Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nat Plants ; 10(9): 1377-1388, 2024 09.
Artículo en Inglés | MEDLINE | ID: mdl-39209993

RESUMEN

Petal senescence in flowering plants is a type of programmed cell death with highly regulated onset and progression. A NAM/ATAF1,2/CUC2 transcription factor, EPHEMERAL1 (EPH1), has been identified as a key regulator of petal senescence in Japanese morning glory (Ipomoea nil). Here we used a novel chemical approach to delay petal senescence in Japanese morning glory by inhibiting the DNA-binding activity of EPH1. A cell-free high-throughput screening system and subsequent bioassays found two tetrafluorophthalimide-based compounds, Everlastin1 and Everlastin2, that inhibited the EPH1-DNA interaction and delayed petal senescence. The inhibitory mechanism was due to the suppression of EPH1 dimerization. RNA-sequencing analysis revealed that the chemical treatment strongly suppressed the expression of programmed cell death- and autophagy-related genes. These results suggest that a chemical approach targeting a transcription factor can regulate petal senescence.


Asunto(s)
Flores , Ipomoea nil , Proteínas de Plantas , Factores de Transcripción , Flores/genética , Flores/efectos de los fármacos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Ipomoea nil/genética , Ipomoea nil/efectos de los fármacos , Ipomoea nil/metabolismo , Ipomoea nil/fisiología , Senescencia de la Planta/genética , Regulación de la Expresión Génica de las Plantas
2.
Int J Mol Sci ; 25(9)2024 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-38732009

RESUMEN

The interaction between light and phytohormones is crucial for plant growth and development. The practice of supplementing light at night during winter to promote pitaya flowering and thereby enhance yield has been shown to be crucial and widely used. However, it remains unclear how supplemental winter light regulates phytohormone levels to promote flowering in pitaya. In this study, through analyzing the transcriptome data of pitaya at four different stages (NL, L0, L1, L2), we observed that differentially expressed genes (DEGs) were mainly enriched in the phytohormone biosynthesis pathway. We further analyzed the data and found that cytokinin (CK) content first increased at the L0 stage and then decreased at the L1 and L2 stages after supplemental light treatment compared to the control (NL). Gibberellin (GA), auxin (IAA), salicylic acid (SA), and jasmonic acid (JA) content increased during the formation of flower buds (L1, L2 stages). In addition, the levels of GA, ethylene (ETH), IAA, and abscisic acid (ABA) increased in flower buds after one week of development (L2f). Our results suggest that winter nighttime supplemental light can interact with endogenous hormone signaling in pitaya, particularly CK, to regulate flower bud formation. These results contribute to a better understanding of the mechanism of phytohormone interactions during the induction of flowering in pitaya under supplemental light in winter.


Asunto(s)
Flores , Regulación de la Expresión Génica de las Plantas , Luz , Reguladores del Crecimiento de las Plantas , Estaciones del Año , Reguladores del Crecimiento de las Plantas/metabolismo , Flores/metabolismo , Flores/crecimiento & desarrollo , Ácidos Indolacéticos/metabolismo , Citocininas/metabolismo , Giberelinas/metabolismo , Ipomoea nil/metabolismo , Ipomoea nil/genética , Transcriptoma , Perfilación de la Expresión Génica , Ciclopentanos , Oxilipinas
3.
Pestic Biochem Physiol ; 194: 105487, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37532349

RESUMEN

Recently, the herbicide fomesafen has frequently failed to control the troublesome weed Ipomoea nil in soybean fields in Liaoning Province, China. Hence, we collected 10 suspected resistant populations and evaluated their sensitivity to fomesafen. The results revealed various degrees of Ipomoea nil resistance to fomesafen, with a resistance index of 2.88 to 22.43; the highest value occurred in the LN3 population. Therefore, the mechanisms of the resistance in LN3 to fomesafen were explored. After fomesafen treatment, the expression levels of InPPX1 and InPPX2 genes were 4.19- and 9.29-fold higher, respectively, in LN3 than those in the susceptible (LN1) population. However, mutations and copy number variations were not detected between the two populations. Additionally, malathion pretreatment reduced the dose necessary to halve the growth rate of LN3 by 58%. Liquid chromatography with tandem mass spectrometry demonstrated that metabolism of fomesafen was significantly suppressed by malathion. Moreover, LN3 displayed increased reactive oxygen species scavenging capacity, which was represented by higher superoxide dismutase and peroxidase activities after fomesafen application than those in LN1. An orthogonal partial least squares-discriminant analysis revealed that the high resistance in LN3 could be attributed mainly to enhanced metabolism. Fortunately, the fomesafen-resistant I. nil remained sensitive to 2,4-D-ethylhexylester and bentazon, providing methods for its control.


Asunto(s)
Herbicidas , Ipomoea nil , Ipomoea nil/metabolismo , Variaciones en el Número de Copia de ADN , Malatión , China , Herbicidas/farmacología , Herbicidas/metabolismo
4.
PLoS One ; 17(10): e0271012, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36264987

RESUMEN

The R2R3-MYB transcription factor is one of the largest transcription factor families in plants. R2R3-MYBs play a variety of functions in plants, such as cell fate determination, organ and tissue differentiations, primary and secondary metabolisms, stress and defense responses and other physiological processes. The Japanese morning glory (Ipomoea nil) has been widely used as a model plant for flowering and morphological studies. In the present study, 127 R2R3-MYB genes were identified in the Japanese morning glory genome. Information, including gene structure, protein motif, chromosomal location and gene expression, were assigned to the InR2R3-MYBs. Phylogenetic tree analysis revealed that the 127 InR2R3-MYBs were classified into 29 subfamilies (C1-C29). Herein, physiological functions of the InR2R3-MYBs are discussed based on the functions of their Arabidopsis orthologues. InR2R3-MYBs in C9, C15, C16 or C28 may regulate cell division, flavonol biosynthesis, anthocyanin biosynthesis or response to abiotic stress, respectively. C16 harbors the known anthocyanin biosynthesis regulator, InMYB1 (INIL00g10723), and putative anthocyanin biosynthesis regulators, InMYB2 (INIL05g09650) and InMYB3 (INIL05g09651). In addition, INIL05g09649, INIL11g40874 and INIL11g40875 in C16 were suggested as novel anthocyanin biosynthesis regulators. We organized the R2R3-MYB transcription factors in the morning glory genome and assigned information to gene and protein structures and presuming their functions. Our study is expected to facilitate future research on R2R3-MYB transcription factors in Japanese morning glory.


Asunto(s)
Arabidopsis , Ipomoea nil , Ipomoea nil/genética , Ipomoea nil/metabolismo , Factores de Transcripción/metabolismo , Regulación de la Expresión Génica de las Plantas , Antocianinas/metabolismo , Proteínas de Plantas/metabolismo , Genes myb , Filogenia , Arabidopsis/genética , Flavonoles/metabolismo
5.
J Ethnopharmacol ; 294: 115370, 2022 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-35568114

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Pharbitis nil (L.) Choisy is a medicinal herb, and herbal remedies based on its seeds have been used to treat of obesity and liver diseases, including fatty liver and liver cirrhosis in East Asia. AIM OF THE STUDY: Liver fibrosis is a major cause of morbidity and mortality in patients with chronic liver inflammation such as that caused by non-alcoholic steatohepatitis. However, no effective pharmaceutical treatment for liver fibrosis has been approved. In this study, we aimed to investigate that ethanol extract of pharbitis nil (PNE) alleviates the liver fibrosis. MATERIALS AND METHODS: We studied the effects of PNE on two preclinical models. Six-week-old male C57BL/6 mice were intraperitoneally injected with CCl4 twice weekly for 6 weeks and then treated with 5 or 10 mg/kg PNE daily from week 3 for weeks. Secondly, mice were fed HFD for 41 weeks and at 35 weeks treated with 5 mg/kg PNE daily for the remaining 6 weeks. In addition, we examined the antifibrotic effects of PNE in primary mouse hepatic stellate cells and LX-2 cells. RESULTS: PNE treatment ameliorated hepatocyte necrosis, inflammation, and liver fibrosis in CCl4-treated mice and inhibited the progression of liver fibrosis in mice with HFD-induced fibrosis. PNE reduced the expressions of fibrosis markers and SMAD2/3 activations in mouse livers and in TGFß1-treated primary mouse hepatic stellate and LX-2 cells CONCLUSIONS: This study demonstrates that PNE attenuates liver fibrosis by downregulating TGFß1-induced SMAD2/3 activation.


Asunto(s)
Ipomoea nil , Enfermedad del Hígado Graso no Alcohólico , Animales , Etanol/farmacología , Fibrosis , Células Estrelladas Hepáticas , Humanos , Inflamación/patología , Ipomoea nil/metabolismo , Hígado/metabolismo , Cirrosis Hepática/tratamiento farmacológico , Cirrosis Hepática/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Extractos Vegetales/metabolismo , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Proteína Smad2/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo
6.
Plant J ; 108(2): 314-329, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34318549

RESUMEN

Flavonoids are specialized metabolites widely distributed across the plant kingdom. They are involved in the growth and survival of plants, conferring the ability to filter ultra-violet rays, conduct symbiotic partnerships, and respond to stress. While many branches of flavonoid biosynthesis have been resolved, recent discoveries suggest missing auxiliary components. These overlooked elements can guide metabolic flux, enhance production, mediate stereoselectivity, transport intermediates, and exert regulatory functions. This review describes several families of auxiliary proteins from across the plant kingdom, including examples from specialized metabolism. In flavonoid biosynthesis, we discuss the example of chalcone isomerase-like (CHIL) proteins and their non-catalytic role. CHILs mediate the cyclization of tetraketides, forming the chalcone scaffold by interacting with chalcone synthase (CHS). Loss of CHIL activity leads to derailment of the CHS-catalyzed reaction and a loss of pigmentation in fruits and flowers. Similarly, members of the pathogenesis-related 10 (PR10) protein family have been found to differentially bind flavonoid intermediates, guiding the composition of anthocyanins. This role comes within a larger body of PR10 involvement in specialized metabolism, from outright catalysis (e.g., (S)-norcoclaurine synthesis) to controlling stereochemistry (e.g., enhancing cis-trans cyclization in catnip). Both CHILs and PR10s hail from larger families of ligand-binding proteins with a spectrum of activity, complicating the characterization of their enigmatic roles. Strategies for the discovery of auxiliary proteins are discussed, as well as mechanistic models for their function. Targeting such unanticipated components will be crucial in manipulating plants or engineering microbial systems for natural product synthesis.


Asunto(s)
Aciltransferasas/metabolismo , Flavonoides/biosíntesis , Liasas Intramoleculares/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Aciltransferasas/química , Aciltransferasas/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Cannabinoides/biosíntesis , Evolución Molecular , Flavonoides/metabolismo , Humulus/metabolismo , Liasas Intramoleculares/química , Liasas Intramoleculares/genética , Ipomoea nil/genética , Ipomoea nil/metabolismo , Mutación , Proteínas de Plantas/genética , Pliegue de Proteína
7.
Plant Cell Physiol ; 60(8): 1871-1879, 2019 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-31135027

RESUMEN

Wild-type plants of the Japanese morning glory (Ipomoea nil) produce blue flowers that accumulate anthocyanin pigments, whereas its mutant cultivars show wide range flower color such as red, magenta and white. However, I. nil lacks yellow color varieties even though yellow flowers were curiously described in words and woodblocks printed in the 19th century. Such yellow flowers have been regarded as 'phantom morning glories', and their production has not been achieved despite efforts by breeders of I. nil. The chalcone isomerase (CHI) mutants (including line 54Y) bloom very pale yellow or cream-colored flowers conferred by the accumulation of 2', 4', 6', 4-tetrahydoroxychalcone (THC) 2'-O-glucoside. To produce yellow phantom morning glories, we introduced two snapdragon (Antirrhinum majus) genes to the 54Y line by encoding aureusidin synthase (AmAS1) and chalcone 4'-O-glucosyltransferase (Am4'CGT), which are necessary for the accumulation of aureusidin 6-O-glucoside and yellow coloration in A. majus. The transgenic plants expressing both genes exhibit yellow flowers, a character sought for many years. The flower petals of the transgenic plants contained aureusidin 6-O-glucoside, as well as a reduced amount of THC 2'-O-glucoside. In addition, we identified a novel aurone compound, aureusidin 6-O-(6″-O-malonyl)-glucoside, in the yellow petals. A combination of the coexpression of AmAS1 and Am4'CGT and suppression of CHI is an effective strategy for generating yellow varieties in horticultural plants.


Asunto(s)
Benzofuranos/metabolismo , Flavonoides/metabolismo , Flores/metabolismo , Ipomoea nil/metabolismo , Ingeniería Metabólica/métodos , Regulación de la Expresión Génica de las Plantas , Transducción de Señal/fisiología
8.
Plant Signal Behav ; 13(6): e1473686, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29944436

RESUMEN

The circadian clock is synchronized by the day-night cycle to allow plants to anticipate daily environmental changes and to recognize annual changes in day length enabling seasonal flowering. This clock system has been extensively studied in Arabidopsis thaliana and was found to be reset by the dark to light transition at dawn. By contrast, studies on photoperiodic flowering of Pharbitis nil revealed the presence of a clock system reset by the transition from light to dark at dusk to measure the duration of the night. However, a Pharbitis photosynthetic gene was also shown to be insensitive to this dusk transition and to be set by dawn. Thus Pharbitis appeared to have two clock systems, one set by dusk that controls photoperiodic flowering and a second controlling photosynthetic gene expression similar to that of Arabidopsis. Here, we show that circadian mRNA expression of Pharbitis homologs of a series of Arabidopsis clock or clock-controlled genes are insensitive to the dusk transition. These data further define the presence in Pharbitis of a clock system that is analogous to the Arabidopsis system, which co-exists and functions with the dusk-set system dedicated to the control of photoperiodic flowering.


Asunto(s)
Ritmo Circadiano/efectos de la radiación , Oscuridad , Flores/metabolismo , Flores/efectos de la radiación , Ipomoea nil/metabolismo , Ipomoea nil/efectos de la radiación , Luz , Proteínas de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de la radiación , Proteínas de Plantas/genética
9.
J Sci Food Agric ; 96(13): 4416-22, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27515010

RESUMEN

BACKGROUND: Because of the high concentration of nutrients in human urine, its utilization as an organic fertilizer has been notable throughout history. However, the nitrogen compounds in urine are not stable. Therefore, to convert urine into a suitable fertilizer, it is important to stabilize and adjust unstable nitrogen compounds such as ammonia. Because nitrification can influence the nitrogen profile, the use of nitrifying microorganisms can be useful for stabilizing the nitrogen profile of urine. This study investigated the changes in nitrogen compounds in pure urine and examined the effect of adding Nitrosomonas europaea bio-seed solution on these changes. RESULTS: It was found that the addition of bio-seed could reduce nitrogen loss as well as the time required to stabilize the nitrogen profile. Furthermore, the optimum concentration of bio-seed (6 × 10(5) N. europaea cells L(-1) ) that not only leads to the least nutrient loss but also results in an adequate nitrate/ammonium ratio and regulates the amount of nitrate produced, thereby preventing over-fertilization, was determined. CONCLUSION: At this concentration, no dilution or dewatering is required, thus minimizing water and energy consumption. Usage of the optimum of concentration of bio-seed will also eliminate the need for inorganic chemical additives. © 2016 Society of Chemical Industry.


Asunto(s)
Inoculantes Agrícolas/metabolismo , Fertilizantes , Ipomoea nil/crecimiento & desarrollo , Nitrosomonas europaea/metabolismo , Agricultura Orgánica/métodos , Semillas/crecimiento & desarrollo , Orina , Adulto , Inoculantes Agrícolas/crecimiento & desarrollo , Algoritmos , Compuestos de Amonio/metabolismo , Compuestos de Amonio/orina , Reactores Biológicos/microbiología , Fertilizantes/análisis , Humanos , Concentración de Iones de Hidrógeno , Ipomoea nil/metabolismo , Masculino , Nitratos/metabolismo , Nitratos/orina , Ciclo del Nitrógeno , Nitrosomonas europaea/crecimiento & desarrollo , República de Corea , Semillas/metabolismo , Suelo/química , Orina/química , Eliminación de Residuos Líquidos/métodos
10.
Elife ; 52016 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-27253062

RESUMEN

Long distance transport in plants occurs in sieve tubes of the phloem. The pressure flow hypothesis introduced by Ernst Münch in 1930 describes a mechanism of osmotically generated pressure differentials that are supposed to drive the movement of sugars and other solutes in the phloem, but this hypothesis has long faced major challenges. The key issue is whether the conductance of sieve tubes, including sieve plate pores, is sufficient to allow pressure flow. We show that with increasing distance between source and sink, sieve tube conductivity and turgor increases dramatically in Ipomoea nil. Our results provide strong support for the Münch hypothesis, while providing new tools for the investigation of one of the least understood plant tissues.


Asunto(s)
Ipomoea nil/metabolismo , Floema/metabolismo , Transporte Biológico , Ipomoea nil/crecimiento & desarrollo , Presión Osmótica
11.
Mol Genet Genomics ; 290(5): 1873-84, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25877516

RESUMEN

Ipomoea nil is widely used as an ornamental plant due to its abundance of flower color, but the limited transcriptome and genomic data hinder research on it. Using illumina platform, transcriptome profiling of I. nil was performed through high-throughput sequencing, which was proven to be a rapid and cost-effective means to characterize gene content. Our goal is to use the resulting information to facilitate the relevant research on flowering and flower color formation in I. nil. In total, 268 million unique illumina RNA-Seq reads were produced and used in the transcriptome assembly. These reads were assembled into 220,117 contigs, of which 137,307 contigs were annotated using the GO and KEGG database. Based on the result of functional annotations, a total of 89,781 contigs were assigned 455,335 GO term annotations. Meanwhile, 17,418 contigs were identified with pathway annotation and they were functionally assigned to 144 KEGG pathways. Our transcriptome revealed at least 55 contigs as probably flowering-related genes in I. nil, and we also identified 25 contigs that encode key enzymes in the phenylpropanoid biosynthesis pathway. Based on the analysis relating to gene expression profiles, in the phenylpropanoid biosynthesis pathway of I. nil, the repression of lignin biosynthesis might lead to the redirection of the metabolic flux into anthocyanin biosynthesis. This may be the most likely reason that I. nil has high anthocyanins content, especially in its flowers. Additionally, 15,537 simple sequence repeats (SSRs) were detected using the MISA software, and these SSRs will undoubtedly benefit future breeding work. Moreover, the information uncovered in this study will also serve as a valuable resource for understanding the flowering and flower color formation mechanisms in I. nil.


Asunto(s)
Genes de Plantas , Marcadores Genéticos , Ipomoea nil/genética , Análisis de Secuencia de ARN , Transcriptoma , Antocianinas/biosíntesis , Ipomoea nil/metabolismo
12.
J Plant Physiol ; 171(11): 895-902, 2014 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-24913046

RESUMEN

The involvement of salicylic acid (SA) in the regulation of stress-induced flowering in the short-day plant pharbitis (also called Japanese morning glory) Ipomoea nil (formerly Pharbitis nil) was studied. Pharbitis cv. Violet was induced to flower when grown in 1/100-strength mineral nutrient solution under non-inductive long-day conditions. All fully expanded true leaves were removed from seedlings, leaving only the cotyledons, and flowering was induced under poor-nutrition stress conditions. This indicates that cotyledons can play a role in the regulation of poor-nutrition stress-induced flowering. The expression of the pharbitis homolog of PHENYLALANINE AMMONIA-LYASE, the enzyme activity of phenylalanine ammonia-lyase (PAL; E.C. 4.3.1.5) and the content of SA in the cotyledons were all up-regulated by the stress treatment. The Violet was also induced to flower by low-temperature stress, DNA demethylation and short-day treatment. Low-temperature stress enhanced PAL activity, whereas non-stress factors such as DNA demethylation and short-day treatment decreased the activity. The PAL enzyme activity was also examined in another cultivar, Tendan, obtaining similar results to Violet. The exogenously applied SA did not induce flowering under non-stress conditions but did promote flowering under weak stress conditions in both cultivars. These results suggest that stress-induced flowering in pharbitis is induced, at least partly, by SA, and the synthesis of SA is promoted by PAL.


Asunto(s)
Ipomoea nil/enzimología , Ipomoea nil/metabolismo , Fenilanina Amoníaco-Liasa/metabolismo , Ácido Salicílico/metabolismo , Flores/efectos de los fármacos , Flores/enzimología , Flores/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Ipomoea nil/efectos de los fármacos , Fenilanina Amoníaco-Liasa/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ácido Salicílico/farmacología
13.
J Plant Physiol ; 171(8): 633-8, 2014 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-24709156

RESUMEN

AtNAP, a NAC family transcription factor, has been shown to promote leaf senescence in Arabidopsis. We isolated an AtNAP homolog in morning glory (Ipomoea nil), designated InNAP, and investigated its expression during petal senescence. We used two cultivars, one showing a normal short flower life span (cv. Peking Tendan) and another a longer life span (cv. Violet). InNAP was highly expressed in both cultivars. Expression was high before that of the senescence marker gene InSAG12. InNAP and InSAG12 expression was high in cv. Peking Tendan before cv. Violet. The expression of both genes was therefore temporally related to the onset of the visible senescence symptoms. An inhibitor of ethylene action (silver thiosulphate, STS) delayed petal senescence in cv. Peking Tendan but had no effect in cv. Violet. STS treatment had no clear effect on the InNAP expression in petals of both cultivars, suggesting that endogenous ethylene may not be necessary for its induction. These data suggest the hypothesis that InNAP plays a role in petal senescence, independent of the role of endogenous ethylene.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Ipomoea nil/crecimiento & desarrollo , Ipomoea nil/genética , Proteínas de Plantas/genética , Secuencia de Aminoácidos , Flores/genética , Flores/crecimiento & desarrollo , Flores/metabolismo , Ipomoea nil/metabolismo , Datos de Secuencia Molecular , Filogenia , Proteínas de Plantas/metabolismo , Alineación de Secuencia
14.
J Plant Physiol ; 171(3-4): 205-12, 2014 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-23973406

RESUMEN

Poor nutrition and low temperature stress treatments induced flowering in the Japanese morning glory Pharbitis nil (synonym Ipomoea nil) cv. Violet. The expression of PnFT2, one of two homologs of the floral pathway integrator gene FLOWERING LOCUS T (FT), was induced by stress, whereas the expression of both PnFT1 and PnFT2 was induced by a short-day treatment. There was no positive correlation between the flowering response and the homolog expression of another floral pathway integrator gene SUPPRESSOR OF OVEREXPRESSION OF CO1 and genes upstream of PnFT, such as CONSTANS. In another cultivar, Tendan, flowering and PnFT2 expression were not induced by poor nutrition stress. Aminooxyacetic acid (AOA), a phenylalanine ammonia-lyase inhibitor, inhibited the flowering and PnFT2 expression induced by poor nutrition stress in Violet. Salicylic acid (SA) eliminated the inhibitory effects of AOA. SA enhanced PnFT2 expression under the poor nutrition stress but not under non-stress conditions. These results suggest that SA induces PnFT2 expression, which in turn induces flowering; SA on its own, however, may not be sufficient for induction.


Asunto(s)
Flores/efectos de los fármacos , Flores/metabolismo , Regulación de la Expresión Génica de las Plantas/fisiología , Genes de Plantas/genética , Ipomoea nil/efectos de los fármacos , Ipomoea nil/metabolismo , Ácido Salicílico/farmacología
15.
J Plant Physiol ; 171(3-4): 225-34, 2014 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-24094462

RESUMEN

The plant hormone auxin plays a critical role in regulating plant growth and development. Recent advances have been made that having improved our understanding of auxin response pathways, primarily by characterizing the genes encoding auxin response factors (ARFs) in Arabidopsis. In addition, the expression of some ARFs is regulated by microRNAs (miRNAs). In Arabidopsis thaliana, ARF6 and ARF8 are targeted by miR167, whereas ARF10, ARF16 and ARF17 are targeted by miR160. Nevertheless, little is known about any possible interactions between miRNAs and the auxin signaling pathway during plant development. In this study, we isolated the miR167 target gene InARF8 cDNA from the cotyledons of the short day plant (SDP) Ipomoea nil (named also Pharbitis nil). Additionally, the In-miR167 precursor was identified from the I. nil EST database and analyses of InARF8 mRNA, In-pre-miR167 and mature miR167 accumulation in the plant's vegetative and generative organs were performed. The identified cDNA of InARF8 contains a miR167 complementary sequence and shows significant similarity to ARF8 cDNAs of other plant species. The predicted amino acid sequence of InARF8 includes all of the characteristic domains for ARF family transcription factors (B3 DNA-binding domain, AUX/IAA-CTD and a glutamine-rich region). Quantitative RT-PCR reactions and in situ hybridization indicated that InARF8 was expressed primarily in the shoot apices, leaf primordia and hypocotyls of I. nil seedlings, as well as in flower pistils and petals. The InARF8 transcript level increased consistently during the entire period of pistil development, whereas in the stamens, the greatest transcriptional activity occurred only during the intensive elongation phase. Additionally, an expression analysis of both the precursor In-pre-miR167 molecules identified and mature miRNA was performed. We observed that, in most of the organs examined, the InARF8 expression pattern was opposite to that of MIR167, indicating that the gene's activity was regulated by mRNA cleavage. Our findings suggested that InARF8 and InMIR167 participated in the development of young tissues, especially the shoot apices and flower elements. The main function of MIR167 appears to be to regulate InARF8 organ localization.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Ipomoea nil/genética , Ipomoea nil/metabolismo , MicroARNs/genética , Ácidos Indolacéticos/metabolismo , Ipomoea nil/crecimiento & desarrollo , Factores de Transcripción/genética
16.
J Environ Monit ; 14(7): 1959-67, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22706014

RESUMEN

This study aimed to analyze critically the potential of Ipomoea nil'Scarlet O'Hara' for O(3) biomonitoring in the sub-tropics. Four field experiments (one in each season of 2006) were carried out in a location of the city of São Paulo mainly polluted by O(3). Each experiment started with 50 plants, and lasted 28 days. Sub-lots of five plants were taken at intervals between three or four days long. Groups of four plants were also exposed in closed chambers to filtered air or to 40, 50 or 80 ppb of O(3) for three consecutive hours a day for six days. The percentage of leaf injury (interveinal chloroses and necroses), the concentrations of ascorbic acid (AA) and the activity of superoxide dismutase (SOD) and peroxidases (POD) were determined in the 5th, 6th and 7th oldest leaves on the main stem of the plants taken in all experiments. Visible injury occurred in the plants from all experiments. Seasonality in the antioxidant responses observed in plants grown under field conditions was associated with meteorological variables and ozone concentrations five days before leaf analyses. The highest levels of antioxidants occurred during the spring. The percentage of leaf injury was explained (R(2) = 0.97, p < 0.01) by the reduction in the levels of AA and activity of POD five days before the leaf analyses and by the reduction in the levels of particulate matter, and enhancement of temperature and global radiation 10 days before this same day. Although I. nil may be employed for qualitative O(3) biomonitoring, its efficiency for quantitative biomonitoring in the sub-tropics may be compromised, depending on how intense the oxidative power of the environment is.


Asunto(s)
Contaminantes Atmosféricos/análisis , Monitoreo del Ambiente/métodos , Ipomoea nil/efectos de los fármacos , Ozono/análisis , Contaminantes Atmosféricos/toxicidad , Ipomoea nil/metabolismo , Ipomoea nil/fisiología , Ozono/toxicidad , Peroxidasas/metabolismo , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/metabolismo , Hojas de la Planta/fisiología , Superóxido Dismutasa/metabolismo
17.
J Plant Physiol ; 169(5): 523-8, 2012 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-22209168

RESUMEN

The protein complex composed of the transcriptional regulators containing R2R3-MYB domains, bHLH domains, and WDR in plants controls various epidermal traits, including anthocyanin and proanthocyanidin pigmentation, trichome and root hair formation, and vacuolar pH. In the Japanese morning glory (Ipomoea nil), InMYB1 having R2R3-MYB domains and InWDR1 containing WDR were shown to regulate anthocyanin pigmentation in flowers, and InWDR1 was reported to control dark-brown pigmentation and trichome formation on seed coats. Here, we report that the seed pigments of I. nil mainly comprise proanthocyanidins and phytomelanins and that these pigments are drastically reduced in the ivory seed coats of an InWDR1 mutant. In addition, a transgenic plant of the InWDR1 mutant carrying the active InWDR1 gene produced dark-brown seeds, further confirming that InWDR1 regulates seed pigmentation. Early steps in anthocyanin and proanthocyanidin biosynthetic pathways are thought to be common. In the InWDR1 mutant, none of the structural genes for anthocyanin biosynthesis that showed reduced expression in the white flowers were down-regulated in the ivory seeds, which suggests that InWDR1 may activate different sets of the structural genes for anthocyanin biosynthesis in flowers and proanthocyanidin production in seeds. As in the flowers, however, we noticed that the expression of InbHLH2 encoding a bHLH regulator was down-regulated in the seeds of the InWDR1 mutant. We discuss the implications of these results with respect to the proanthocyanidin biosynthesis in the seed coats.


Asunto(s)
Ipomoea nil/metabolismo , Melaninas/biosíntesis , Proteínas de Microfilamentos/metabolismo , Pigmentos Biológicos/biosíntesis , Proteínas de Plantas/metabolismo , Proantocianidinas/biosíntesis , Semillas/metabolismo , Vías Biosintéticas , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Variación Genética , Genotipo , Ipomoea/genética , Ipomoea/metabolismo , Ipomoea nil/genética , Melaninas/genética , Proteínas de Microfilamentos/genética , Pigmentos Biológicos/genética , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente , Proantocianidinas/genética , Semillas/genética
18.
Ecotoxicol Environ Saf ; 74(6): 1645-52, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21741708

RESUMEN

The occurrence of visible leaf injury caused by ozone in Ipomoea nil 'Scarlet O'Hara' may be regulated by their redox state, affecting its bioindicator efficiency. Thus, this study aimed to determine whether the redox state of I. nil plants in a subtropical area (São Paulo, SE-Brazil) contaminated by ozone oscillates, and to identify the environmental factors behind these variations. We comparatively evaluated indicators of redox state (ascorbic acid, glutathione, superoxide dismutase, ascorbate peroxidase, glutathione reductase) and leaf injury during nine field experiments of 28 days each. The variations in the redox indicators were explained by the combined effects of chronic levels of ozone and meteorological variables (mainly global solar radiation and air temperature) 3-6 days prior to the sampling days. The ascorbic acid and glutathione were crucial for increasing plant tolerance to ozone. Weak visible injury was observed in all experiments and occurred in leaves with low levels of ascorbic and dehydroascorbic acids.


Asunto(s)
Contaminantes Atmosféricos/toxicidad , Ipomoea nil/efectos de los fármacos , Ozono/toxicidad , Ácido Ascórbico/metabolismo , Brasil , Ácido Deshidroascórbico/metabolismo , Glutatión/metabolismo , Glutatión Reductasa/metabolismo , Ipomoea nil/crecimiento & desarrollo , Ipomoea nil/metabolismo , Oxidación-Reducción , Estrés Oxidativo , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/metabolismo , Superóxido Dismutasa/metabolismo , Temperatura
19.
Sci Total Environ ; 408(22): 5600-5, 2010 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-20810149

RESUMEN

The plot-culture experiments were conducted for examining the feasibility of Pharbitis nil L. and its microbial community to remedy petroleum contaminated soils. The petroleum contaminated soil, containing 10% (w/w) of the total petroleum hydrocarbons (TPHs), was collected from the Shengli Oil Field, Dongying City, Shandong Province, China. The collected soil was applied and diluted to a series of petroleum contaminated soils (0.5%, 1.0%, 2.0% and 4.0%). Root length, microbial populations and numbers in the rhizosphere were also measured in this work. The results showed that there was significantly (p<0.05) greater degradation rate of TPHs in vegetated treatments, up to 27.63-67.42%, compared with the unvegetated controls (only 10.20-35.61%), after a 127-day incubation. Although various fractions of TPHs had an insignificant concentration difference due to the presence of the remediation plants, there was a much higher removal of saturated hydrocarbon compared with other components. The biomass of P. nil L. did not decrease significantly when the concentration of petroleum hydrocarbons in soil was ≤2.0%. The trends of microbial populations and numbers in the rhizosphere were similar to the biomass changes, with the exception that fungi at 0.5% petroleum contaminated soil had the largest microbial populations and numbers.


Asunto(s)
Ipomoea nil/metabolismo , Petróleo/metabolismo , Contaminantes del Suelo/metabolismo , Biodegradación Ambiental , Biomasa , Recuento de Colonia Microbiana , Hidrocarburos/análisis , Hidrocarburos/metabolismo , Ipomoea nil/crecimiento & desarrollo , Ipomoea nil/microbiología , Petróleo/análisis , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Microbiología del Suelo , Contaminantes del Suelo/análisis
20.
Physiol Plant ; 139(1): 118-27, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-20059740

RESUMEN

Flowering and dwarfism induced by 5-azacytidine and zebularine, which both cause DNA demethylation, were studied in a short-day (SD) plant Pharbitis nil (synonym Ipomoea nil), var. Violet whose photoinduced flowering state does not last for a long period of time. The DNA demethylating reagents induced flowering under non-inductive long-day (LD) conditions. The flower-inducing effect of 5-azacytidine did not last for a long period of time, and the plants reverted to vegetative growth. The progeny of the plants that were induced to flower by DNA demethylation did not flower under the non-inductive photoperiodic conditions. These results suggest that the flowering-related genes were activated by DNA demethylation and then remethylated again in the progeny. The DNA demethylation also induced dwarfism. The dwarfism did not last for a long period of time, was not heritable and was overcome by gibberellin A3 but not by t-zeatin or kinetin. The change in the genome-wide methylation state was examined by methylation-sensitive amplified fragment length polymorphism (MS-AFLP) analysis. The analysis detected many more polymorphic fragments between the DNA samples isolated from the cotyledons treated with SD than from the cotyledons under LD conditions, indicating that the DNA methylation state was altered by photoperiodic conditions. Seven LD-specific fragments were extracted from the gel of the MS-AFLP and were sequenced. One of these fragments was highly homologous with the genes encoding ribosomal proteins.


Asunto(s)
Metilación de ADN/fisiología , Flores/crecimiento & desarrollo , Flores/metabolismo , Ipomoea nil/crecimiento & desarrollo , Ipomoea nil/metabolismo , Análisis del Polimorfismo de Longitud de Fragmentos Amplificados , Metilación de ADN/genética , Flores/genética , Regulación de la Expresión Génica de las Plantas , Ipomoea nil/genética , Espectrometría de Masas , Reacción en Cadena de la Polimerasa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...