Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 10.075
Filtrar
1.
Int J Mol Sci ; 25(12)2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38928030

RESUMEN

Disruption of any stage of iron homeostasis, including uptake, utilization, efflux, and storage, can cause progressive damage to peripheral organs. The health hazards associated with occupational exposure to inhalation anesthetics (IA) in combination with chronic iron overload are not well documented. This study aimed to investigate changes in the concentration of essential metals in the peripheral organs of rats after iron overload in combination with IA. The aim was also to determine how iron overload in combination with IA affects tissue metal homeostasis, hepcidin-ferritin levels, and MMP levels according to physiological, functional, and tissue features. According to the obtained results, iron accumulation was most pronounced in the liver (19×), spleen (6.7×), lungs (3.1×), and kidneys (2.5×) compared to control. Iron accumulation is associated with elevated heavy metal levels and impaired essential metal concentrations due to oxidative stress (OS). Notably, the use of IA increases the iron overload toxicity, especially after Isoflurane exposure. The results show that the regulation of iron homeostasis is based on the interaction of hepcidin, ferritin, and other proteins regulated by inflammation, OS, free iron levels, erythropoiesis, and hypoxia. Long-term exposure to IA and iron leads to the development of numerous adaptation mechanisms in response to toxicity, OS, and inflammation. These adaptive mechanisms of iron regulation lead to the inhibition of MMP activity and reduction of oxidative stress, protecting the organism from possible damage.


Asunto(s)
Anestésicos por Inhalación , Hepcidinas , Complejo Hierro-Dextran , Hierro , Estrés Oxidativo , Animales , Ratas , Hepcidinas/metabolismo , Estrés Oxidativo/efectos de los fármacos , Hierro/metabolismo , Masculino , Anestésicos por Inhalación/efectos adversos , Anestésicos por Inhalación/toxicidad , Complejo Hierro-Dextran/administración & dosificación , Complejo Hierro-Dextran/toxicidad , Ferritinas/metabolismo , Sobrecarga de Hierro/metabolismo , Hígado/efectos de los fármacos , Hígado/metabolismo , Hígado/patología , Pulmón/efectos de los fármacos , Pulmón/metabolismo , Pulmón/patología , Riñón/efectos de los fármacos , Riñón/metabolismo , Riñón/patología , Bazo/efectos de los fármacos , Bazo/metabolismo , Bazo/patología , Ratas Wistar , Homeostasis/efectos de los fármacos , Isoflurano/efectos adversos
2.
CNS Neurosci Ther ; 30(6): e14782, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38828651

RESUMEN

BACKGROUND: The thalamus system plays critical roles in the regulation of reversible unconsciousness induced by general anesthetics, especially the arousal stage of general anesthesia (GA). But the function of thalamus in GA-induced loss of consciousness (LOC) is little known. The thalamic reticular nucleus (TRN) is the only GABAergic neurons-composed nucleus in the thalamus, which is composed of parvalbumin (PV) and somatostatin (SST)-expressing GABAergic neurons. The anterior sector of TRN (aTRN) is indicated to participate in the induction of anesthesia, but the roles remain unclear. This study aimed to reveal the role of the aTRN in propofol and isoflurane anesthesia. METHODS: We first set up c-Fos straining to monitor the activity variation of aTRNPV and aTRNSST neurons during propofol and isoflurane anesthesia. Subsequently, optogenetic tools were utilized to activate aTRNPV and aTRNSST neurons to elucidate the roles of aTRNPV and aTRNSST neurons in propofol and isoflurane anesthesia. Electroencephalogram (EEG) recordings and behavioral tests were recorded and analyzed. Lastly, chemogenetic activation of the aTRNPV neurons was applied to confirm the function of the aTRN neurons in propofol and isoflurane anesthesia. RESULTS: c-Fos straining showed that both aTRNPV and aTRNSST neurons are activated during the LOC period of propofol and isoflurane anesthesia. Optogenetic activation of aTRNPV and aTRNSST neurons promoted isoflurane induction and delayed the recovery of consciousness (ROC) after propofol and isoflurane anesthesia, meanwhile chemogenetic activation of the aTRNPV neurons displayed the similar effects. Moreover, optogenetic and chemogenetic activation of the aTRN neurons resulted in the accumulated burst suppression ratio (BSR) during propofol and isoflurane GA, although they represented different effects on the power distribution of EEG frequency. CONCLUSION: Our findings reveal that the aTRN GABAergic neurons play a critical role in promoting the induction of propofol- and isoflurane-mediated GA.


Asunto(s)
Anestesia General , Estado de Conciencia , Neuronas GABAérgicas , Isoflurano , Propofol , Propofol/farmacología , Isoflurano/farmacología , Animales , Neuronas GABAérgicas/efectos de los fármacos , Neuronas GABAérgicas/fisiología , Ratones , Estado de Conciencia/efectos de los fármacos , Estado de Conciencia/fisiología , Masculino , Electroencefalografía , Anestésicos por Inhalación/farmacología , Núcleos Talámicos Anteriores/efectos de los fármacos , Núcleos Talámicos Anteriores/fisiología , Ratones Endogámicos C57BL , Ratones Transgénicos , Anestésicos Intravenosos/farmacología , Proteínas Proto-Oncogénicas c-fos/metabolismo , Optogenética
3.
Exp Biol Med (Maywood) ; 249: 10037, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38854792

RESUMEN

In-ovo imaging using avian eggs has been described as a potential alternative to animal testing using rodents. However, imaging studies are hampered by embryonal motion producing artifacts. This study aims at systematically comparing isoflurane, desflurane and sevoflurane in three different concentrations in ostrich embryos. Biomagnetic signals of ostrich embryos were recorded analyzing cardiac action and motion. Ten groups comprising eight ostrich embryos each were investigated: Control, isoflurane (2%, 4%, and 6%), desflurane (6%, 12%, and 18%) and sevoflurane (3%, 5%, and 8%). Each ostrich egg was exposed to the same narcotic gas and concentration on development day (DD) 31 and 34. Narcotic gas exposure was upheld for 90 min and embryos were monitored for additional 75 min. Toxicity was evaluated by verifying embryo viability 24 h after the experiments. Initial heart rate of mean 148 beats/min (DD 31) and 136 beats/min (DD 34) decreased over time by 44-48 beats/minute. No significant differences were observed between groups. All narcotic gases led to distinct movement reduction after mean 8 min. Embryos exposed to desflurane 6% showed residual movements. Isoflurane 6% and sevoflurane 8% produced motion-free time intervals of mean 70 min after discontinuation of narcotic gas exposure. Only one embryo death occurred after narcotic gas exposure with desflurane 6%. This study shows that isoflurane, desflurane and sevoflurane are suitable for ostrich embryo immobilization, which is a prerequisite for motion-artifact free imaging. Application of isoflurane 6% and sevoflurane 8% is a) safe as no embryonal deaths occurred after exposure and b) effective as immobilization was observed for approx. 70 min after the end of narcotic gas exposure. These results should be interpreted with caution regarding transferability to other avian species as differences in embryo size and incubation duration exist.


Asunto(s)
Desflurano , Embrión no Mamífero , Isoflurano , Struthioniformes , Animales , Struthioniformes/embriología , Embrión no Mamífero/efectos de los fármacos , Anestésicos por Inhalación , Sevoflurano/efectos adversos , Sevoflurano/farmacología , Narcóticos/toxicidad , Inmovilización
4.
J Zoo Wildl Med ; 55(2): 424-429, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38875198

RESUMEN

The marbled crayfish (Procambarus virginalis) is a parthenogenetic invasive species across much of the world, and when found, euthanasia is often recommended to reduce spread to naïve ecosystems. Euthanasia recommendations in crustaceans includes a two-step method: first to produce nonresponsiveness and then to destroy central nervous tissue. Minimal data exist on adequate anesthetic or immobilization methods for crayfish. A population of 90 marbled crayfish was scheduled for euthanasia due to invasive species concerns. The population was divided into six treatment groups to evaluate whether immersion in emulsified isoflurane or propofol solutions could produce nonresponsiveness. Each group was exposed to one of six treatments for 1 h: isoflurane emulsified at 0.1%, 0.5%, 2%, 5%, and 15% or propofol at 10 mg/L and then increased to 100 mg/L. Crayfish from all treatment groups were moved to nonmedicated water after completion of 1 h and observed for an additional 4 h. All crayfish treated with isoflurane showed lack of a righting reflex at 5 min and loss of movement after 30 min. By 240 min (4 h), none of the crayfish from the isoflurane treatment groups regained movement. None of the crayfish in the propofol treatment achieved loss of reflexes or responsiveness, and all remained normal upon return to nonmedicated water. Isoflurane emulsified in water produces nonresponsiveness that is appropriate for the first step of euthanasia, while propofol was insufficient at these treatment doses.


Asunto(s)
Astacoidea , Eutanasia Animal , Isoflurano , Propofol , Animales , Astacoidea/efectos de los fármacos , Isoflurano/administración & dosificación , Isoflurano/farmacología , Propofol/farmacología , Propofol/administración & dosificación , Eutanasia Animal/métodos , Anestésicos por Inhalación/administración & dosificación , Anestésicos por Inhalación/farmacología , Inmersión , Relación Dosis-Respuesta a Droga
5.
J Physiol Sci ; 74(1): 33, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38867187

RESUMEN

Hibernation and torpor are not passive responses caused by external temperature drops and fasting but are active brain functions that lower body temperature. A population of neurons in the preoptic area was recently identified as such active torpor-regulating neurons. We hypothesized that the other hypothermia-inducing maneuvers would also activate these neurons. To test our hypothesis, we first refined the previous observations, examined the brain regions explicitly activated during the falling phase of body temperature using c-Fos expression, and confirmed the preoptic area. Next, we observed long-lasting hypothermia by reactivating torpor-tagged Gq-expressing neurons using the activity tagging and DREADD systems. Finally, we found that about 40-60% of torpor-tagged neurons were activated by succeeding isoflurane anesthesia and by icv administration of an adenosine A1 agonist. Isoflurane-induced and central adenosine-induced hypothermia is, at least in part, an active process mediated by the torpor-regulating neurons in the preoptic area.


Asunto(s)
Adenosina , Isoflurano , Neuronas , Área Preóptica , Animales , Área Preóptica/efectos de los fármacos , Área Preóptica/metabolismo , Isoflurano/farmacología , Isoflurano/administración & dosificación , Adenosina/administración & dosificación , Adenosina/farmacología , Adenosina/metabolismo , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Neuronas/fisiología , Masculino , Anestésicos por Inhalación/farmacología , Anestésicos por Inhalación/administración & dosificación , Temperatura Corporal/efectos de los fármacos , Temperatura Corporal/fisiología , Hipotermia/inducido químicamente , Hipotermia/metabolismo , Letargo/efectos de los fármacos , Ratones , Proteínas Proto-Oncogénicas c-fos/metabolismo
6.
BMC Anesthesiol ; 24(1): 200, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38840092

RESUMEN

BACKGROUND: The inhalational anesthetic isoflurane is commonly utilized in clinical practice, particularly in the field of pediatric anesthesia. Research has demonstrated its capacity to induce neuroinflammation and long-term behavioral disorders; however, the underlying mechanism remains unclear [1]. The cation-chloride cotransporters Na+-K+-2Cl--1 (NKCC1) and K+-2Cl--2 (KCC2) play a pivotal role in regulating neuronal responses to gamma-aminobutyric acid (GABA) [2]. Imbalances in NKCC1/KCC2 can disrupt GABA neurotransmission, potentially leading to neural circuit hyperexcitability and reduced inhibition following neonatal exposure to anesthesia [3]. Therefore, this study postulates that anesthetics have the potential to dysregulate NKCC1 and/or KCC2 during brain development. METHODS: We administered 1.5% isoflurane anesthesia to neonatal rats for a duration of 4 h at postnatal day 7 (PND7). Anxiety levels were assessed using the open field test at PND28, while cognitive function was evaluated using the Morris water maze test between PND31 and PND34. Protein levels of NKCC1, KCC2, BDNF, and phosphorylated ERK (P-ERK) in the hippocampus were measured through Western blotting analysis. Pro-inflammatory cytokines IL-1ß, IL-6, and TNF-α were quantified using ELISA. RESULTS: We observed a decrease in locomotion trajectories within the central region and a significantly shorter total distance in the ISO group compared to CON pups, indicating that isoflurane induces anxiety-like behavior. In the Morris water maze (MWM) test, rats exposed to isoflurane exhibited prolonged escape latency onto the platform. Additionally, isoflurane administration resulted in reduced time spent crossing in the MWM experiment at PND34, suggesting long-term impairment of memory function. Furthermore, we found that isoflurane triggered activation of pro-inflammatory cytokines IL-1ß, IL-6, and TNF-α; downregulated KCC2/BDNF/P-ERK expression; and increased the NKCC1/KCC2 ratio in the hippocampus of PND7 rats. Bumetadine (NKCC1 specific inhibitors) reversed cognitive damage and effective disorder induced by isoflurane in neonatal rats by inhibiting TNF-α activation, normalizing IL-6 and IL-1ß levels, restoring KCC2 expression levels as well as BDNF and ERK signaling pathways. Based on these findings, it can be speculated that BDNF, P-ERK, IL-1ß, IL-6 and TNF - α may act downstream of the NKCC1/KCC2 pathway. CONCLUSIONS: Our findings provide evidence that isoflurane administration in neonatal rats leads to persistent cognitive deficits through dysregulation of the Cation-Chloride Cotransporters NKCC1 and KCC2, BDNF, p-ERK proteins, as well as neuroinflammatory processes.


Asunto(s)
Anestésicos por Inhalación , Animales Recién Nacidos , Isoflurano , Cotransportadores de K Cl , Miembro 2 de la Familia de Transportadores de Soluto 12 , Simportadores , Animales , Isoflurano/farmacología , Miembro 2 de la Familia de Transportadores de Soluto 12/metabolismo , Simportadores/metabolismo , Anestésicos por Inhalación/farmacología , Anestésicos por Inhalación/efectos adversos , Ratas , Ratones , Ratas Sprague-Dawley , Masculino , Enfermedades Neuroinflamatorias/inducido químicamente , Enfermedades Neuroinflamatorias/metabolismo , Femenino , Disfunción Cognitiva/inducido químicamente , Disfunción Cognitiva/metabolismo
7.
Sci Rep ; 14(1): 14060, 2024 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-38890405

RESUMEN

Isoflurane anesthesia (IA) partially compensates NREM sleep (NREMS) and not REM sleep (REMS) requirement, eliciting post-anesthetic REMS rebound. Sleep deprivation triggers compensatory NREMS rebounds and REMS rebounds during recovery sleep as a result of the body's homeostatic mechanisms. A combination of sleep deprivation and isoflurane anesthesia is common in clinical settings, especially prior to surgeries. This study investigates the effects of pre-anesthetic sleep deprivation on post-anesthetic sleep-wake architecture. The effects of isoflurane exposure (90 min) alone were compared with the effects of isoflurane exposure preceded by experimental sleep deprivation (6 h, gentle handling) on recovery sleep in adult mice by studying the architecture of post-anesthetic sleep for 3 consecutive post-anesthetic days. Effects of isoflurane anesthesia on recovery sleep developed only during the first dark period after anesthesia, the active phase in mice. During this time, mice irrespective of preceding sleep pressure, showed NREMS and REMS rebound and decreased wakefulness during recovery sleep. Additionally, sleep deprivation prior to isoflurane treatment caused a persistent reduction of theta power during post-anesthetic REMS at least for 3 post-anesthetic days. We showed that isoflurane causes NREMS rebound during recovery sleep which suggests that isoflurane may not fully compensate for natural NREMS. The study also reveals that isoflurane exposure preceded by sleep deprivation caused a persistent disruption of REMS quality. We suggest that preoperative sleep deprivation may impair postoperative recovery through lasting disruption in sleep quality.


Asunto(s)
Anestésicos por Inhalación , Isoflurano , Privación de Sueño , Sueño REM , Vigilia , Isoflurano/efectos adversos , Isoflurano/farmacología , Animales , Privación de Sueño/fisiopatología , Ratones , Masculino , Anestésicos por Inhalación/efectos adversos , Sueño REM/efectos de los fármacos , Vigilia/efectos de los fármacos , Vigilia/fisiología , Ratones Endogámicos C57BL , Electroencefalografía , Sueño/efectos de los fármacos , Sueño/fisiología , Anestesia/efectos adversos
8.
Cardiovasc Toxicol ; 24(7): 637-645, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38720121

RESUMEN

To investigate the role of microRNA-195-3p (miR-195-3p) in hypoxia/reoxygenation (H/R)-induced cardiomyocyte injury. AC16 human cardiomyocyte cells were cultured and pretreated with different concentrations of isoflurane (ISO) (1%, 2%, and 3%), followed by 6 h each of hypoxia and reoxygenation to construct H/R cell models. The optimum ISO concentration was assessed based on the cell viability. miR-195-3p expression was regulated by in vitro cell transfection. Cell viability was determined by MTT assay, and apoptosis was evaluated by flow cytometry. The levels of myocardial injury and inflammation were determined by enzyme-linked immunosorbent assay. Compared with the control group, the cell viability of the H/R group had significantly decreased and that of ISO pretreatment had increased in a dose-dependent manner. Therefore, we selected a 2% ISO concentration for pretreatment. MiR-195-3p expression had significantly increased in the H/R group and decreased after 2% ISO pretreatment. Additionally, the number of apoptotic cells and the levels of lactate dehydrogenase, creatine kinase-myoglobin binding, cardiac troponin I, interleukin (IL)-1ß, IL-6, and tumor necrosis factor-α had increased significantly. ISO preconditioning inhibited H/R-induced AC16 cell damage, whereas miR-195-3p overexpression reversed the protective effects of ISO on cardiomyocytes. The expression of phosphatase and tensin homolog deleted on chromosome 10 (PTEN) was reduced in the H/R-induced AC16 cells, and PTEN is a downstream target gene of miR-195-3p. Preconditioning with 2% ISO plays a protective role in H/R-induced AC16 cell damage by inhibiting miR-195-3p expression.


Asunto(s)
Apoptosis , Hipoxia de la Célula , Isoflurano , MicroARNs , Daño por Reperfusión Miocárdica , Miocitos Cardíacos , Transducción de Señal , MicroARNs/metabolismo , MicroARNs/genética , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Isoflurano/farmacología , Isoflurano/toxicidad , Humanos , Apoptosis/efectos de los fármacos , Línea Celular , Daño por Reperfusión Miocárdica/patología , Daño por Reperfusión Miocárdica/metabolismo , Daño por Reperfusión Miocárdica/prevención & control , Daño por Reperfusión Miocárdica/genética , Mediadores de Inflamación/metabolismo , Supervivencia Celular/efectos de los fármacos , Regulación hacia Abajo , Relación Dosis-Respuesta a Droga , Citocinas/metabolismo
9.
Cardiovasc Toxicol ; 24(7): 646-655, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38801481

RESUMEN

This research is concentrated on investigating the role and mechanism of miR-652-3p in the protective effects of isoflurane (ISO) against myocardial ischemia-reperfusion (I/R) injury. H9c2 cells underwent pretreatment with varying concentrations of ISO, and subsequently, a hypoxia/reoxygenation (H/R) model was constructed. The levels of miR-652-3p, ISL LIM homeobox 1 (ISL1), and inflammatory cytokines interleukin (IL)-6 and tumor necrosis factor-alpha (TNF-α) were evaluated through reverse transcription polymerase chain reaction (RT-qPCR). Enzyme-linked immunosorbent assay was employed to investigate concentrations of myocardial injury markers, such as creatine kinase-MB (CK-MB) and cardiac troponin I (cTnI). Cell counting kit-8 was used to evaluate cell viability, while flow cytometry was utilized to measure apoptosis. Additionally, a dual luciferase reporter assay was conducted to validate the targeting relationship between ISL1 and miR-652-3p. Herein, we confirmed that the level of miR-652-3p was gradually increased with prolonged hypoxia; nevertheless, this increase was suppressed by ISO pretreatment (P < 0.05). Additionally, ISO pretreatment prevented the decrease in cell viability, increase in apoptosis, and overproduction of IL-6, TNF-α, CK-MB, and cTnI induced by H/R (P < 0.05). However, the inhibitory effects of ISO were counteracted by the increased levels of miR-652-3p (P < 0.05). ISL1 is a potential target of miR-652-3p. H/R induction suppressed ISL1 levels compared to the control, but ISO treatment increased its expression (P < 0.05). Overexpression of ISL1 inhibited the elimination of the protective effect of ISO on myocardial damage induced by the elevation of miR-652-3p (P < 0.05). The findings of this research confirm that miR-652-3p attenuated the protective effect of ISO on cardiomyocytes in myocardial ischemia by targeting ISL1.


Asunto(s)
Apoptosis , Hipoxia de la Célula , Interleucina-6 , Isoflurano , Proteínas con Homeodominio LIM , MicroARNs , Daño por Reperfusión Miocárdica , Miocitos Cardíacos , Factores de Transcripción , MicroARNs/metabolismo , MicroARNs/genética , Isoflurano/farmacología , Proteínas con Homeodominio LIM/metabolismo , Proteínas con Homeodominio LIM/genética , Animales , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/patología , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/enzimología , Daño por Reperfusión Miocárdica/patología , Daño por Reperfusión Miocárdica/prevención & control , Daño por Reperfusión Miocárdica/metabolismo , Daño por Reperfusión Miocárdica/genética , Línea Celular , Apoptosis/efectos de los fármacos , Ratas , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Interleucina-6/metabolismo , Interleucina-6/genética , Transducción de Señal/efectos de los fármacos , Factor de Necrosis Tumoral alfa/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Mediadores de Inflamación/metabolismo , Forma MB de la Creatina-Quinasa/metabolismo , Forma MB de la Creatina-Quinasa/sangre , Troponina I/metabolismo , Citoprotección
10.
Br Dent J ; 236(9): 680-682, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38730155

RESUMEN

Nitrous oxide is a widely used and well-established form of inhalation sedation in dentistry. Its properties have a wide margin of safety and allow for anxious, paediatric and adult patients to receive dental treatment with minimal impact upon discharge. Nitrous oxide has drawbacks, however, including its environmental impact and need for specialist equipment. Methoxyflurane is another drug which could prove to be an alternative to nitrous oxide. Methoxyflurane's use has proved popular within emergency medicine in Australia and New Zealand for its potent analgesic effects and recognition of its anxiolytic effect. As a result, its use in invasive outpatient procedures has now become popular. Unfortunately, there is very limited evidence of its use within dentistry as a form of inhalation sedation and analgesic. A wider evidence base should be established, as methoxyflurane could prove to be an effective and environmentally friendly alternative to nitrous oxide.


Asunto(s)
Anestesia Dental , Anestésicos por Inhalación , Metoxiflurano , Óxido Nitroso , Humanos , Metoxiflurano/administración & dosificación , Metoxiflurano/uso terapéutico , Metoxiflurano/farmacología , Óxido Nitroso/administración & dosificación , Anestésicos por Inhalación/administración & dosificación , Anestesia Dental/métodos , Isoflurano/administración & dosificación , Sedación Consciente/métodos
11.
Sci Rep ; 14(1): 10669, 2024 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-38724577

RESUMEN

Anaesthetics are used daily in human and veterinary medicine as well as in scientific research. Anaesthetics have an impact on cell homeostasis especially through modulation of protein post-translational modifications. O-GlcNAcylation, a ubiquitous post-translational modification, plays a role in many biological processes. The aims of this study were to evaluate whether (1) anaesthesia influences O-GlcNAcylation and (2) its stimulation affects physiological parameters. Male Wistar rats (n = 38) were anaesthetized with ketamine-xylazine or isoflurane. They randomly received either an intravenous injection of Ringer's lactate or NButGT (10mg/kg) in order to increase O-GlcNAcylation levels. One hour after induction of anaesthesia, haemodynamic parameters and plasmatic markers were evaluated. Heart, brain and lungs were harvested and O-GlcNAcylation levels and O-GlcNAc-related enzymes were evaluated by western blot. Cardiac and pulmonary O-GlcNAcylation levels and cardiac, cerebral and pulmonary O-GlcNAc associated enzyme expression were not impacted with anaesthesia. Compared with ketamine-xylazine, isoflurane had a lower impact on blood pressure, heart rate and glycaemia. Pharmacological stimulation of O-GlcNAcylation by NButGT did not affect the physiological parameters. This study offers unprecedented insights into the regulation of O-GlcNAcylation and O-GlcNAc related enzymes during anaesthesia. Pharmacological stimulation of O-GlcNAcylation over a 1-h period did not disrupt the physiological balance in healthy anaesthetized rats.


Asunto(s)
Isoflurano , Ketamina , Ratas Wistar , Xilazina , Animales , Masculino , Ratas , Isoflurano/farmacología , Ketamina/farmacología , Xilazina/farmacología , Anestesia , Acetilglucosamina/metabolismo , Procesamiento Proteico-Postraduccional , Encéfalo/metabolismo , N-Acetilglucosaminiltransferasas/metabolismo , Frecuencia Cardíaca/efectos de los fármacos , Pulmón/metabolismo , Anestésicos/farmacología , Presión Sanguínea/efectos de los fármacos , Hemodinámica
12.
Biomed Pharmacother ; 175: 116751, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38754266

RESUMEN

Anesthesia inhibits neural activity in the brain, causing patients to lose consciousness and sensation during the surgery. Layers 2/3 of the cortex are important structures for the integration of information and consciousness, which are closely related to normal cognitive function. However, the dynamics of the large-scale population of neurons across multiple regions in layer 2/3 during anesthesia and recovery processes remains unclear. We conducted simultaneous observations and analysis of large-scale calcium signaling dynamics across multiple cortical regions within cortical layer 2/3 during isoflurane anesthesia and recovery in vivo by high-resolution wide-field microscopy. Under isoflurane-induced anesthesia, there is an overall decrease in neuronal activity across multiple regions in the cortical layer 2/3. Notably, some neurons display a paradoxical increase in activity during anesthesia. Additionally, the activity among multiple cortical regions under anesthesia was homogeneous. It is only during the recovery phase that variability emerges in the extent of increased neural activity across different cortical regions. Within the same duration of anesthesia, neural activity did not return to preanesthetic levels. To sum up, anesthesia as a dynamic alteration of brain functional networks, encompassing shifts in patterns of neural activity, homogeneousness among cortical neurons and regions, and changes in functional connectivity. Recovery from anesthesia does not entail a reversal of these effects within the same timeframe.


Asunto(s)
Anestésicos por Inhalación , Corteza Cerebral , Isoflurano , Neuronas , Isoflurano/farmacología , Neuronas/efectos de los fármacos , Neuronas/fisiología , Animales , Anestésicos por Inhalación/farmacología , Masculino , Corteza Cerebral/efectos de los fármacos , Ratones , Señalización del Calcio/efectos de los fármacos , Ratones Endogámicos C57BL
13.
J Neurosci ; 44(24)2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38749704

RESUMEN

General anesthetics disrupt brain network dynamics through multiple pathways, in part through postsynaptic potentiation of inhibitory ion channels as well as presynaptic inhibition of neuroexocytosis. Common clinical general anesthetic drugs, such as propofol and isoflurane, have been shown to interact and interfere with core components of the exocytic release machinery to cause impaired neurotransmitter release. Recent studies however suggest that these drugs do not affect all synapse subtypes equally. We investigated the role of the presynaptic release machinery in multiple neurotransmitter systems under isoflurane general anesthesia in the adult female Drosophila brain using live-cell super-resolution microscopy and optogenetic readouts of exocytosis and neural excitability. We activated neurotransmitter-specific mushroom body output neurons and imaged presynaptic function under isoflurane anesthesia. We found that isoflurane impaired synaptic release and presynaptic protein dynamics in excitatory cholinergic synapses. In contrast, isoflurane had little to no effect on inhibitory GABAergic or glutamatergic synapses. These results present a distinct inhibitory mechanism for general anesthesia, whereby neuroexocytosis is selectively impaired at excitatory synapses, while inhibitory synapses remain functional. This suggests a presynaptic inhibitory mechanism that complements the other inhibitory effects of these drugs.


Asunto(s)
Encéfalo , Proteínas de Drosophila , Isoflurano , Proteínas SNARE , Sinapsis , Animales , Sinapsis/efectos de los fármacos , Sinapsis/metabolismo , Sinapsis/fisiología , Femenino , Proteínas SNARE/metabolismo , Isoflurano/farmacología , Encéfalo/metabolismo , Encéfalo/efectos de los fármacos , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Drosophila , Anestésicos por Inhalación/farmacología , Transmisión Sináptica/fisiología , Transmisión Sináptica/efectos de los fármacos , Cuerpos Pedunculados/efectos de los fármacos , Cuerpos Pedunculados/metabolismo , Cuerpos Pedunculados/fisiología
14.
Vet Anaesth Analg ; 51(4): 391-398, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38719760

RESUMEN

OBJECTIVE: To investigate the effect of three different doses of oral pregabalin on minimum alveolar concentration of isoflurane (MACISO) in cats. STUDY DESIGN: Prospective, randomized, placebo-controlled, blinded, crossover trial. ANIMALS: A group of eight healthy adult cats aged 24-48 months. METHODS: Cats were randomly assigned to three oral doses of pregabalin (low dose: 2.5 mg kg-1, medium dose: 5 mg kg-1, high dose: 10 mg kg-1) or placebo 2 hours before MACISO determination, with the multiple treatments administered with a minimum 7 day washout period. Anesthesia was induced and maintained with isoflurane in oxygen until endotracheal intubation was achieved, and maintained with isoflurane with volume-controlled ventilation. MACISO was determined in triplicate using the bracketing technique and tail clamp method 120 minutes after pregabalin or placebo administration. Physiologic variables (including heart rate and blood pressure) recorded during MACISO determination were averaged and compared between the pregabalin and placebo treatments. One-way analysis of variance and the Friedman test were used to assess the difference for normally and non-normally distributed data, respectively. The Tukey test was used as a post hoc analysis. Values of p < 0.05 were considered significant. RESULTS: The MACISO with the medium- and high-dose pregabalin treatments were 1.33 ± 0.21% and 1.23 ± 0.17%, respectively. These were significantly lower than MACISO after placebo treatment (1.62 ± 0.13%; p = 0.014, p < 0.001, respectively), representing a decrease of 18 ± 9% and 24 ± 6%. The mean plasma pregabalin concentration was negatively correlated with MACISO values. Physiologic variables did not differ significantly between treatments. CONCLUSIONS AND CLINICAL RELEVANCE: Doses of 5 or 10 mg kg-1 pregabalin, administered orally 2 hours before determining MACISO, had a significant isoflurane-sparing effect in cats.


Asunto(s)
Anestésicos por Inhalación , Estudios Cruzados , Isoflurano , Pregabalina , Alveolos Pulmonares , Animales , Pregabalina/administración & dosificación , Pregabalina/farmacología , Isoflurano/administración & dosificación , Isoflurano/farmacocinética , Gatos , Anestésicos por Inhalación/administración & dosificación , Anestésicos por Inhalación/farmacocinética , Anestésicos por Inhalación/farmacología , Alveolos Pulmonares/metabolismo , Masculino , Femenino , Administración Oral , Interacciones Farmacológicas , Relación Dosis-Respuesta a Droga , Analgésicos/administración & dosificación , Analgésicos/farmacología , Analgésicos/farmacocinética , Anestesia por Inhalación/veterinaria
15.
Biosci Rep ; 44(6)2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38757914

RESUMEN

Surgeries that require general anesthesia occur in 1.5-2% of gestations. Isoflurane is frequently used because of its lower possibility of affecting fetal growth. Therefore, we examined the isoflurane anesthesia-induced effects on maternal hemodynamic and vascular changes. We hypothesized that isoflurane would enhance endothelium-dependent vasodilation as a consequence of increased nitric oxide and decreased metalloproteinases (MMPs). Female rats (n=28) were randomized into 4 groups (7 rats/group): conscious (non-anesthetized) non-pregnant group, non-pregnant anesthetized group, conscious pregnant group, and pregnant anesthetized group. Anesthesia was performed on the 20th pregnancy day, and hemodynamic parameters were monitored. Nitric oxide metabolites, gelatinolytic activity of MMP-2 and MMP-9, and the vascular function were assessed. Isoflurane caused no significant hemodynamic changes in pregnant compared with non-pregnant anesthetized group. Impaired acetylcholine-induced relaxations were observed only in conscious non-pregnant group (by approximately 62%) versus 81% for other groups. Phenylephrine-induced contractions were greater in endothelium-removed aorta segments of both pregnant groups (with or without isoflurane) compared with non-pregnant groups. Higher nitric oxide metabolites were observed in anesthetized pregnant in comparison with the other groups. Reductions in the 75 kDa activity and concomitant increases in 64 kDa MMP-2 isoforms were observed in aortas of pregnant anesthetized (or not) groups compared with conscious non-pregnant group. Isoflurane anesthesia shows stable effects on hemodynamic parameters and normal MMP-2 activation in pregnancy. Furthermore, there were increases in nitric oxide bioavailability, suggesting that isoflurane provides protective actions to the endothelium in pregnancy.


Asunto(s)
Isoflurano , Metaloproteinasa 2 de la Matriz , Óxido Nítrico , Vasodilatación , Animales , Femenino , Embarazo , Ratas , Anestésicos por Inhalación/farmacología , Endotelio Vascular/efectos de los fármacos , Endotelio Vascular/metabolismo , Hemodinámica/efectos de los fármacos , Isoflurano/farmacología , Metaloproteinasa 2 de la Matriz/metabolismo , Metaloproteinasa 9 de la Matriz/metabolismo , Óxido Nítrico/metabolismo , Vasodilatación/efectos de los fármacos , Ratas Wistar
16.
Neurotox Res ; 42(3): 27, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38819761

RESUMEN

Early and prolonged exposure to anesthetic agents could cause neurodevelopmental disorders in children. Astrocytes, heavily outnumber neurons in the brain, are crucial regulators of synaptic formation and function during development. However, how general anesthetics act on astrocytes and the impact on cognition are still unclear. In this study, we investigated the role of ferroptosis and GPX4, a major hydroperoxide scavenger playing a pivotal role in suppressing the process of ferroptosis, and their underlying mechanism in isoflurane-induced cytotoxicity in astrocytes and cognitive impairment. Our results showed that early 6 h isoflurane anesthesia induced cognitive impairment in mice. Ferroptosis-relative genes and metabolic changes were involved in the pathological process of isoflurane-induced cytotoxicity in astrocytes. The level of GPX4 was decreased while the expression of 4-HNE and generation of ROS were elevated after isoflurane exposure. Selectively blocking ferroptosis with Fer-1 attenuated the abovementioned cytotoxicity in astrocytes, paralleling with the reverse of the changes in GPX4, ROS and 4-HNE secondary to isoflurane anesthesia. Fer-1 attenuated the cognitive impairment induced by prolonged isoflurane exposure. Thus, ferroptosis conduced towards isoflurane-induced cytotoxicity in astrocytes via suppressing GPX4 and promoting lipid peroxidation. Fer-1 was expected to be an underlying intervention for the neurotoxicity induced by isoflurane in the developing brain, and to alleviate cognitive impairment in neonates.


Asunto(s)
Animales Recién Nacidos , Astrocitos , Disfunción Cognitiva , Ferroptosis , Isoflurano , Animales , Astrocitos/efectos de los fármacos , Astrocitos/metabolismo , Isoflurano/toxicidad , Ferroptosis/efectos de los fármacos , Ferroptosis/fisiología , Disfunción Cognitiva/inducido químicamente , Disfunción Cognitiva/prevención & control , Disfunción Cognitiva/metabolismo , Ratones , Anestésicos por Inhalación/toxicidad , Ratones Endogámicos C57BL , Fármacos Neuroprotectores/farmacología , Fosfolípido Hidroperóxido Glutatión Peroxidasa/metabolismo , Especies Reactivas de Oxígeno/metabolismo
17.
Saudi Med J ; 45(5): 468-475, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38734439

RESUMEN

OBJECTIVES: To compare the genotoxic effects of desflurane and propofol using comet assay in patients undergoing elective discectomy surgery. METHODS: This was a randomized controlled study. Patients who underwent elective lumbar discectomy under general anesthesia with propofol or desflurane were included in the study. Venous blood samples were obtained at 4 different time points: 5 minutes before anesthesia induction (T1), 2 hours after the start of anesthesia (T2), the first day after surgery (T3), and the fifth day following surgery (T4). Deoxyribonucleic acid damage in lymphocytes was assessed via the comet assay. RESULTS: A total of 30 patients, 15 in each group, were included in the analysis. The groups were similar in terms of age and gender distribution. There were no significant differences in demographics, duration of surgery, total remifentanil consumption, and total rocuronium bromide consumption. The comet assay revealed that head length, head intensity, tail intensity, tail moment at T1 were similar in the desflurane and propofol groups. Head length, tail length and tail moment measured in the desflurane group at T4 were significantly higher compared to the propofol group. Tail lengths of the desflurane group at T1, T2 and T3 were significantly higher than the corresponding values in the propofol group. CONCLUSION: Propofol and desflurane do not appear to induce DNA damage in lymphocytes. However, when the quantitative data were compared, it was determined that propofol had relatively lower genotoxic potential than desflurane.ClinicalTrials.gov Reg. No.: NCT05185167.


Asunto(s)
Anestésicos por Inhalación , Ensayo Cometa , Daño del ADN , Desflurano , Discectomía , Linfocitos , Propofol , Humanos , Propofol/efectos adversos , Discectomía/métodos , Ensayo Cometa/métodos , Masculino , Linfocitos/efectos de los fármacos , Femenino , Adulto , Persona de Mediana Edad , Anestésicos por Inhalación/efectos adversos , Daño del ADN/efectos de los fármacos , Vértebras Lumbares/cirugía , Anestésicos Intravenosos/efectos adversos , Isoflurano/análogos & derivados , Isoflurano/efectos adversos
18.
Physiol Meas ; 45(5)2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38697205

RESUMEN

Objectives.The purpose of this study is to investigate the age dependence of bilateral frontal electroencephalogram (EEG) coupling characteristics, and find potential age-independent depth of anesthesia monitoring indicators for the elderlies.Approach.We recorded bilateral forehead EEG data from 41 patients (ranged in 19-82 years old), and separated into three age groups: 18-40 years (n= 12); 40-65 years (n= 14), >65 years (n= 15). All these patients underwent desflurane maintained general anesthesia (GA). We analyzed the age-related EEG spectra, phase amplitude coupling (PAC), coherence and phase lag index (PLI) of EEG data in the states of awake, GA, and recovery.Main results.The frontal alpha power shows age dependence in the state of GA maintained by desflurane. Modulation index in slow oscillation-alpha and delta-alpha bands showed age dependence and state dependence in varying degrees, the PAC pattern also became less pronounced with increasing age. In the awake state, the coherence in delta, theta and alpha frequency bands were all significantly higher in the >65 years age group than in the 18-40 years age group (p< 0.05 for three frequency bands). The coherence in alpha-band was significantly enhanced in all age groups in GA (p< 0.01) and then decreased in recovery state. Notably, the PLI in the alpha band was able to significantly distinguish the three states of awake, GA and recovery (p< 0.01) and the results of PLI in delta and theta frequency bands had similar changes to those of coherence.Significance.We found the EEG coupling and synchronization between bilateral forehead are age-dependent. The PAC, coherence and PLI portray this age-dependence. The PLI and coherence based on bilateral frontal EEG functional connectivity measures and PAC based on frontal single-channel are closely associated with anesthesia-induced unconsciousness.


Asunto(s)
Desflurano , Electroencefalografía , Humanos , Desflurano/farmacología , Adulto , Persona de Mediana Edad , Anciano , Electroencefalografía/efectos de los fármacos , Adulto Joven , Masculino , Femenino , Anciano de 80 o más Años , Adolescente , Envejecimiento/fisiología , Envejecimiento/efectos de los fármacos , Lóbulo Frontal/efectos de los fármacos , Lóbulo Frontal/fisiología , Isoflurano/análogos & derivados , Isoflurano/farmacología , Anestésicos por Inhalación/farmacología , Anestesia General
19.
Nutrients ; 16(10)2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38794716

RESUMEN

It has been demonstrated that isoflurane-induced anesthesia can increase the blood glucose level, leading to hyperglycemia and several adverse effects. The administration of a mix of ketone diester (KE) and medium-chain triglyceride (MCT) oil, named KEMCT, abolished the isoflurane-anesthesia-induced increase in blood glucose level and prolonged the recovery time from isoflurane anesthesia in a male preclinical rodent model, Wistar Albino Glaxo/Rijswijk (WAG/Rij) rats. While most preclinical studies use exclusively male animals, our previous study on blood glucose changes in response to KEMCT administration showed that the results can be sex-dependent. Thus, in this study, we investigated female WAG/Rij rats, whether KEMCT gavage (3 g/kg/day for 7 days) can change the isoflurane (3%)-anesthesia-induced increase in blood glucose level and the recovery time from isoflurane-evoked anesthesia using the righting reflex. Moreover, KEMCT-induced ketosis may enhance both the extracellular level of adenosine and the activity of adenosine A1 receptors (A1Rs). To obtain information on the putative A1R mechanism of action, the effects of an A1R antagonist, DPCPX (1,3-dipropyl-8-cyclopentylxanthine; intraperitoneal/i.p. 0.2 mg/kg), on KEMCT-generated influences were also investigated. Our results show that KEMCT supplementation abolished the isoflurane-anesthesia-induced increase in blood glucose level, and this was abrogated by the co-administration of DPCPX. Nevertheless, KEMCT gavage did not change the recovery time from isoflurane-induced anesthesia. We can conclude that intragastric gavage of exogenous ketone supplements (EKSs), such as KEMCT, can abolish the isoflurane-anesthesia-induced increase in blood glucose level in both sexes likely through A1Rs in WAG/Rij rats, while recovery time was not affected in females, unlike in males. These results suggest that the administration of EKSs as an adjuvant therapy may be effective in mitigating metabolic side effects of isoflurane, such as hyperglycemia, in both sexes.


Asunto(s)
Anestésicos por Inhalación , Glucemia , Isoflurano , Cetonas , Animales , Femenino , Isoflurano/farmacología , Isoflurano/administración & dosificación , Glucemia/efectos de los fármacos , Glucemia/metabolismo , Ratas , Cetonas/administración & dosificación , Cetonas/farmacología , Anestésicos por Inhalación/administración & dosificación , Anestésicos por Inhalación/farmacología , Ratas Wistar , Suplementos Dietéticos , Triglicéridos/sangre , Triglicéridos/administración & dosificación , Masculino , Adenosina/farmacología , Adenosina/administración & dosificación , Anestesia/métodos
20.
Ann Card Anaesth ; 27(1): 10-16, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38722115

RESUMEN

BACKGROUND AND OBJECTIVE: Regional analgesia is effective for post-thoracotomy pain. The primary objective of the study is to compare the intraoperative requirement of isoflurane and fentanyl between general anaesthesia (GA) with epidural analgesia and GA with paravertebral analgesia. METHODS AND MATERIAL: A prospective observational comparative study was conducted on 56 patients undergoing open thoracotomy procedures. The patients were divided into two groups of 28 by assigning the study participants alternatively to each group: Group GAE - received thoracic epidural catheterization with GA, and Group GAP - received ultrasound guided thoracic paravertebral catheterization on the operative side with GA. Intraoperative requirement of isoflurane, fentanyl, postoperative analgesia, stress response, need of rescue analgesics and adverse effects were observed and analysed. RESULTS: 25 patients in each group were included in the data analysis. The intraoperative requirement of isoflurane (32.28 ± 1.88 vs 48.31 ± 4.34 ml; p < 0.0001) and fentanyl (128.87 ± 25.12 vs 157 ± 30.92 µg; p = 0.0009) were significantly less in the GAE group than in the GAP group. VAS scores and need of rescue analgesics and blood glucose levels were not statistically significant during the postoperative period (p > 0.05). The incidence of adverse effects was comparable except for hypotension and urinary retention which were significantly higher in the GAE group. CONCLUSION: GA with epidural analgesia resulted in significant reduction in the intraoperative consumption of isoflurane and fentanyl in comparison to GA with paravertebral analgesia. However, both the techniques were equally effective in the postoperative period.


Asunto(s)
Analgesia Epidural , Anestesia General , Fentanilo , Dolor Postoperatorio , Toracotomía , Humanos , Femenino , Masculino , Toracotomía/métodos , Estudios Prospectivos , Persona de Mediana Edad , Anestesia General/métodos , Fentanilo/administración & dosificación , Analgesia Epidural/métodos , Dolor Postoperatorio/prevención & control , Dolor Postoperatorio/tratamiento farmacológico , Adulto , Isoflurano/administración & dosificación , Anestésicos por Inhalación/administración & dosificación , Analgésicos/uso terapéutico , Analgésicos/administración & dosificación , Anciano , Bloqueo Nervioso/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA