Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.357
Filtrar
1.
PLoS One ; 19(5): e0302945, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38776326

RESUMEN

Understanding past coastal variability is valuable for contextualizing modern changes in coastal settings, yet existing Holocene paleoceanographic records for the North American Pacific Coast commonly originate from offshore marine sediments and may not represent the dynamic coastal environment. A potential archive of eastern Pacific Coast environmental variability is the intertidal mussel species Mytilus californianus. Archaeologists have collected copious stable isotopic (δ18O and δ13C) data from M. californianus shells to study human history at California's Channel Islands. When analyzed together, these isotopic data provide windows into 9000 years of Holocene isotopic variability and M. californianus life history. Here we synthesize over 6000 δ18O and δ13C data points from 13 published studies to investigate M. californianus shell isotopic variability across ontogenetic, geographic, seasonal, and millennial scales. Our analyses show that M. californianus may grow and record environmental information more irregularly than expected due to the competing influences of calcification, ontogeny, metabolism, and habitat. Stable isotope profiles with five or more subsamples per shell recorded environmental information ranging from seasonal to millennial scales, depending on the number of shells analyzed and the resolution of isotopic subsampling. Individual shell profiles contained seasonal cycles and an accurate inferred annual temperature range of ~ 5°C, although ontogenetic growth reduction obscured seasonal signals as organisms aged. Collectively, the mussel shell record reflected millennial-scale climate variability and an overall 0.52‰ depletion in δ18Oshell from 8800 BP to the present. The archive also revealed local-scale oceanographic variability in the form of a warmer coastal mainland δ18Oshell signal (-0.32‰) compared to a cooler offshore islands δ18Oshell signal (0.33‰). While M. californianus is a promising coastal archive, we emphasize the need for high-resolution subsampling from multiple individuals to disentangle impacts of calcification, metabolism, ontogeny, and habitat and more accurately infer environmental and biological patterns recorded by an intertidal species.


Asunto(s)
Isótopos de Carbono , Mytilus , Isótopos de Oxígeno , Estaciones del Año , Animales , Mytilus/metabolismo , Mytilus/crecimiento & desarrollo , Isótopos de Oxígeno/análisis , Isótopos de Carbono/análisis , Clima , Rasgos de la Historia de Vida , Ecosistema , California , Exoesqueleto/química , Exoesqueleto/crecimiento & desarrollo , Exoesqueleto/metabolismo
2.
Commun Biol ; 7(1): 568, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38745082

RESUMEN

Interpretations of Late Pleistocene hominin adaptative capacities by archaeologists have focused heavily on their exploitation of certain prey and documented contemporary behaviours for these species. However, we cannot assume that animal prey-taxa ecology and ethology were the same in the past as in the present, or were constant over archaeological timescales. Sequential isotope analysis of herbivore teeth has emerged as a particularly powerful method of directly reconstructing diet, ecology and mobility patterns on sub-annual scales. Here, we apply 87Sr/86Sr isotope analysis, in combination with δ18O and δ13C isotope analysis, to sequentially sampled tooth enamel of prevalent herbivore species that populated Europe during the Last Glacial Period, including Rangifer tarandus, Equus sp. and Mammuthus primigenius. Our samples come from two open-air archaeological sites in Central Germany, Königsaue and Breitenbach, associated with Middle Palaeolithic and early Upper Palaeolithic cultures, respectively. We identify potential inter- and intra-species differences in range size and movement through time, contextualised through insights into diet and the wider environment. However, homogeneous bioavailable 87Sr/86Sr across large parts of the study region prevented the identification of specific migration routes. Finally, we discuss the possible influence of large-herbivore behaviour on hominin hunting decisions at the two sites.


Asunto(s)
Isótopos de Carbono , Herbivoria , Animales , Isótopos de Carbono/análisis , Fósiles , Hominidae/fisiología , Isótopos de Estroncio/análisis , Arqueología , Europa (Continente) , Migración Animal , Esmalte Dental/química , Dieta , Alemania , Isótopos de Oxígeno/análisis
3.
Tree Physiol ; 44(5)2024 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-38618738

RESUMEN

The oxygen and hydrogen isotopic composition (δ18O, δ2H) of plant tissues are key tools for the reconstruction of hydrological and plant physiological processes and may therefore be used to disentangle the reasons for tree mortality. However, how both elements respond to soil drought conditions before death has rarely been investigated. To test this, we performed a greenhouse study and determined predisposing fertilization and lethal soil drought effects on δ18O and δ2H values of organic matter in leaves and tree rings of living and dead saplings of five European tree species. For mechanistic insights, we additionally measured isotopic (i.e. δ18O and δ2H values of leaf and twig water), physiological (i.e. leaf water potential and gas-exchange) and metabolic traits (i.e. leaf and stem non-structural carbohydrate concentration, carbon-to-nitrogen ratios). Across all species, lethal soil drought generally caused a homogenous 2H-enrichment in leaf and tree-ring organic matter, but a low and heterogenous δ18O response in the same tissues. Unlike δ18O values, δ2H values of tree-ring organic matter were correlated with those of leaf and twig water and with plant physiological traits across treatments and species. The 2H-enrichment in plant organic matter also went along with a decrease in stem starch concentrations under soil drought compared with well-watered conditions. In contrast, the predisposing fertilization had generally no significant effect on any tested isotopic, physiological and metabolic traits. We propose that the 2H-enrichment in the dead trees is related to (i) the plant water isotopic composition, (ii) metabolic processes shaping leaf non-structural carbohydrates, (iii) the use of carbon reserves for growth and (iv) species-specific physiological adjustments. The homogenous stress imprint on δ2H but not on δ18O suggests that the former could be used as a proxy to reconstruct soil droughts and underlying processes of tree mortality.


Asunto(s)
Sequías , Isótopos de Oxígeno , Hojas de la Planta , Suelo , Árboles , Hojas de la Planta/metabolismo , Hojas de la Planta/fisiología , Árboles/metabolismo , Árboles/fisiología , Suelo/química , Isótopos de Oxígeno/análisis , Agua/metabolismo , Deuterio/metabolismo , Deuterio/análisis , Tallos de la Planta/metabolismo
4.
Food Chem ; 449: 139083, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38581795

RESUMEN

Hazelnuts' features and price are influenced by their geographical origin, making them susceptible to fraud, especially counterfeit claims regarding their provenance. Stable isotope analysis is a recognised approach to establish the geographical origin of foods, yet its potential in hazelnut authentication remains unexplored. In this prospective study, we assessed multiple isotopic markers in hazelnuts from different origins and evaluated the most promising variables for geographical authentication by chemometric tools. Our findings indicate that bulk δ18O, along with δ2H and δ13C in the main fatty acid methyl esters, exhibit significant potential in discriminating geographical origins, and 87Sr/86Sr analysis could serve as a proficient confirmatory tool. Though no single marker alone can differentiate between all the studied origins, employing a multi-isotopic approach based on PLS-DA models achieved up to 92.5 % accuracy in leave-10 %-out cross-validation. These findings will probably lay the groundwork for developing robust models for hazelnut geographical authentication based on larger datasets.


Asunto(s)
Corylus , Nueces , Corylus/química , Nueces/química , Isótopos de Carbono/análisis , Geografía , Isótopos de Oxígeno/análisis , Ácidos Grasos/análisis , Ácidos Grasos/química , Análisis Discriminante
5.
Sci Total Environ ; 928: 172248, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38582108

RESUMEN

Ecological water replenishment (EWR) changes the recharge conditions, flow fields, and physicochemical properties of regional groundwater. However, the resulting impacts on mechanisms regulating the sources and transformation of groundwater nitrate remain unclear. This study investigated how EWR influences the sources and transformation processes of groundwater nitrate using an integrated approach of Water chemistry analysis and stable isotopes (δ15N-NO3- and δ18O-NO3-) along with microbial techniques. The results showed that groundwater NO3-N decreased from 12.98 ± 7.39 mg/L to 7.04 ± 8.52 mg/L after EWR. Water chemistry and isotopic characterization suggested that groundwater nitrate mainly originated from sewage and manure. The Bayesian isotope mixing model (MixSIAR) indicated that EWR increased the average contribution of sewage and manure sources to groundwater nitrate from 46 % to 61 %, whereas that of sources of chemical fertilizer decreased from 43 % to 21 %. Microbial community analysis revealed that EWR resulted in a substantial decrease in the relative abundance of Pseudomonas spp denitrificans, from 13.7 % to 0.6 %. Both water chemistry and microbial analysis indicated that EWR weakened denitrification and enhanced nitrification in groundwater. EWR increases the contribution of nitrate to groundwater by promoting the release of sewage and feces in the unsaturated zone. However, the dilution effect caused by EWR was stronger than the contribution of sewage and fecal sources to groundwater nitrate. As a result, EWR helped to reduce groundwater nitrate concentrations. This study showed the effectiveness of integrated isotope and microbial techniques for delineating the sources and transformations of groundwater nitrate influenced by EWR.


Asunto(s)
Monitoreo del Ambiente , Agua Subterránea , Nitratos , Contaminantes Químicos del Agua , Agua Subterránea/química , Nitratos/análisis , Contaminantes Químicos del Agua/análisis , Desnitrificación , Isótopos de Nitrógeno/análisis , Isótopos de Oxígeno/análisis , Aguas del Alcantarillado/química , Nitrificación , Abastecimiento de Agua , Microbiología del Agua
6.
Chimia (Aarau) ; 78(4): 256-260, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38676620

RESUMEN

Understanding the impact of human activities on the metabolic state of soil and aquatic environments is of paramount importance to implement measures for maintaining ecosystem services. Variations of natural abundance 18O/16O ratios in phosphate have been proposed as proxies for the holistic assessment of metabolic activity given the crucial importance of phosphoryl transfer reactions in fundamental biological processes. However, instrumental and procedural limitations inherent to oxygen isotope analysis in phosphate and organophosphorus compounds have so far limited the stable isotope-based evaluation of metabolic processes. Here, we discuss how recent developments in Orbitrap high resolution mass spectrometry enable measurements of 18O/16O ratios in phosphate and outline the critical mass spectrometry parameters for accurate and precise analysis. Subsequently, we evaluate the types of 18O kinetic isotope effects of phosphoryl transfer reactions and illustrate how novel analytical approaches will give rise to an improved understanding of 18O/16O ratio variations from biochemical processes affecting the microbial phosphorus metabolism.


Asunto(s)
Isótopos de Oxígeno , Fosfatos , Isótopos de Oxígeno/metabolismo , Isótopos de Oxígeno/análisis , Fosfatos/metabolismo , Espectrometría de Masa por Ionización de Electrospray/métodos , Bacterias/metabolismo
7.
Sci Rep ; 14(1): 7653, 2024 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-38561458

RESUMEN

Freshwater mussels preserve valuable information about hydrology, climate, and population dynamics, but developing seasonal chronologies can be problematic. Using clumped isotope thermometry, we produced high-resolution reconstructions of modern and historic (~ 1900) temperatures and δ18Owater from mussel shells collected from an impounded river, the Brazos in Texas, before and after damming. We also performed high-resolution growth band analyses to investigate relationships between mussel growth rate, rainfall, and seasonal temperature. Reconstructed δ18Owater and temperature vary little between the modern (3R5) and historic shell (H3R). However, a positive relationship between reconstructed δ18Owater and growth rate in H3R indicates that aside from diminished growth in winter, precipitation and flow rate are the strongest controls on mussel growth in both modern and pre-dam times. Overall, our results demonstrate (1) the impact, both positive and negative, of environmental factors such as flow alteration and temperature on mussel growth and (2) the potential for clumped isotopes in freshwater mussels as a paleohydrology and paleoclimate proxies in terrestrial environments.


Asunto(s)
Bivalvos , Ríos , Animales , Clima , Isótopos de Oxígeno/análisis , Agua
8.
Physiol Plant ; 176(3): e14292, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38685817

RESUMEN

Tracer injection has long been recognized as a valuable tool for delineating tree hydraulics and assessing water transport pathways. Recently, isotope tracers have emerged as innovative instruments for investigating tree hydraulics, providing new insights into tree water dynamics. Nevertheless, there is a critical need for further research to comprehensively grasp water movement and distribution within trees. A previously introduced technique for analyzing the isotopic ratio of water in wet tissues, offering millimeter-scale resolution for visualizing tracer movement, faces challenges due to its underdeveloped sample preparation techniques. In this study, we introduced an H2 18O tracer into S. gracilistyla samples, exclusively comprising indeterminate roots, stems, and leaves, cultivated through hydroponics and grown within the current year. Our objective was to assess the axial distribution of the tracer in the xylem. Additionally, we devised a novel method for preparing frozen wet tissue samples, enhancing the repeatability and success rate of experiments. The results demonstrated that all frozen wet tissue samples exhibited an average water loss rate of less than 0.6%. Isotopic analysis of these samples unveiled a consistent decline in tracer concentration with increasing height in all Salix specimens, with three out of five samples revealing a significant isotope gradient. Our findings affirm the efficacy and practicality of combining isotopic labeling with freezing, stabilization, and preparation techniques. Looking ahead, our isotopic labeling and analysis methods are poised to transcend woody plants, finding extensive applications in plant physiology and ecohydrology.


Asunto(s)
Congelación , Isótopos de Oxígeno , Árboles , Agua , Xilema , Isótopos de Oxígeno/análisis , Agua/metabolismo , Árboles/metabolismo , Xilema/metabolismo , Xilema/química , Hojas de la Planta/metabolismo , Hojas de la Planta/química , Raíces de Plantas/metabolismo , Raíces de Plantas/química , Marcaje Isotópico/métodos , Tallos de la Planta/química , Tallos de la Planta/metabolismo
9.
Int J Biometeorol ; 68(6): 1093-1108, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38441667

RESUMEN

The Himalayas experienced long-term climate changes and recent extreme weather events that affected plant growth and the physiology of tree species at high-elevation sites. This study presents the first statistically robust δ18OTR chronologies for two native pine species, Pinus roxburghii, and Pinus wallichiana, in the lower Nepalese Himalaya. The isotope chronologies exhibited 0.88‰ differences in overall mean isotope values attributed to varying elevations (460-2000 m asl). Comparative analysis of climate response using data sets from different sources and resolutions revealed the superiority of the APHRODITE (Asian Precipitation - Highly-Resolved Observational Data Integration Towards Evaluation) data set calibrated for the South Asian Summer Monsoon (SASM)-dominated region. Both species exhibited negative correlations with monsoon precipitation and positive correlations with temperature. However, during the peak monsoon season (July-August), daily resolved climate data disentangled statistically insignificant relationships, and revealed that δ18OTR is influenced by atmospheric moisture. Both congeneric species showed a decoupling between the chronologies after 1995. However, no significant change in air moisture origin and monsoon regime between the study sites was observed, indicating a consistent dominant moisture source during different monsoon seasons. Besides, we also observed the decreased inter-series correlation of both δ18OTR chronologies after 1995, with P. wallichiana experiencing a steeper decrease than P. roxburghii. The weakening correlations between and within the chronologies coincided with a regional drought during 1993-1995 in both sites, highlighting the strong regulation of local climate on the impact of regional extreme climate events. Our findings emphasise the importance of employing climate data with optimal spatial and temporal resolution for improved δ18OTR-climate relationships at the intra-annual scale while considering the influence of site-specific local environmental conditions. Assessing climate data sets with station data is vital for accurately interpreting climate change's impact on forest response and long-term climate reconstructions.


Asunto(s)
Sequías , Isótopos de Oxígeno , Pinus , Temperatura , Pinus/crecimiento & desarrollo , Nepal , Isótopos de Oxígeno/análisis , Cambio Climático , Altitud
10.
Environ Sci Technol ; 58(12): 5372-5382, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38488121

RESUMEN

Long-term phosphorus (P) fertilization results in P accumulation in agricultural soil and increases the risk of P leaching into water bodies. However, evaluating P leaching into groundwater is challenging, especially in clay soil with a high P sorption capacity. This study examined whether the combination of PO4 oxygen isotope (δ18OPO4) analysis and the P saturation ratio (PSR) was useful to identify P enrichment mechanisms in groundwater. We investigated the groundwater and possible P sources in Kubi, western Japan, with intensive citrus cultivation. Shallow groundwater had oxic conditions with high PO4 concentrations, and orchard soil P accumulation was high compared with forest soil. Although the soil had a high P sorption capacity, the PSR was above the threshold, indicating a high risk of P leaching from the surface orchard soil. The shallow groundwater δ18OPO4 values were higher than the expected isotopic equilibrium with pyrophosphatase. The high PSR and δ18OPO4 orchard soil values indicated that P leaching from orchard soil was the major P enrichment mechanism. The Bayesian mixing model estimated that 76.6% of the P supplied from the orchard soil was recycled by microorganisms. This demonstrates the utility of δ18OPO4 and the PSR to evaluate the P source and biological recycling in groundwater.


Asunto(s)
Agua Subterránea , Fósforo , Fósforo/análisis , Fosfatos , Suelo , Isótopos de Oxígeno/análisis , Adsorción , Teorema de Bayes
11.
New Phytol ; 242(3): 975-987, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38439696

RESUMEN

Stable oxygen isotope ratio of tree-ring α-cellulose (δ18Ocel) yields valuable information on many aspects of tree-climate interactions. However, our current understanding of the mechanistic controls on δ18Ocel is incomplete, with a knowledge gap existent regarding the fractionation effect characterizing carbonyl-water oxygen exchange during sucrose translocation from leaf to phloem. To address this insufficiency, we set up an experimental system integrating a vapor 18O-labeling feature to manipulate leaf-level isotopic signatures in tree saplings enclosed within whole-canopy gas-exchange cuvettes. We applied this experimental system to three different tree species to determine their respective relationships between 18O enrichment of sucrose in leaf lamina (Δ18Ol_suc) and petiole phloem (Δ18Ophl_suc) under environmentally/physiologically stable conditions. Based on the determined Δ18Ophl_suc-Δ18Ol_suc relationships, we estimated that on average, at least 25% of the oxygen atoms in sucrose undergo isotopic exchange with water along the leaf-to-phloem translocation path and that the biochemical fractionation factor accounting for such exchange is c. 34‰, markedly higher than the conventionally assumed value of 27‰. Our study represents a significant step toward quantitative elucidation of the oxygen isotope dynamics during sucrose translocation in trees. This has important implications with respect to improving the δ18Ocel model and its related applications in paleoclimatic and ecophysiological contexts.


Asunto(s)
Oxígeno , Árboles , Oxígeno/análisis , Sacarosa , Agua/análisis , Floema , Isótopos de Oxígeno/análisis , Hojas de la Planta/química , Isótopos de Carbono/análisis
12.
Sci Rep ; 14(1): 6619, 2024 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-38503829

RESUMEN

Pleistocene environments are among the most studied issues in paleoecology and human evolution research in eastern Africa. Many data have been recorded from archaeological sites located at low and medium elevations (≤ 1500 m), whereas few contexts are known at 2000 m and above. Here, we present a substantial isotopic study from Melka Kunture, a complex of prehistoric sites located at 2000-2200 m above sea level in the central Ethiopian highlands. We analyzed the stable carbon and oxygen isotopic composition of 308 faunal tooth enamel samples from sites dated between 2.02 and 0.6 Ma to investigate the animal diets and habitats. The carbon isotopic results indicate that the analyzed taxa had C4-dominated and mixed C3-C4 diets with no significant diachronic changes in feeding behavior with time. This is consistent with faunal and phytolith analyses, which suggested environments characterized by open grasslands (with both C3 and C4 grasses), patches of bushes and thickets, and aquatic vegetation. However, palynological data previously documented mountain forests, woodlands, and high-elevation grasslands. Additionally, the carbon isotopic comparison with other eastern African localities shows that differences in elevation did not influence animal feeding strategies and habitat partitioning, even though plant species vary according to altitudinal gradients. In contrast, the oxygen isotopic comparison suggests significant differences consistent with the altitude effect. Our approach allows us to detect diverse aspects of animal behavior, habitat, and vegetation that should be considered when reconstructing past environments.


Asunto(s)
Fósiles , Hominidae , Animales , Humanos , Etiopía , Isótopos de Carbono/análisis , Isótopos de Oxígeno/análisis , Bosques
13.
Sci Adv ; 10(12): eadj5782, 2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38517967

RESUMEN

This paper reports a high-resolution isotopic study of medieval horse mobility, revealing their origins and in-life mobility both regionally and internationally. The animals were found in an unusual horse cemetery site found within the City of Westminster, London, England. Enamel strontium, oxygen, and carbon isotope analysis of 15 individuals provides information about likely place of birth, diet, and mobility during the first approximately 5 years of life. Results show that at least seven horses originated outside of Britain in relatively cold climates, potentially in Scandinavia or the Western Alps. Ancient DNA sexing data indicate no consistent sex-specific mobility patterning, although three of the five females came from exceptionally highly radiogenic regions. Another female with low mobility is suggested to be a sedentary broodmare. Our results provide direct and unprecedented evidence for a variety of horse movement and trading practices in the Middle Ages and highlight the importance of international trade in securing high-quality horses for medieval London elites.


Asunto(s)
Huesos , Comercio , Humanos , Persona de Mediana Edad , Masculino , Femenino , Caballos , Animales , Londres , Huesos/química , Isótopos de Oxígeno/análisis , Isótopos de Estroncio/análisis , Internacionalidad
14.
J Therm Biol ; 120: 103825, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38430855

RESUMEN

Regional heterothermy is a strategy used by marine mammals to maintain a high and stable core body temperature, but its identification needs in situ measurements difficult to set up in extant wild organisms and inapplicable to extinct ones. We have analysed the oxygen isotope composition of bioapatite phosphate (δ18Op) from one permanent tooth and from thirty-six skeletal elements of one adult male harbour seal (Phoca vitulina) from the Baie de Somme (Hauts-de-France, France). We propose that the observed intra-skeletal δ18Op variability reflects tissue temperature heterogeneities typical of the pinniped regional heterothermy strategy. Our δ18Op data indicate that bone hydroxylapatite from harbour seal autopod skeletal elements (metacarpals, metatarsals, and phalanxes) mineralises at a lower temperature than that of the bone from the axial skeleton (e.g. vertebrae, ribs, and girdle bones). The results suggest that it is possible to locate a history of regional heterothermies in amphibious marine vertebrates using the δ18Op values of their mineralised tissues. This enables direct evaluation of the thermophysiology of both modern and fossil Pinnipedia from their skeletons opening perspectives on understanding their thermal adaptation to the marine environment in the fossil record. In addition to thermophysiology, oxygen isotope data from the permanent teeth of Pinnipedia, which are formed during the in utero phase from body fluid of the mother and at a stable temperature, could be valuable for locating the geographical areas inhabited by existing Pinnipedia females during their gestation period.


Asunto(s)
Phoca , Animales , Femenino , Masculino , Isótopos de Oxígeno/análisis , Huesos , Fósiles , Francia
15.
Glob Chang Biol ; 30(3): e17237, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38488024

RESUMEN

Scots pine (Pinus sylvestris L.) is a common European tree species, and understanding its acclimation to the rapidly changing climate through physiological, biochemical or structural adjustments is vital for predicting future growth. We investigated a long-term irrigation experiment at a naturally dry forest in Switzerland, comparing Scots pine trees that have been continuously irrigated for 17 years (irrigated) with those for which irrigation was interrupted after 10 years (stop) and non-irrigated trees (control), using tree growth, xylogenesis, wood anatomy, and carbon, oxygen and hydrogen stable isotope measurements in the water, sugars and cellulose of plant tissues. The dendrochronological analyses highlighted three distinct acclimation phases to the treatments: irrigated trees experienced (i) a significant growth increase in the first 4 years of treatment, (ii) high growth rates but with a declining trend in the following 8 years and finally (iii) a regression to pre-irrigation growth rates, suggesting the development of a new growth limitation (i.e. acclimation). The introduction of the stop treatment resulted in further growth reductions to below-control levels during the third phase. Irrigated trees showed longer growth periods and lower tree-ring δ13 C values, reflecting lower stomatal restrictions than control trees. Their strong tree-ring δ18 O and δ2 H (O-H) relationship reflected the hydrological signature similarly to the control. On the contrary, the stop trees had lower growth rates, conservative wood anatomical traits, and a weak O-H relationship, indicating a physiological imbalance. Tree vitality (identified by crown transparency) significantly modulated growth, wood anatomical traits and tree-ring δ13 C, with low-vitality trees of all treatments performing similarly regardless of water availability. We thus provide quantitative indicators for assessing physiological imbalance and tree acclimation after environmental stresses. We also show that tree vitality is crucial in shaping such responses. These findings are fundamental for the early assessment of ecosystem imbalances and decline under climate change.


Asunto(s)
Pinus sylvestris , Árboles , Ecosistema , Sequías , Isótopos/análisis , Pinus sylvestris/fisiología , Aclimatación , Agua/fisiología , Isótopos de Carbono/análisis , Isótopos de Oxígeno/análisis
16.
Sci Justice ; 64(2): 193-201, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38431376

RESUMEN

Isotopic analysis of human tooth enamel can provide life history information useful in forensic identification. These applications depend on the availability of reference data documenting isotopic values for individuals with known life history and on the comparability of data from reference and case work samples. Here we build on previous methodological research, which has largely focused on paleontological and archaeological samples, and conduct experiments using enamel from modern human teeth targeting three sample preparation variables (sample particle size, storage conditions, and chemical pretreatments). Our results suggest that differences in particle size affect the efficiency of sample reactions during pretreatment and analysis, with coarse particles giving reduced loss of enamel carbonate during acid pretreatments but producing slightly higher oxygen isotope values than fine particles during analysis. Data for samples stored in dry and ambient environments following pretreatment were indistinguishable, suggesting no exchange of oxygen between samples and ambient water vapor. Finally, chemical pretreatments with a range of commonly used reactants and conditions showed a pervasive, moderate oxygen isotope shift associated with acetic acid treatment, which may be caused by exchange of enamel hydroxyl groups with reagents or rinse waters. Collectively, the results emphasize the importance of methodological standardization to improve comparability and reduce potential for bias in the forensic application of tooth enamel isotope data.


Asunto(s)
Carbono , Esmalte Dental , Humanos , Tamaño de la Partícula , Isótopos de Oxígeno/análisis , Esmalte Dental/química , Isótopos de Carbono/análisis
17.
Environ Res ; 250: 118529, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38395335

RESUMEN

Due to adverse impact of the global warming on hydrological resources, we intended to document the hydrogeochemical evolutions of surface and groundwater at tropical central-south Mexico in terms of seasonality of rock-water interaction, precipitation/evaporation variation and moisture source by evaluating the major ion chemistry in Piper and Gibbs plots, Durov diagram and through estimation of the chloro-alkaline indices as well as assessing the stable isotope compositions (δ18O and δ2H) in samples from different seasons of a year. Surface water of the Lake Coatetelco shifted from mostly Ca-Mg-HCO3 facies in wet summer-autumn to Na-HCO3-Cl facies in the dry spring due to elevated Na, Cl and HCO3. Greater evaporation in spring led to a maximum δ18O enrichment of ca.7‰ compared to the other seasons, and much depleted deuterium excess (-40.92‰ to -39.20‰). Interaction of the lake water with subsurface carbonate lithologies, and comparable isotopic compositions reflected the enhanced interaction between the surface water body and aquifers in the wet autumn. Effect of seasonality, however, was unclear on the groundwater facies, and its heterogenous composition (Ca-Mg-HCO3, Na-HCO3-Cl and Na-HCO3) reflected the interactions with different lithologies. Fractionations in isotope compositions of the groundwater were caused from recharge at different elevations, seasonality of moisture sources and moisture recycling. The water-mineral saturation index was an efficient proxy of seasonality as the lake water and groundwater (avg SIcalcite > 0.5) of the dry autumn were saturated with calcite. This vital information about carbonate precipitation, pCO2 and chemical facies would be useful for the better interpretation of paleoclimate archives in this region.


Asunto(s)
Deuterio , Agua Subterránea , Isótopos de Oxígeno , Estaciones del Año , México , Agua Subterránea/química , Agua Subterránea/análisis , Isótopos de Oxígeno/análisis , Deuterio/análisis , Monitoreo del Ambiente/métodos , Lagos/química
18.
Isotopes Environ Health Stud ; 60(2): 122-140, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38372972

RESUMEN

We investigated the stable isotope hydrology of Sable Island, Nova Scotia, Canada over a five year period from September, 2017 to August, 2022. The δ2H and δ18O values of integrated monthly precipitation were weakly seasonal and ranged from -66 to -15 ‰ and from -9.7 to -1.9 ‰, respectively. Fitting these monthly precipitation data resulted in a local meteoric water line (LMWL) defined by: δ2H = 7.22 ± 0.21 · δ18O + 7.50 ± 1.22 ‰. Amount-weighted annual precipitation had δ2H and δ18O values of -36 ± 11 ‰ and -6.1 ± 1.4 ‰, respectively. Deep groundwater had more negative δ2H and δ18O values than mean annual precipitation, suggesting recharge occurs mainly in the winter, while shallow groundwater had δ2H and δ18O values more consistent with mean annual precipitation or mixing of freshwater with local seawater. Surface waters had more positive values and showed evidence of isolation from the groundwater system. The stable isotopic compositions of plant (leaf) water, on the other hand, indicate plants use groundwater as their source. Fog had δ2H and δ18O values that were significantly more positive than those of local precipitation, yet had similar 17O-excess values. δ2H values of horsehair from 4 individuals lacked seasonality, but had variations typical to those of precipitation on the island. Differences in mean δ2H values of horsehair were statistically significant and suggest variations in water use may exist between spatially disparate horse communities. Our results establish an important initial framework for ongoing isotope studies of feral horses and other wildlife on Sable Island.


Asunto(s)
Hidrología , Agua , Humanos , Caballos , Animales , Isótopos de Oxígeno/análisis , Nueva Escocia , Deuterio/análisis , Monitoreo del Ambiente/métodos
19.
Isotopes Environ Health Stud ; 60(1): 32-52, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38198601

RESUMEN

In Taiwanese volcanic watersheds, we investigated stable water isotopes in meteoric water, plants, and thermal water. Meteoric water exhibited a seasonal cycle, with heavier isotopes in winter and lighter ones in summer, especially in the southern region. The northern monsoon signal lagged the south by two weeks. In the Tatun mountains, young water fractions indicated prevalent old water sources. In the northern watershed, streamwater mainly came from the winter monsoon, while the southern one was influenced by alternating monsoons. Both indices indicated that winter plants depended on summer rainfall. Streamwater and plants had distinct sources in winter, supporting ecohydrological separation. Thermal spring water's d-excess helped identify water-rock interactions, with low d value signaling such interactions. The topographic wetness index showed a higher summer monsoon contribution to southern streamwater but a lower one to plants. The mean linear channel direction significantly affected the monsoon contribution fraction, with northeast-oriented channels vulnerable to northeastward winter monsoons. Finally, we developed a model illustrating hydrological processes on short and long timescales. Our findings enhance our understanding of hydrological disturbances' impact on water resources and ecosystems.


Asunto(s)
Ecosistema , Agua , Deuterio/análisis , Isótopos de Oxígeno/análisis , Monitoreo del Ambiente
20.
New Phytol ; 241(5): 2009-2024, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38178796

RESUMEN

A fundamental assumption when using hydrogen and oxygen stable isotopes to understand ecohydrological processes is that no isotope fractionation occurs during plant water uptake/transport/redistribution. A growing body of evidence has indicated that hydrogen isotope fractionation occurs in certain environments or for certain plant species. However, whether the plant water source hydrogen isotope offset (δ2 H offset) is a common phenomenon and how it varies among different climates and plant functional types remains unclear. Here, we demonstrated the presence of positive, negative, and zero offsets based on extensive observations of 12 plant species of 635 paired stable isotopic compositions along a strong climate gradient within an inland river basin. Both temperature and relative humidity affected δ2 H offsets. In cool and moist environments, temperature mainly affected δ2 H offsets negatively due to its role in physiological activity. In warm and dry environments, relative humidity mainly affected δ2 H offsets, likely by impacting plant leaf stomatal conductance. These δ2 H offsets also showed substantial linkages with leaf water 18 O enrichment, an indicator of transpiration and evaporative demand. Further studies focusing on the ecophysiological and biochemical understanding of plant δ2 H dynamics under specific environments are essential for understanding regional ecohydrological processes and for conducting paleoclimate reconstructions.


Asunto(s)
Hidrógeno , Plantas , Isótopos de Oxígeno/análisis , Clima , Hojas de la Planta/química , Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA