Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.577
Filtrar
1.
Clin Dysmorphol ; 33(3): 105-109, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38818816

RESUMEN

Silver-Russell syndrome (SRS) is a well-known syndrome but with heterogeneous etiologies. We present the case of a child with severe SRS-like features resulting from a complex rearrangement of chromosome 11 inherited from his mother. We studied the index case with karyotyping, MS-MLPA and molecular karyotyping. The mother was studied with karyotyping and subtelomeric FISH. We found a child with marked developmental delay and fatal outcome due to failure to thrive, carrying an 11p15 duplication and an 11q25 deletion of maternal origin. We discovered that the mother was a carrier of a pericentric inversion of chromosome 11, with a history of recurrence in other family members who had severe growth retardation and early death. To our knowledge, no similar SRS-like cases have been described in the literature. This report supports the importance of identification the causative genetic mechanism in SRS-like individuals with duplication in 11p15 region due to high risk of recurrence and to provide an appropriate genetic counseling to the family.


Asunto(s)
Inversión Cromosómica , Cromosomas Humanos Par 11 , Síndrome de Silver-Russell , Humanos , Cromosomas Humanos Par 11/genética , Hibridación Fluorescente in Situ , Cariotipificación , Linaje , Fenotipo , Síndrome de Silver-Russell/genética , Síndrome de Silver-Russell/diagnóstico
2.
Gene ; 923: 148577, 2024 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-38762016

RESUMEN

Agrobacteria-mediated transformation is widely used in plant genetic engineering to introduce exogenous genes and create mutant lines through random T-DNA insertion and gene disruption. When T-DNA fragments are inserted into the plant genome, it could cause chromosomal abnormalities. In this study, we investigated the genetic basis of pleiotropic phenotypes observed in the T-DNA insertion mutant lnc161. We discovered that there are four T-DNA insertions present in the lnc161 genome, which disrupted the genes LNC161 (AT3G05035), AT3G57400, AT5G05630, and AT5G16450, respectively. However, none of these insertions were the causative mutation that leads to the lnc161 phenotypes. Strikingly, through genetic analyses and high throughput sequencing, we found an inversion of about 19.8 Mb sequences between LNC161 and AT3G57400. Moreover, the sequences between AT5G05630 and AT5G16450 (about 3.7 Mb) were translocated from chromosome 5 to chromosome 3, adjacent to the inversion sequences, and were duplicated. This duplication led to an up-regulation of genes expression in this region, potentially resulting in pleiotropic morphological traits in lnc161. Overall, this study provides a case showing complex chromosomal re-arrangement induced by T-DNA insertion.


Asunto(s)
Arabidopsis , Inversión Cromosómica , ADN Bacteriano , Duplicación de Gen , Mutagénesis Insercional , Inversión Cromosómica/genética , Arabidopsis/genética , ADN Bacteriano/genética , Cromosomas de las Plantas/genética , Genoma de Planta , Fenotipo , Regulación de la Expresión Génica de las Plantas
3.
Mol Biol Evol ; 41(6)2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38743589

RESUMEN

Chromosomal inversions are structural mutations that can play a prominent role in adaptation and speciation. Inversions segregating across species boundaries (trans-species inversions) are often taken as evidence for ancient balancing selection or adaptive introgression, but can also be due to incomplete lineage sorting. Using whole-genome resequencing data from 18 populations of 11 recognized munia species in the genus Lonchura (N = 176 individuals), we identify four large para- and pericentric inversions ranging in size from 4 to 20 Mb. All four inversions cosegregate across multiple species and predate the numerous speciation events associated with the rapid radiation of this clade across the prehistoric Sahul (Australia, New Guinea) and Bismarck Archipelago. Using coalescent theory, we infer that trans-specificity is improbable for neutrally segregating variation despite substantial incomplete lineage sorting characterizing this young radiation. Instead, the maintenance of all three autosomal inversions (chr1, chr5, and chr6) is best explained by selection acting along ecogeographic clines not observed for the collinear parts of the genome. In addition, the sex chromosome inversion largely aligns with species boundaries and shows signatures of repeated positive selection for both alleles. This study provides evidence for trans-species inversion polymorphisms involved in both adaptation and speciation. It further highlights the importance of informing selection inference using a null model of neutral evolution derived from the collinear part of the genome.


Asunto(s)
Inversión Cromosómica , Animales , Selección Genética , Especiación Genética , Evolución Molecular , Passeriformes/genética
4.
Neuromuscul Disord ; 39: 24-29, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38714145

RESUMEN

Structural variants (SVs) are infrequently observed in Duchenne muscular dystrophy (DMD), a condition mainly marked by deletions and point mutations in the DMD gene. SVs in DMD remain difficult to reliably detect due to the limited SV-detection capacity of conventionally used short-read sequencing technology. Herein, we present a family, a boy and his mother, with clinical signs of muscular dystrophy, elevated creatinine kinase levels, and intellectual disability. A muscle biopsy from the boy showed dystrophin deficiency. Routine molecular techniques failed to detect abnormalities in the DMD gene, however, dystrophin mRNA transcripts analysis revealed an absence of exons 59 to 79. Subsequent long-read whole-genome sequencing identified a rare complex structural variant, a 77 kb novel intragenic inversion, and a balanced translocation t(X;1)(p21.2;p13.3) rearrangement within the DMD gene, expanding the genetic spectrum of dystrophinopathy. Our findings suggested that SVs should be considered in cases where conventional molecular techniques fail to identify pathogenic variants.


Asunto(s)
Distrofina , Distrofia Muscular de Duchenne , Translocación Genética , Distrofia Muscular de Duchenne/genética , Humanos , Masculino , Distrofina/genética , Femenino , Inversión Cromosómica/genética , Adulto , Niño
5.
Sci Adv ; 10(22): eadk7906, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38820159

RESUMEN

Island faunas exhibit some of the most iconic examples where similar forms repeatedly evolve within different islands. Yet, whether these deterministic evolutionary trajectories within islands are driven by an initial, singular divergence and the subsequent exchange of individuals and adaptive genetic variation between islands remains unclear. Here, we study a gradual, repeated evolution of low-dispersive highland ecotypes from a dispersive lowland ecotype of Calosoma beetles along the island progression of the Galápagos. We show that repeated highland adaptation involved selection on multiple shared alleles within extensive chromosomal inversions that originated from an initial adaptation event on the oldest island. These highland inversions first spread through dispersal of highland individuals. Subsequent admixture with the lowland ecotype resulted in polymorphic dispersive populations from which the highland populations evolved on the youngest islands. Our findings emphasize the significance of an ancient divergence in driving repeated evolution and highlight how a mixed contribution of inter-island colonization and within-island evolution can shape parallel species communities.


Asunto(s)
Inversión Cromosómica , Escarabajos , Animales , Escarabajos/genética , Escarabajos/clasificación , Ecuador , Ecotipo , Evolución Biológica , Variación Genética , Filogenia , Evolución Molecular
6.
Am J Hum Genet ; 111(6): 1140-1164, 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38776926

RESUMEN

Detection of structural variants (SVs) is currently biased toward those that alter copy number. The relative contribution of inversions toward genetic disease is unclear. In this study, we analyzed genome sequencing data for 33,924 families with rare disease from the 100,000 Genomes Project. From a database hosting >500 million SVs, we focused on 351 genes where haploinsufficiency is a confirmed disease mechanism and identified 47 ultra-rare rearrangements that included an inversion (24 bp to 36.4 Mb, 20/47 de novo). Validation utilized a number of orthogonal approaches, including retrospective exome analysis. RNA-seq data supported the respective diagnoses for six participants. Phenotypic blending was apparent in four probands. Diagnostic odysseys were a common theme (>50 years for one individual), and targeted analysis for the specific gene had already been performed for 30% of these individuals but with no findings. We provide formal confirmation of a European founder origin for an intragenic MSH2 inversion. For two individuals with complex SVs involving the MECP2 mutational hotspot, ambiguous SV structures were resolved using long-read sequencing, influencing clinical interpretation. A de novo inversion of HOXD11-13 was uncovered in a family with Kantaputra-type mesomelic dysplasia. Lastly, a complex translocation disrupting APC and involving nine rearranged segments confirmed a clinical diagnosis for three family members and resolved a conundrum for a sibling with a single polyp. Overall, inversions play a small but notable role in rare disease, likely explaining the etiology in around 1/750 families across heterogeneous clinical cohorts.


Asunto(s)
Inversión Cromosómica , Enfermedades Raras , Humanos , Enfermedades Raras/genética , Masculino , Femenino , Inversión Cromosómica/genética , Linaje , Genoma Humano , Secuenciación Completa del Genoma , Proteína 2 de Unión a Metil-CpG/genética , Mutación , Proteínas de Homeodominio/genética , Persona de Mediana Edad
7.
G3 (Bethesda) ; 14(6)2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38607414

RESUMEN

The presence of feathers is a vital characteristic among birds, yet most modern birds had no feather on their feet. The discoveries of feathers on the hind limbs of basal birds and dinosaurs have sparked an interest in the evolutionary origin and genetic mechanism of feathered feet. However, the majority of studies investigating the genes associated with this trait focused on domestic populations. Understanding the genetic mechanism underpinned feathered-foot development in wild birds is still in its infancy. Here, we assembled a chromosome-level genome of the Asian house martin (Delichon dasypus) using the long-read High Fidelity sequencing approach to initiate the search for genes associated with its feathered feet. We employed the whole-genome alignment of D. dasypus with other swallow species to identify high-SNP regions and chromosomal inversions in the D. dasypus genome. After filtering out variations unrelated to D. dasypus evolution, we found six genes related to feather development near the high-SNP regions. We also detected three feather development genes in chromosomal inversions between the Asian house martin and the barn swallow genomes. We discussed their association with the wingless/integrated (WNT), bone morphogenetic protein, and fibroblast growth factor pathways and their potential roles in feathered-foot development. Future studies are encouraged to utilize the D. dasypus genome to explore the evolutionary process of the feathered-foot trait in avian species. This endeavor will shed light on the evolutionary path of feathers in birds.


Asunto(s)
Plumas , Genoma , Animales , Polimorfismo de Nucleótido Simple , Cromosomas/genética , Fenotipo , Pie , Inversión Cromosómica , Genómica/métodos
8.
J Mol Evol ; 92(3): 266-277, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38683367

RESUMEN

Ascorbic acid functions as an antioxidant and facilitates other biochemical processes such as collagen triple helix formation, and iron uptake by cells. Animals which endogenously produce ascorbic acid have a functional gulonolactone oxidase gene (GULO); however, humans have a GULO pseudogene (GULOP) and depend on dietary ascorbic acid. In this study, the conservation of GULOP sequences in the primate haplorhini suborder were investigated and compared to the GULO sequences belonging to the primates strepsirrhini suborder. Phylogenetic analysis suggested that the conserved GULOP exons in the haplorhini primates experienced a high rate of mutations following the haplorhini/strepsirrhini divergence. This high mutation rate has decreased during the evolution of the haplorhini primates. Additionally, indels of the haplorhini GULOP sequences were conserved across the suborder. A separate analysis for GULO sequences and well-conserved GULOP sequences focusing on placental mammals identified an in-frame GULO sequence in the Brazilian guinea pig, and a potential GULOP sequence in the pika. Similar to haplorhini primates, the guinea pig and lagomorph species have experienced a high substitution rate when compared to the mammals used in this study. A shared synteny to examine the conservation of local genes near GULO/GULOP identified a conserved inversion around the GULO/GULOP locus between the haplorhini and strepsirrhini primates. Fischer's exact test did not support an association between GULOP and the chromosomal inversion. Mauve alignment showed that the inversion of the length of the syntenic block that the GULO/GULOP genes belonged to was variable. However, there were frequent rearrangements around ~ 2 million base pairs adjacent to GULOP involving the KIF13B and MSRA genes. These data may suggest that genes acquiring deleterious mutations in the coding sequence may respond to these deleterious mutations with rapid substitution rates.


Asunto(s)
Inversión Cromosómica , Evolución Molecular , Exones , L-Gulonolactona Oxidasa , Mutación , Filogenia , Primates , Animales , Exones/genética , Primates/genética , Mutación/genética , Humanos , L-Gulonolactona Oxidasa/genética , Inversión Cromosómica/genética , Seudogenes/genética , Secuencia Conservada/genética
9.
Genome Biol Evol ; 16(4)2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38584387

RESUMEN

The intertidal gastropod Littorina saxatilis is a model system to study speciation and local adaptation. The repeated occurrence of distinct ecotypes showing different levels of genetic divergence makes L. saxatilis particularly suited to study different stages of the speciation continuum in the same lineage. A major finding is the presence of several large chromosomal inversions associated with the divergence of ecotypes and, specifically, the species offers a system to study the role of inversions in this divergence. The genome of L. saxatilis is 1.35 Gb and composed of 17 chromosomes. The first reference genome of the species was assembled using Illumina data, was highly fragmented (N50 of 44 kb), and was quite incomplete, with a BUSCO completeness of 80.1% on the Metazoan dataset. A linkage map of one full-sibling family enabled the placement of 587 Mbp of the genome into 17 linkage groups corresponding to the haploid number of chromosomes, but the fragmented nature of this reference genome limited the understanding of the interplay between divergent selection and gene flow during ecotype formation. Here, we present a newly generated reference genome that is highly contiguous, with a N50 of 67 Mb and 90.4% of the total assembly length placed in 17 super-scaffolds. It is also highly complete with a BUSCO completeness of 94.1% of the Metazoa dataset. This new reference will allow for investigations into the genomic regions implicated in ecotype formation as well as better characterization of the inversions and their role in speciation.


Asunto(s)
Cromosomas , Genoma , Animales , Cromosomas/genética , Gastrópodos/genética , Inversión Cromosómica , Ecotipo
10.
Chromosome Res ; 32(2): 6, 2024 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-38504027

RESUMEN

Structural variants (SVs) pose a challenge to detect and interpret, but their study provides novel biological insights and molecular diagnosis underlying rare diseases. The aim of this study was to resolve a 9p24 rearrangement segregating in a family through five generations with a congenital heart defect (congenital pulmonary and aortic valvular stenosis and pulmonary artery stenosis), by applying a combined genomic analysis. The analysis involved multiple techniques, including karyotype, chromosomal microarray analysis (CMA), FISH, genome sequencing (GS), RNA-seq, and optical genome mapping (OGM). A complex 9p24 SV was hinted at by CMA results, showing three interspersed duplicated segments. Combined GS and OGM analyses revealed that the 9p24 duplications constitute a complex SV, on which a set of breakpoints matches the boundaries of the CMA duplicated sequences. The proposed structure for this complex rearrangement implies three duplications associated with an inversion of ~ 2 Mb region on chromosome 9 and a SINE element insertion at the more distal breakpoint. Interestingly, this genomic structure of rearrangement forms a chimeric transcript of the KANK1/DMRT1 loci, which was confirmed by both RNA-seq and Sanger sequencing on blood samples from 9p24 rearrangement carriers. Altogether with breakpoint amplification and FISH analysis, this combined approach allowed a deep characterization of this complex rearrangement. Although the genotype-phenotype correlation remains elusive from the molecular mechanism point of view, this study identified a large genomic rearrangement at 9p24 segregating with a familial congenital heart defect, revealing a genetic biomarker that was successfully applied for embryo selection, changing the reproductive perspective of affected individuals.


Asunto(s)
Cromosomas , Variaciones en el Número de Copia de ADN , Humanos , Inversión Cromosómica , Secuencia de Bases , Células Germinativas , Proteínas del Citoesqueleto/genética , Proteínas Adaptadoras Transductoras de Señales/genética
11.
Blood Adv ; 8(12): 3154-3165, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38551808

RESUMEN

ABSTRACT: Phenotype D-- is associated with severe hemolytic transfusion reactions and hemolytic disease of the fetus and newborn. It is typically caused by defective RHCE genes. In this study, we identified a D-- phenotype proband and verified Rh phenotypes of other 6 family members. However, inconsistent results between the phenotypic analysis and Sanger sequencing revealed intact RHCE exons with no mutations in the D-- proband, but the protein was not expressed. Subsequent whole-genome sequencing by Oxford Nanopore Technologies of the proband revealed an inversion with ambiguous breakpoints in intron 2 and intron 7 and copy number variation loss in the RHCE gene region. Given that the RHCE gene is highly homologous to the RHD gene, we conducted a comprehensive analysis using Pacific Biosciences long-read target sequencing, Bionano optical genome mapping, and targeted next-generation sequencing. Our findings revealed that the proband had 2 novel recombinant RHCE haplotypes, RHCE∗Ce(1-2)-D(3-10) and RHCE∗Ce(1-2)-D(3-10)-Ce(10-8)-Ce(3-10), with clear-cut breakpoints identified. Furthermore, the RH haplotypes of the family members were identified and verified. In summary, we made, to our knowledge, a novel discovery of hereditary large inversion and recombination events occurring between the RHD and RHCE genes, leading to a lack of RhCE expression. This highlights the advantages of using integrated genetic analyses and also provides new insights into RH genotyping.


Asunto(s)
Recombinación Genética , Sistema del Grupo Sanguíneo Rh-Hr , Humanos , Sistema del Grupo Sanguíneo Rh-Hr/genética , Inversión Cromosómica , Linaje , Femenino , Masculino , Haplotipos , Fenotipo , Secuenciación de Nucleótidos de Alto Rendimiento
12.
Evolution ; 78(6): 1133-1149, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38517121

RESUMEN

Gene regulatory divergence is thought to play an important role in adaptation, yet its extent and underlying mechanisms remain largely elusive for local adaptation with gene flow. Local adaptation is widespread in marine species despite generally high connectivity and is often associated with tightly linked genomic architectures, such as chromosomal inversions. To investigate gene regulatory evolution under gene flow and the role of inversions associated with local adaptation to a steep thermal gradient, we generated RNA-seq data from Atlantic silversides (Menidia menidia) from two locally adapted populations and their F1 hybrids, reared under two temperatures. We found substantial divergence in gene expression and thermal plasticity between populations, with up to 31% of genes being differentially expressed. Reduced thermal plasticity, temperature-dependent gene misexpression, and the disruption of coexpression networks in hybrids point toward a role of regulatory incompatibilities in local adaptation, particularly under colder temperatures. Chromosomal inversions show an accumulation of regulatory incompatibilities but are not consistently enriched for differentially expressed genes. Together, these results suggest that gene regulation can diverge substantially among populations despite gene flow, partly due to the accumulation of temperature-dependent regulatory incompatibilities within inversions.


Asunto(s)
Flujo Génico , Animales , Temperatura , Inversión Cromosómica , Adaptación Fisiológica/genética , Smegmamorpha/genética , Regulación de la Expresión Génica
13.
Sci Rep ; 14(1): 5459, 2024 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-38443378

RESUMEN

Roboticists often imbue robots with human-like physical features to increase the likelihood that they are afforded benefits known to be associated with anthropomorphism. Similarly, deepfakes often employ computer-generated human faces to attempt to create convincing simulacra of actual humans. In the present work, we investigate whether perceivers' higher-order beliefs about faces (i.e., whether they represent actual people or android robots) modulate the extent to which perceivers deploy face-typical processing for social stimuli. Past work has shown that perceivers' recognition performance is more impacted by the inversion of faces than objects, thus highlighting that faces are processed holistically (i.e., as Gestalt), whereas objects engage feature-based processing. Here, we use an inversion task to examine whether face-typical processing is attenuated when actual human faces are labeled as non-human (i.e., android robot). This allows us to employ a task shown to be differentially sensitive to social (i.e., faces) and non-social (i.e., objects) stimuli while also randomly assigning face stimuli to seem real or fake. The results show smaller inversion effects when face stimuli were believed to represent android robots compared to when they were believed to represent humans. This suggests that robots strongly resembling humans may still fail to be perceived as "social" due pre-existing beliefs about their mechanistic nature. Theoretical and practical implications of this research are discussed.


Asunto(s)
Reconocimiento Facial , Robótica , Humanos , Percepción Social , Inversión Cromosómica , Examen Físico
14.
J Thromb Haemost ; 22(6): 1616-1626, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38484912

RESUMEN

BACKGROUND: No F8 genetic abnormality is detected in approximately 1% to 2% of patients with severe hemophilia A (HA) using conventional genetic approaches. In these patients, deep intronic variation or F8 disrupting genomic rearrangement could be causal. OBJECTIVES: The study aimed to identify the causal variation in families with a history of severe HA for whom genetic investigations failed. METHODS: We performed whole F8 gene sequencing in 8 propositi. Genomic rearrangements were confirmed by Sanger sequencing of breakpoint junctions and/or quantitative polymerase chain reaction. RESULTS: A structural variant disrupting F8 was found in each propositus, so that all the 815 families with a history of severe HA registered in our laboratory received a conclusive genetic diagnosis. These structural variants consisted of 3 balanced inversions, 3 large insertions of gained regions, and 1 retrotransposition of a mobile element. The 3 inversions were 105 Mb, 1.97 Mb, and 0.362 Mb in size. Among the insertions of gained regions, one corresponded to the insertion of a 34 kb gained region from chromosome 6q27 in F8 intron 6, another was the insertion of a 447 kb duplicated region from chromosome 9p22.1 in F8 intron 14, and the last one was the insertion of an Xq28 349 kb gained in F8 intron 5. CONCLUSION: All the genetically unsolved cases of severe HA in this cohort were due to structural variants disrupting F8. This study highlights the effectiveness of whole F8 sequencing to improve the molecular diagnosis of HA when the conventional approach fails.


Asunto(s)
Inversión Cromosómica , Factor VIII , Hemofilia A , Intrones , Fenotipo , Humanos , Hemofilia A/genética , Hemofilia A/diagnóstico , Factor VIII/genética , Masculino , Predisposición Genética a la Enfermedad , Índice de Severidad de la Enfermedad , Linaje , Cromosomas Humanos Par 6/genética , Análisis Mutacional de ADN , Cromosomas Humanos Par 9/genética , Análisis de Secuencia de ADN , Mutación , Femenino
15.
PLoS One ; 19(3): e0300305, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38517873

RESUMEN

This article introduces a cutting-edge H∞ model-based control method for uncertain Multi Input Multi Output (MIMO) systems, specifically focusing on UAVs, through a flexible mixed-optimization framework using the Method of Inequality (MOI). The proposed approach adaptively addresses crucial challenges such as unmodeled dynamics, noise interference, and parameter variations. Central to the design is a two-step controller development process. The first step involves Nonlinear Dynamic Inversion (NDI) and system decoupling for simplification, while the second step integrates H∞ control with MOI for optimal response tuning. This strategy is distinguished by its adaptability and focus on balancing robust stability and performance, effectively managing the intricate cross-coupling dynamics in UAV systems. The effectiveness of the proposed approach is validated through simulations conducted in MATLAB/Simulink environment. Results demonstrated the efficiency of the proposed robust control approach as evidenced by reduced steady-state error, diminished overshoot, and faster system response times, thus significantly outperforming traditional control methods.


Asunto(s)
Inversión Cromosómica , Dinámicas no Lineales , Humanos , Tiempo de Reacción , Incertidumbre
16.
Proc Biol Sci ; 291(2019): 20232796, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38531403

RESUMEN

Despite constituting an essential component of fitness, reproductive success can vary remarkably between individuals and the causes of such variation are not well understood across taxa. In the zebra finch-a model songbird, almost all the variation in sperm morphology and swimming speed is maintained by a large polymorphic inversion (commonly known as a supergene) on the Z chromosome. The relationship between this polymorphism and reproductive success is not fully understood, particularly for females. Here, we explore the effects of female haplotype, and the combination of male and female genotype, on several primary reproductive traits in a captive population of zebra finches. Despite the inversion polymorphism's known effects on sperm traits, we find no evidence that inversion haplotype influences egg production by females or survival of embryos through to hatching. However, our findings do reinforce existing evidence that the inversion polymorphism is maintained by a heterozygote advantage for male fitness. This work provides an important step in understanding the causes of variation in reproductive success in this model species.


Asunto(s)
Pinzones , Animales , Masculino , Femenino , Pinzones/genética , Semen , Espermatozoides , Reproducción , Fenotipo , Inversión Cromosómica
17.
Genome Biol Evol ; 16(3)2024 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-38482698

RESUMEN

Chromosomal inversions may play a central role in speciation given their ability to locally reduce recombination and therefore genetic exchange between diverging populations. We analyzed long- and short-read whole-genome data from sympatric and allopatric populations of 2 Drosophila virilis group species, Drosophila montana and Drosophila flavomontana, to understand if inversions have contributed to their divergence. We identified 3 large alternatively fixed inversions on the X chromosome and one on each of the autosomes 4 and 5. A comparison of demographic models estimated for inverted and noninverted (colinear) chromosomal regions suggests that these inversions arose before the time of the species split. We detected a low rate of interspecific gene flow (introgression) from D. montana to D. flavomontana, which was further reduced inside inversions and was lower in allopatric than in sympatric populations. Together, these results suggest that the inversions were already present in the common ancestral population and that gene exchange between the sister taxa was reduced within inversions both before and after the onset of species divergence. Such ancestrally polymorphic inversions may foster speciation by allowing the accumulation of genetic divergence in loci involved in adaptation and reproductive isolation inside inversions early in the speciation process, while gene exchange at colinear regions continues until the evolving reproductive barriers complete speciation. The overlapping X inversions are particularly good candidates for driving the speciation process of D. montana and D. flavomontana, since they harbor strong genetic incompatibilities that were detected in a recent study of experimental introgression.


Asunto(s)
Inversión Cromosómica , Drosophila , Animales , Drosophila/genética , Montana , Cromosoma X/genética , Demografía , Especiación Genética
18.
Ann Lab Med ; 44(4): 324-334, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38433573

RESUMEN

Background: Structural variants (SVs) are currently analyzed using a combination of conventional methods; however, this approach has limitations. Optical genome mapping (OGM), an emerging technology for detecting SVs using a single-molecule strategy, has the potential to replace conventional methods. We compared OGM with conventional diagnostic methods for detecting SVs in various hematologic malignancies. Methods: Residual bone marrow aspirates from 27 patients with hematologic malignancies in whom SVs were observed using conventional methods (chromosomal banding analysis, FISH, an RNA fusion panel, and reverse transcription PCR) were analyzed using OGM. The concordance between the OGM and conventional method results was evaluated. Results: OGM showed concordance in 63% (17/27) and partial concordance in 37% (10/27) of samples. OGM detected 76% (52/68) of the total SVs correctly (concordance rate for each type of SVs: aneuploidies, 83% [15/18]; balanced translocation, 80% [12/15] unbalanced translocation, 54% [7/13] deletions, 81% [13/16]; duplications, 100% [2/2] inversion 100% [1/1]; insertion, 100% [1/1]; marker chromosome, 0% [0/1]; isochromosome, 100% [1/1]). Sixteen discordant results were attributed to the involvement of centromeric/telomeric regions, detection sensitivity, and a low mapping rate and coverage. OGM identified additional SVs, including submicroscopic SVs and novel fusions, in five cases. Conclusions: OGM shows a high level of concordance with conventional diagnostic methods for the detection of SVs and can identify novel variants, suggesting its potential utility in enabling more comprehensive SV analysis in routine diagnostics of hematologic malignancies, although further studies and improvements are required.


Asunto(s)
Genoma Humano , Variación Estructural del Genoma , Humanos , Inversión Cromosómica , Translocación Genética , Mapeo Cromosómico
19.
Genome Biol Evol ; 16(3)2024 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-38482945

RESUMEN

Structural genomic variants are key drivers of phenotypic evolution. They can span hundreds to millions of base pairs and can thus affect large numbers of genetic elements. Although structural variation is quite common within and between species, its characterization depends upon the quality of genome assemblies and the proportion of repetitive elements. Using new high-quality genome assemblies, we report a complex and previously hidden landscape of structural divergence between the genomes of Drosophila persimilis and D. pseudoobscura, two classic species in speciation research, and study the relationships among structural variants, transposable elements, and gene expression divergence. The new assemblies confirm the already known fixed inversion differences between these species. Consistent with previous studies showing higher levels of nucleotide divergence between fixed inversions relative to collinear regions of the genome, we also find a significant overrepresentation of INDELs inside the inversions. We find that transposable elements accumulate in regions with low levels of recombination, and spatial correlation analyses reveal a strong association between transposable elements and structural variants. We also report a strong association between differentially expressed (DE) genes and structural variants and an overrepresentation of DE genes inside the fixed chromosomal inversions that separate this species pair. Interestingly, species-specific structural variants are overrepresented in DE genes involved in neural development, spermatogenesis, and oocyte-to-embryo transition. Overall, our results highlight the association of transposable elements with structural variants and their importance in driving evolutionary divergence.


Asunto(s)
Elementos Transponibles de ADN , Drosophila , Animales , Masculino , Drosophila/genética , Genómica , Inversión Cromosómica , Evolución Molecular
20.
Sci Rep ; 14(1): 5379, 2024 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-38438510

RESUMEN

Tissue characterisation using T1 mapping has become an established magnetic resonance imaging (MRI) technique to detect myocardial diseases. This retrospective study aimed to determine the influence of left bundle branch block (LBBB) on T1 mapping at 1.5 T. Datasets of 36 patients with LBBB and 27 healthy controls with T1 mapping (Modified Look-Locker inversion-recovery (MOLLI), 5(3)3 sampling) were included. T1 relaxation times were determined on mid-cavity short-axis images. R2 maps were generated as a pixel-wise indicator for the goodness of the fit of T1 maps. R2 values were significantly lower in patients with LBBB than in healthy controls (whole myocardium/septum, 0.997, IQR, 0.00 vs. 0.998, IQR, 0.00; p = 0.008/0.998, IQR, 0.00 vs. 0.999, IQR, 0.00; p = 0.027). Manual correction of semi-automated evaluation tended to improve R2 values but not significantly. Strain analysis was performed and the systolic dyssynchrony index (SDIglobal) was calculated as a measure for left ventricular dyssynchrony. While MRI is generally prone to artefacts, lower goodness of the fit in LBBB may be mainly attributable to asynchronous contraction. Therefore, careful checking of the source data and, if necessary, manual post-processing is important. New techniques might improve the goodness of the fit of T1 mapping by reducing sampling in the motion prone diastole of LBBB patients.


Asunto(s)
Bloqueo de Rama , Miocardio , Humanos , Bloqueo de Rama/diagnóstico por imagen , Estudios Retrospectivos , Artefactos , Inversión Cromosómica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...