneration is well recognized, but the physiological function of normal α-Syn remains unknown. As α-Syn protein contains multiple divalent metal binding sites, herein we conducted a comprehensive characterization of the role of α-Syn in manganese-induced dopaminergic neurotoxicity. We established transgenic N27 dopaminergic neuronal cells by stably expressing human wild-type α-Syn at normal physiological levels. α-Syn-expressing dopaminergic cells significantly attenuated Mn-induced neurotoxicity for 24-h exposures relative to vector control cells. To further explore cellular mechanisms, we studied the mitochondria-dependent apoptotic pathway. Analysis of a key mitochondrial apoptotic initiator, cytochrome c, revealed that α-Syn significantly reduces the Mn-induced cytochrome c release into cytosol. The downstream caspase cascade, involving caspase-9 and caspase-3 activation, during Mn exposure was also largely attenuated in Mn-treated α-Syn cells in a time-dependent manner. α-Syn cells also showed a dramatic reduction in the Mn-induced proteolytic activation of the pro-apoptotic kinase PKCδ. The generation of Mn-induced reactive oxygen species (ROS) did not differ between α-Syn and vector control cells, indicating that α-Syn exerts its protective effect independent of altering ROS generation. Inductively coupled plasma-mass spectrometry (ICP-MS) revealed no significant differences in intracellular Mn levels between treated vector and α-Syn cells. Notably, the expression of wild-type α-Syn in primary mesencephalic cells also rescued cells from Mn-induced neurotoxicity. However, prolonged exposure to Mn promoted protein aggregation in α-Syn-expressing cells. Collectively, these results demonstrate that wild-type α-Syn exhibits neuroprotective effects against Mn-induced neurotoxicity during the early stages of exposure in a dopaminergic neuronal model of PD.


Asunto(s)
Cloruros/toxicidad , Neuronas Dopaminérgicas/efectos de los fármacos , Intoxicación por Manganeso/genética , Modelos Neurológicos , Enfermedad de Parkinson/genética , alfa-Sinucleína/genética , Animales , Apoptosis/efectos de los fármacos , Apoptosis/genética , Sitios de Unión , Western Blotting , Técnicas de Cultivo de Célula , Línea Celular , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/genética , Cloruros/metabolismo , Fragmentación del ADN/efectos de los fármacos , Dopamina/metabolismo , Neuronas Dopaminérgicas/metabolismo , Neuronas Dopaminérgicas/patología , Humanos , Compuestos de Manganeso/metabolismo , Intoxicación por Manganeso/complicaciones , Intoxicación por Manganeso/patología , Intoxicación por Manganeso/prevención & control , Mesencéfalo/efectos de los fármacos , Mesencéfalo/metabolismo , Mesencéfalo/patología , Enfermedad de Parkinson/etiología , Enfermedad de Parkinson/patología , Enfermedad de Parkinson/prevención & control , Unión Proteica , Ratas , Especies Reactivas de Oxígeno/metabolismo , Espectrofotometría Atómica , Transfección , alfa-Sinucleína/metabolismo
13.
J Toxicol Environ Health A ; 77(7): 390-404, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24617543

RESUMEN

Manganese (Mn) is an essential element for human health. However, at high concentrations Mn may be neurotoxic. Mn accumulates in astrocytes, affecting their redox status. In view of the high antioxidant and anti-inflammatory properties of the exotic Brazilian fruit açaí (Euterpe oleracea Mart.), its methanolic extract was obtained by solid-phase extraction (SPE). This açaí extract showed considerable anthocyanins content and direct antioxidant capacity. The açaí extract scavenged 2,2-diphenyl-1-picrylhydrazyl radicals (DPPH•) with an EC50 of 19.1 ppm, showing higher antioxidant activity compared to butylated hydroxytoluene (BHT), but lower than ascorbic acid and quercetin. This obtained açaí extract also attenuated Mn-induced oxidative stress in primary cultured astrocytes. Specifically, the açaí extract at an optimal and nutritionally relevant concentration of 0.1 µg/ml prevented Mn-induced oxidative stress by (1) restoring GSH/GSSG ratio and net glutamate uptake, (2) protecting astrocytic membranes from lipid peroxidation, and (3) decreasing Mn-induced expression of erythroid 2-related factor (Nrf2) protein. A larger quantity of açaí extract exacerbated the effects of Mn on these parameters except with respect to lipid peroxidation assessed by means of F2-isoprostanes. These studies indicate that at nutritionally relevant concentration, anthocyanins obtained from açaí protect astrocytes against Mn neurotoxicity, but at high concentrations, the "pro-oxidant" effects of its constituents likely prevail. Future studies may be profitably directed at potential protective effects of açaí anthocyanins in nutraceutical formulations.


Asunto(s)
Arecaceae , Astrocitos , Suplementos Dietéticos , Manganeso , Fármacos Neuroprotectores , Estrés Oxidativo , Extractos Vegetales , Animales , Ratas , Animales Recién Nacidos , Antocianinas/efectos adversos , Antocianinas/análisis , Antocianinas/metabolismo , Arecaceae/química , Astrocitos/citología , Astrocitos/efectos de los fármacos , Astrocitos/metabolismo , Transporte Biológico/efectos de los fármacos , Brasil , Células Cultivadas , Corteza Cerebral/citología , Corteza Cerebral/efectos de los fármacos , Corteza Cerebral/metabolismo , Suplementos Dietéticos/efectos adversos , Suplementos Dietéticos/análisis , Frutas/química , Regulación de la Expresión Génica/efectos de los fármacos , Ácido Glutámico/metabolismo , Manganeso/efectos adversos , Manganeso/química , Intoxicación por Manganeso/dietoterapia , Intoxicación por Manganeso/prevención & control , Proteínas del Tejido Nervioso/biosíntesis , Proteínas del Tejido Nervioso/metabolismo , Fármacos Neuroprotectores/efectos adversos , Fármacos Neuroprotectores/análisis , Fármacos Neuroprotectores/química , Fármacos Neuroprotectores/metabolismo , Estrés Oxidativo/efectos de los fármacos , Extractos Vegetales/efectos adversos , Extractos Vegetales/química , Extractos Vegetales/metabolismo , Ratas Sprague-Dawley , Factor 2 Relacionado con NF-E2/biosíntesis , Factor 2 Relacionado con NF-E2/metabolismo
14.
Biol Trace Elem Res ; 152(1): 113-6, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23315311

RESUMEN

Manganese (Mn) is an essential metal for biological systems; however, occupational or clinical exposure to high levels of Mn can produce a neurological disorder called manganism. Oxidative stress and neuroinflammation play major roles in the Mn-induced neurodegeneration leading to dysfunction of the basal ganglia. We investigated the toxic effects of MnCl2 in an immortalized rat brain endothelial cell line (RBE4) and the protective effects of the radical scavenging aminosalicylic acids, 5-aminosalicylic acid (5-ASA) and 4-aminosalicylic acid (4-PAS). Mn cytotoxicity was determined with 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) reduction and lactate dehydrogenase (LDH) activity. A significant decrease in MTT reduction concomitant with increased LDH release was noted in RBE4 cells exposed for 24 h to MnCl2 (600 and 800 µM; p < 0.0001). Our results establish that compared to 4-PAS, 5-ASA has greater efficacy in protecting RBE4 cells from Mn-induced neurotoxicity after preexposure to MnCl2 800 µM (p < 0.0001).


Asunto(s)
Ácido Aminosalicílico/farmacología , Intoxicación por Manganeso/prevención & control , Manganeso/toxicidad , Mesalamina/farmacología , Análisis de Varianza , Animales , Encéfalo/citología , Línea Celular , Supervivencia Celular/efectos de los fármacos , Cloruros/toxicidad , Relación Dosis-Respuesta a Droga , Células Endoteliales/citología , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Humanos , L-Lactato Deshidrogenasa/metabolismo , Compuestos de Manganeso , Intoxicación por Manganeso/etiología , Fármacos Neuroprotectores/farmacología , Ratas
15.
Arh Hig Rada Toksikol ; 63(3): 263-70, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23152376

RESUMEN

We tested the hypothesis that dietary fibre (DF) has protective effects against manganese (Mn)-induced neurotoxicity. Forty-eight one-month old Sprague-Dawley rats were randomly divided into six groups: control, 16 % DF, Mn (50 mg kg-1 body weight), Mn+ 4 % DF, Mn+ 8 % DF, and Mn+ 16 % DF. After oral administration of Mn (as MnCl2) by intragastric tube during one month, we determined Mn concentrations in the blood, liver, cerebral cortex, and stool and tested neurobehavioral functions. Administration of Mn was associated with increased Mn concentration in the blood, liver, and cerebral cortex and increased Mn excretion in the stool. Aberrations in neurobehavioral performance included increases in escape latency and number of errors and decrease in step-down latency. Irrespective of the applied dose, the addition of DF in forage decreased tissue Mn concentrations and increased Mn excretion rate in the stool by 20 % to 35 %. All neurobehavioral aberrations were also improved. Our findings show that oral exposure to Mn may cause neurobehavioral abnormalities in adult rats that could be efficiently alleviated by concomitant supplementation of DF in animal feed.


Asunto(s)
Conducta Animal/efectos de los fármacos , Fibras de la Dieta/farmacología , Intoxicación por Manganeso/prevención & control , Enfermedades del Sistema Nervioso/prevención & control , Sustancias Protectoras/farmacología , Animales , Relación Dosis-Respuesta a Droga , Conducta Exploratoria/efectos de los fármacos , Masculino , Intoxicación por Manganeso/complicaciones , Enfermedades del Sistema Nervioso/inducido químicamente , Enfermedades del Sistema Nervioso/etiología , Distribución Aleatoria , Ratas , Ratas Sprague-Dawley
16.
Biol Trace Elem Res ; 144(1-3): 832-42, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22180013

RESUMEN

Occupational or environmental exposure to excessive Mn would cause manganism, which is resembled Parkinson disease. However, the mechanism underlying manganism is still unknown. It had been documented that astrocytes play important roles in physiological function in brain. Therefore, in the present study, the cultured astrocytes were exposed to 0, 125, 250, and 500 µM MnCl(2), and cell viability, lactate dehydrogenase (LDH) leakage, morphological change, cell cycle progression, and apoptosis were determined. In addition, 100 µM riluzole (a glutamatergic modulator) was pretreated for 6 h before no MnCl(2) exposure or 500 µM MnCl(2) exposure. The results showed that cell viability inhibited, LDH leakage elevated, morphology injured, G(0)/G(1) phase cell cycle arrested, and apoptosis rate increased in a concentration-dependent manner. Further investigation indicated that riluzole pretreatment reversed cytotoxicity, cell cycle aberration, and apoptosis on astrocytes caused by MnCl(2). These results suggested that MnCl(2) could cause cytotoxicity, cell cycle arrest, and apoptosis concentration-dependently; riluzole might antagonize Mn toxicity on astrocytes.


Asunto(s)
Apoptosis/efectos de los fármacos , Astrocitos/patología , Puntos de Control del Ciclo Celular/efectos de los fármacos , Cloruros/antagonistas & inhibidores , Cloruros/toxicidad , Fase G1/efectos de los fármacos , Compuestos de Manganeso/antagonistas & inhibidores , Intoxicación por Manganeso/patología , Intoxicación por Manganeso/prevención & control , Fármacos Neuroprotectores/farmacología , Fase de Descanso del Ciclo Celular/efectos de los fármacos , Riluzol/farmacología , Animales , Animales Recién Nacidos , Astrocitos/efectos de los fármacos , Ciclo Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Colorantes , Relación Dosis-Respuesta a Droga , Citometría de Flujo , L-Lactato Deshidrogenasa/metabolismo , Ratas , Ratas Sprague-Dawley , Sales de Tetrazolio , Tiazoles
17.
Toxicol Appl Pharmacol ; 256(3): 219-26, 2011 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-21684300

RESUMEN

Exposure to excessive manganese (Mn) levels leads to neurotoxicity, referred to as manganism, which resembles Parkinson's disease (PD). Manganism is caused by neuronal injury in both cortical and subcortical regions, particularly in the basal ganglia. The basis for the selective neurotoxicity of Mn is not yet fully understood. However, several studies suggest that oxidative damage and inflammatory processes play prominent roles in the degeneration of dopamine-containing neurons. In the present study, we assessed the effects of Mn on reactive oxygen species (ROS) formation, changes in high-energy phosphates and associated neuronal dysfunctions both in vitro and in vivo. Results from our in vitro study showed a significant (p<0.01) increase in biomarkers of oxidative damage, F(2)-isoprostanes (F(2)-IsoPs), as well as the depletion of ATP in primary rat cortical neurons following exposure to Mn (500 µM) for 2h. These effects were protected when neurons were pretreated for 30 min with 100 of an antioxidant, the hydrophilic vitamin E analog, trolox (6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid), or an anti-inflammatory agent, indomethacin. Results from our in vivo study confirmed a significant increase in F(2)-IsoPs levels in conjunction with the progressive spine degeneration and dendritic damage of the striatal medium spiny neurons (MSNs) of mice exposed to Mn (100mg/kg, s.c.) 24h. Additionally, pretreatment with vitamin E (100mg/kg, i.p.) or ibuprofen (140 µg/ml in the drinking water for two weeks) attenuated the Mn-induced increase in cerebral F(2)-IsoPs? and protected the MSNs from dendritic atrophy and dendritic spine loss. Our findings suggest that the mediation of oxidative stress/mitochondrial dysfunction and the control of alterations in biomarkers of oxidative injury, neuroinflammation and synaptodendritic degeneration may provide an effective, multi-pronged therapeutic strategy for protecting dysfunctional dopaminergic transmission and slowing of the progression of Mn-induced neurodegenerative processes.


Asunto(s)
Antiinflamatorios/farmacología , Antioxidantes/farmacología , Intoxicación por Manganeso/prevención & control , Síndromes de Neurotoxicidad/etiología , Estrés Oxidativo/efectos de los fármacos , Adenosina Trifosfato/análisis , Animales , Células Cultivadas , Cerebro/química , Cerebro/efectos de los fármacos , Cromanos/farmacología , Dinoprostona/análisis , F2-Isoprostanos/análisis , Femenino , Ibuprofeno/farmacología , Indometacina/farmacología , Ratones , Ratones Endogámicos C57BL , Neuronas/química , Neuronas/efectos de los fármacos , Síndromes de Neurotoxicidad/prevención & control , Ratas , Ratas Sprague-Dawley , Especies Reactivas de Oxígeno/análisis
18.
Artículo en Chino | MEDLINE | ID: mdl-21126474

RESUMEN

OBJECTIVE: To explore the biomarker of manganese exposure by analyzing the relationship between manganese exposure and concentration in some biomaterials. METHODS: The air samples were collected through the individual air sample. According to the manganese levels in the air, workers were assigned to control group, low concentration group and high concentration group, and manganese in the hair, urine, serum, blood cell and saliva from different group were measured respectively. The correlations between concentration of external manganese exposure and manganese concentrations in biomaterials, and years of employment and concentrations in biomaterials were analyzed. RESULTS: In the high concentration group, saliva manganese was 32.17 µg/L, hair manganese was 37.39 mg/kg, urine manganese was 2.50 µg/L, plasma manganese was 29.61 µg/L, blood manganese was 14.49 µg/L, were higher than those in the control group (10.40 µg/L, 1.60 mg/kg, 0.77 µg/L, 10.30 µg/L, 4.56 µg/L respectively) (P < 0.01). The manganese concentration in the saliva was significantly correlated with airborne manganese concentration (r = 0.649, P < 0.01), with the years of employment (r = 0.404, P < 0.01), with the total exposure of manganese (r = 0.342, P < 0.01), with the manganese concentration of plasma (r = 0.303, P < 0.01) and with the manganese concentration in blood cells (r = 0.359, P < 0.01), respectively. CONCLUSIONS: The concentration of manganese in saliva could work as a biomarker of manganese internal exposure.


Asunto(s)
Manganeso/análisis , Exposición Profesional/prevención & control , Saliva/química , Adulto , Contaminantes Ocupacionales del Aire/análisis , Biomarcadores/análisis , Cabello/química , Humanos , Manganeso/sangre , Manganeso/orina , Intoxicación por Manganeso/prevención & control , Persona de Mediana Edad , Adulto Joven
20.
Toxicol Sci ; 115(1): 194-201, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-20133376

RESUMEN

Manganese (Mn) is a metal required by biological systems. However, environmental or occupational exposure to high levels of Mn can produce a neurological disorder called manganism, which has similarities to Parkinson's disease. Diethyl-2-phenyl-2-tellurophenyl vinylphosphonate (DPTVP) is an organotellurium compound with a high antioxidant activity, especially in the brain. The present study was designed to investigate the effects of long-term low-dose exposure to Mn in drinking water on behavioral and biochemical parameters in rats and to determine the effectiveness of vinylic telluride in attenuating the effects of Mn. After 4 months of treatment with MnCl(2) (13.7 mg/kg), rats exhibited clear signs of neurobehavioral toxicity, including a decrease in the number of rearings in the open field and altered motor performance in rotarod. The administration of DPTVP (0.150 micromol/kg, ip, 2 weeks) improved the motor performance of Mn-treated rats, indicating that the compound could be reverting Mn neurotoxicity. Ex vivo, we observed that Mn concentrations in the Mn-treated group were highest in the striatum, consistent with a statistically significant decrease in mitochondrial viability and [(3)H]glutamate uptake, and increased lipid peroxidation. Mn levels in the hippocampus and cortex were indistinguishable from controls, and no significant differences were noted in the ex vivo assays in these areas. Treatment with DPTVP fully reversed the biochemical parameters altered by Mn. Furthermore, DPTVP treatment was also associated with a reduction in striatal Mn levels. Our results demonstrate that DPTVP has neuroprotective activity against Mn-induced neurotoxicity, which may be attributed to its antioxidant activity and/or its effect on striatal Mn transport.


Asunto(s)
Antioxidantes/farmacología , Cloruros/efectos adversos , Compuestos de Manganeso/efectos adversos , Intoxicación por Manganeso/prevención & control , Fármacos Neuroprotectores/farmacología , Compuestos Organometálicos/farmacología , Organofosfonatos/farmacología , Telurio/farmacología , Animales , Conducta Animal/efectos de los fármacos , Cloruros/metabolismo , Cuerpo Estriado/efectos de los fármacos , Cuerpo Estriado/metabolismo , Exposición a Riesgos Ambientales , Masculino , Compuestos de Manganeso/metabolismo , Intoxicación por Manganeso/etiología , Intoxicación por Manganeso/fisiopatología , Actividad Motora/efectos de los fármacos , Ratas , Ratas Wistar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA