RESUMEN
During development, motor neurons originating in the brainstem and spinal cord form elaborate synapses with skeletal muscle fibres1. These neurons release acetylcholine (ACh), which binds to nicotinic ACh receptors (AChRs) on the muscle, initiating contraction. Two types of AChR are present in developing muscle cells, and their differential expression serves as a hallmark of neuromuscular synapse maturation2-4. The structural principles underlying the switch from fetal to adult muscle receptors are unknown. Here, we present high-resolution structures of both fetal and adult muscle nicotinic AChRs, isolated from bovine skeletal muscle in developmental transition. These structures, obtained in the absence and presence of ACh, provide a structural context for understanding how fetal versus adult receptor isoforms are tuned for synapse development versus the all-or-none signalling required for high-fidelity skeletal muscle contraction. We find that ACh affinity differences are driven by binding site access, channel conductance is tuned by widespread surface electrostatics and open duration changes result from intrasubunit interactions and structural flexibility. The structures further reveal pathogenic mechanisms underlying congenital myasthenic syndromes.
Asunto(s)
Envejecimiento , Feto , Desarrollo de Músculos , Músculo Esquelético , Receptores Nicotínicos , Animales , Bovinos , Humanos , Acetilcolina/metabolismo , Envejecimiento/metabolismo , Sitios de Unión , Microscopía por Crioelectrón , Feto/metabolismo , Modelos Moleculares , Contracción Muscular , Músculo Esquelético/citología , Músculo Esquelético/inervación , Músculo Esquelético/metabolismo , Músculo Esquelético/ultraestructura , Síndromes Miasténicos Congénitos/metabolismo , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Isoformas de Proteínas/ultraestructura , Receptores Nicotínicos/química , Receptores Nicotínicos/metabolismo , Receptores Nicotínicos/ultraestructura , Electricidad EstáticaRESUMEN
Human Flower (hFWE) isoforms hFWE1-4 are putative transmembrane (TM) proteins that reportedly mediate fitness comparisons during cell competition through extracellular display of their C-terminal tails. Isoform topology, subcellular localization, and duration of plasma membrane presentation are essential to this function. However, disagreement persists regarding the structure of orthologous fly and mouse FWEs, and experimental evidence for hFWE isoform subcellular localization or membrane structure is lacking. Here, we used AlphaFold2 and subsequent molecular dynamics-based structural predictions to construct epitope-tagged hFWE3 and hFWE4, the most abundant human isoforms, for experimental determination of their structure and internalization dynamics. We demonstrate that hFWE3 resides in the membrane of the endoplasmic reticulum (ER), while hFWE4 partially colocalizes with Rab4-, Rab5-, and Rab11-positive vesicles as well as with the plasma membrane. An array of imaging techniques revealed that hFWE4 positions both N- and C-terminal tails and a loop between second and third TM segments within the cytosol, while small (4-12aa) loops between the first and second and the third and fourth TM segments are either exposed to the extracellular space or within the lumen of cytoplasmic vesicles. Similarly, we found hFWE3 positions both N- and C-terminal tails in the cytosol, while a short loop between TM domains extends into the ER lumen. Finally, we demonstrate that hFWE4 exists only transiently at the cell surface and is rapidly internalized in an AP-2- and dynamin-1-dependent manner. Collectively, these data are consistent with a conserved role for hFWE4 in endocytic processes.
Asunto(s)
Retículo Endoplásmico , Modelos Moleculares , Humanos , Membrana Celular/metabolismo , Membrana Celular/ultraestructura , Endocitosis , Retículo Endoplásmico/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/ultraestructura , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Isoformas de Proteínas/ultraestructura , Vesículas Citoplasmáticas/metabolismo , Vesículas Citoplasmáticas/ultraestructura , Simulación de Dinámica Molecular , Estructura Terciaria de Proteína , Clatrina/metabolismo , Células HEK293RESUMEN
Gasdermins (GSDMs) are pore-forming proteins that play critical roles in host defence through pyroptosis1,2. Among GSDMs, GSDMB is unique owing to its distinct lipid-binding profile and a lack of consensus on its pyroptotic potential3-7. Recently, GSDMB was shown to exhibit direct bactericidal activity through its pore-forming activity4. Shigella, an intracellular, human-adapted enteropathogen, evades this GSDMB-mediated host defence by secreting IpaH7.8, a virulence effector that triggers ubiquitination-dependent proteasomal degradation of GSDMB4. Here, we report the cryogenic electron microscopy structures of human GSDMB in complex with Shigella IpaH7.8 and the GSDMB pore. The structure of the GSDMB-IpaH7.8 complex identifies a motif of three negatively charged residues in GSDMB as the structural determinant recognized by IpaH7.8. Human, but not mouse, GSDMD contains this conserved motif, explaining the species specificity of IpaH7.8. The GSDMB pore structure shows the alternative splicing-regulated interdomain linker in GSDMB as a regulator of GSDMB pore formation. GSDMB isoforms with a canonical interdomain linker exhibit normal pyroptotic activity whereas other isoforms exhibit attenuated or no pyroptotic activity. Overall, this work sheds light on the molecular mechanisms of Shigella IpaH7.8 recognition and targeting of GSDMs and shows a structural determinant in GSDMB critical for its pyroptotic activity.
Asunto(s)
Proteínas Bacterianas , Gasderminas , Proteínas Citotóxicas Formadoras de Poros , Animales , Humanos , Ratones , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/ultraestructura , Sitios de Unión , Secuencia Conservada , Microscopía por Crioelectrón , Proteínas Citotóxicas Formadoras de Poros/química , Proteínas Citotóxicas Formadoras de Poros/metabolismo , Proteínas Citotóxicas Formadoras de Poros/ultraestructura , Dominios Proteicos , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Isoformas de Proteínas/ultraestructura , Piroptosis , Shigella , Especificidad de la Especie , Gasderminas/química , Gasderminas/metabolismo , Gasderminas/ultraestructuraRESUMEN
Cytotoxic lymphocyte-derived granzyme A (GZMA) cleaves GSDMB, a gasdermin-family pore-forming protein1,2, to trigger target cell pyroptosis3. GSDMB and the charter gasdermin family member GSDMD4,5 have been inconsistently reported to be degraded by the Shigella flexneri ubiquitin-ligase virulence factor IpaH7.8 (refs. 6,7). Whether and how IpaH7.8 targets both gasdermins is undefined, and the pyroptosis function of GSDMB has even been questioned recently6,8. Here we report the crystal structure of the IpaH7.8-GSDMB complex, which shows how IpaH7.8 recognizes the GSDMB pore-forming domain. We clarify that IpaH7.8 targets human (but not mouse) GSDMD through a similar mechanism. The structure of full-length GSDMB suggests stronger autoinhibition than in other gasdermins9,10. GSDMB has multiple splicing isoforms that are equally targeted by IpaH7.8 but exhibit contrasting pyroptotic activities. Presence of exon 6 in the isoforms dictates the pore-forming, pyroptotic activity in GSDMB. We determine the cryo-electron microscopy structure of the 27-fold-symmetric GSDMB pore and depict conformational changes that drive pore formation. The structure uncovers an essential role for exon-6-derived elements in pore assembly, explaining pyroptosis deficiency in the non-canonical splicing isoform used in recent studies6,8. Different cancer cell lines have markedly different isoform compositions, correlating with the onset and extent of pyroptosis following GZMA stimulation. Our study illustrates fine regulation of GSDMB pore-forming activity by pathogenic bacteria and mRNA splicing and defines the underlying structural mechanisms.
Asunto(s)
Gasderminas , Proteínas Citotóxicas Formadoras de Poros , Animales , Humanos , Ratones , Línea Celular Tumoral , Microscopía por Crioelectrón , Cristalografía por Rayos X , Gasderminas/química , Gasderminas/genética , Gasderminas/metabolismo , Gasderminas/ultraestructura , Proteínas de Neoplasias/química , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Proteínas de Neoplasias/ultraestructura , Proteínas Citotóxicas Formadoras de Poros/química , Proteínas Citotóxicas Formadoras de Poros/genética , Proteínas Citotóxicas Formadoras de Poros/metabolismo , Proteínas Citotóxicas Formadoras de Poros/ultraestructura , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Isoformas de Proteínas/ultraestructura , Piroptosis , Shigella flexneri , Especificidad de la Especie , Empalme AlternativoRESUMEN
The RAS-RAF pathway is one of the most commonly dysregulated in human cancers1-3. Despite decades of study, understanding of the molecular mechanisms underlying dimerization and activation4 of the kinase RAF remains limited. Recent structures of inactive RAF monomer5 and active RAF dimer5-8 bound to 14-3-39,10 have revealed the mechanisms by which 14-3-3 stabilizes both RAF conformations via specific phosphoserine residues. Prior to RAF dimerization, the protein phosphatase 1 catalytic subunit (PP1C) must dephosphorylate the N-terminal phosphoserine (NTpS) of RAF11 to relieve inhibition by 14-3-3, although PP1C in isolation lacks intrinsic substrate selectivity. SHOC2 is as an essential scaffolding protein that engages both PP1C and RAS to dephosphorylate RAF NTpS11-13, but the structure of SHOC2 and the architecture of the presumptive SHOC2-PP1C-RAS complex remain unknown. Here we present a cryo-electron microscopy structure of the SHOC2-PP1C-MRAS complex to an overall resolution of 3 Å, revealing a tripartite molecular architecture in which a crescent-shaped SHOC2 acts as a cradle and brings together PP1C and MRAS. Our work demonstrates the GTP dependence of multiple RAS isoforms for complex formation, delineates the RAS-isoform preference for complex assembly, and uncovers how the SHOC2 scaffold and RAS collectively drive specificity of PP1C for RAF NTpS. Our data indicate that disease-relevant mutations affect complex assembly, reveal the simultaneous requirement of two RAS molecules for RAF activation, and establish rational avenues for discovery of new classes of inhibitors to target this pathway.
Asunto(s)
Péptidos y Proteínas de Señalización Intracelular , Proteína Fosfatasa 1 , Transducción de Señal , Proteínas ras , Microscopía por Crioelectrón , Guanosina Trifosfato/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intracelular/química , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Complejos Multiproteicos/química , Complejos Multiproteicos/genética , Complejos Multiproteicos/metabolismo , Complejos Multiproteicos/ultraestructura , Mutación , Fosfoserina , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Isoformas de Proteínas/ultraestructura , Proteína Fosfatasa 1/química , Proteína Fosfatasa 1/genética , Proteína Fosfatasa 1/metabolismo , Proteína Fosfatasa 1/ultraestructura , Especificidad por Sustrato , Quinasas raf/metabolismo , Proteínas ras/química , Proteínas ras/genética , Proteínas ras/metabolismo , Proteínas ras/ultraestructuraRESUMEN
The autosomal dominant monogenetic disease neurofibromatosis type 1 (NF1) affects approximately one in 3,000 individuals and is caused by mutations in the NF1 tumour suppressor gene, leading to dysfunction in the protein neurofibromin (Nf1)1,2. As a GTPase-activating protein, a key function of Nf1 is repression of the Ras oncogene signalling cascade. We determined the human Nf1 dimer structure at an overall resolution of 3.3 Å. The cryo-electron microscopy structure reveals domain organization and structural details of the Nf1 exon 23a splicing3 isoform 2 in a closed, self-inhibited, Zn-stabilized state and an open state. In the closed conformation, HEAT/ARM core domains shield the GTPase-activating protein-related domain (GRD) so that Ras binding is sterically inhibited. In a distinctly different, open conformation of one protomer, a large-scale movement of the GRD occurs, which is necessary to access Ras, whereas Sec14-PH reorients to allow interaction with the cellular membrane4. Zn incubation of Nf1 leads to reduced Ras-GAP activity with both protomers in the self-inhibited, closed conformation stabilized by a Zn binding site between the N-HEAT/ARM domain and the GRD-Sec14-PH linker. The transition between closed, self-inhibited states of Nf1 and open states provides guidance for targeted studies deciphering the complex molecular mechanism behind the widespread neurofibromatosis syndrome and Nf1 dysfunction in carcinogenesis.
Asunto(s)
Microscopía por Crioelectrón , Neurofibromina 2/química , Neurofibromina 2/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Empalme Alternativo , Sitios de Unión , Exones , Humanos , Modelos Moleculares , Neurofibromina 1/metabolismo , Neurofibromina 2/ultraestructura , Unión Proteica , Dominios Proteicos , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Isoformas de Proteínas/ultraestructura , Multimerización de Proteína , Estabilidad Proteica , Zinc/metabolismoRESUMEN
The ordered assembly of tau protein into filaments characterizes several neurodegenerative diseases, which are called tauopathies. It was previously reported that, by cryo-electron microscopy, the structures of tau filaments from Alzheimer's disease1,2, Pick's disease3, chronic traumatic encephalopathy4 and corticobasal degeneration5 are distinct. Here we show that the structures of tau filaments from progressive supranuclear palsy (PSP) define a new three-layered fold. Moreover, the structures of tau filaments from globular glial tauopathy are similar to those from PSP. The tau filament fold of argyrophilic grain disease (AGD) differs, instead resembling the four-layered fold of corticobasal degeneration. The AGD fold is also observed in ageing-related tau astrogliopathy. Tau protofilament structures from inherited cases of mutations at positions +3 or +16 in intron 10 of MAPT (the microtubule-associated protein tau gene) are also identical to those from AGD, suggesting that relative overproduction of four-repeat tau can give rise to the AGD fold. Finally, the structures of tau filaments from cases of familial British dementia and familial Danish dementia are the same as those from cases of Alzheimer's disease and primary age-related tauopathy. These findings suggest a hierarchical classification of tauopathies on the basis of their filament folds, which complements clinical diagnosis and neuropathology and also allows the identification of new entities-as we show for a case diagnosed as PSP, but with filament structures that are intermediate between those of globular glial tauopathy and PSP.
Asunto(s)
Microscopía por Crioelectrón , Pliegue de Proteína , Tauopatías/clasificación , Proteínas tau/química , Proteínas tau/ultraestructura , Anciano , Anciano de 80 o más Años , Secuencia de Aminoácidos , Demencia/genética , Dinamarca , Femenino , Humanos , Intrones/genética , Masculino , Persona de Mediana Edad , Modelos Moleculares , Mutación , Isoformas de Proteínas/química , Isoformas de Proteínas/ultraestructura , Parálisis Supranuclear Progresiva , Tauopatías/patología , Reino UnidoRESUMEN
Members of the leucine-rich repeat-containing 8 (LRRC8) protein family, composed of the five LRRC8A-E isoforms, are pore-forming components of the volume-regulated anion channel (VRAC). LRRC8A and at least one of the other LRRC8 isoforms assemble into heteromers to generate VRAC transport activities. Despite the availability of the LRRC8A structures, the structural basis of how LRRC8 isoforms other than LRRC8A contribute to the functional diversity of VRAC has remained elusive. Here, we present the structure of the human LRRC8D isoform, which enables the permeation of organic substrates through VRAC. The LRRC8D homo-hexamer structure displays a two-fold symmetric arrangement, and together with a structure-based electrophysiological analysis, revealed two key features. The pore constriction on the extracellular side is wider than that in the LRRC8A structures, which may explain the increased permeability of organic substrates. Furthermore, an N-terminal helix protrudes into the pore from the intracellular side and may be critical for gating.
Asunto(s)
Transporte Iónico/fisiología , Transducción de Señal , Microscopía por Crioelectrón , Dominios Proteicos , Isoformas de Proteínas/química , Isoformas de Proteínas/ultraestructura , Canales Aniónicos Dependientes del Voltaje/química , Canales Aniónicos Dependientes del Voltaje/ultraestructuraRESUMEN
ß-arrestins (ßarrs) play multifaceted roles in the signaling and regulation of G-protein-coupled receptors (GPCRs) including their desensitization and endocytosis. Recently determined cryo-EM structures of two different GPCRs in complex with ßarr1 provide the first glimpse of GPCR-ßarr engagement and a structural framework to understand their interaction.
Asunto(s)
Receptores Acoplados a Proteínas G/ultraestructura , beta-Arrestinas/metabolismo , beta-Arrestinas/ultraestructura , Arrestinas/metabolismo , Endocitosis/fisiología , Proteínas de Unión al GTP/metabolismo , Humanos , Fosforilación , Unión Proteica , Isoformas de Proteínas/ultraestructura , Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal/fisiología , Relación Estructura-Actividad , beta-Arrestina 1/metabolismo , Arrestina beta 2/metabolismoRESUMEN
Prion-like proteins form multivalent assemblies and phase separate into membraneless organelles. Heterogeneous ribonucleoprotein D-like (hnRNPDL) is a RNA-processing prion-like protein with three alternative splicing (AS) isoforms, which lack none, one, or both of its two disordered domains. It has been suggested that AS might regulate the assembly properties of RNA-processing proteins by controlling the incorporation of multivalent disordered regions in the isoforms. This, in turn, would modulate their activity in the downstream splicing program. Here, we demonstrate that AS controls the phase separation of hnRNPDL, as well as the size and dynamics of its nuclear complexes, its nucleus-cytoplasm shuttling, and amyloidogenicity. Mutation of the highly conserved D378 in the disordered C-terminal prion-like domain of hnRNPDL causes limb-girdle muscular dystrophy 1G. We show that D378H/N disease mutations impact hnRNPDL assembly properties, accelerating aggregation and dramatically reducing the protein solubility in the muscle of Drosophila, suggesting a genetic loss-of-function mechanism for this muscular disorder.
Asunto(s)
Proteínas Amiloidogénicas/metabolismo , Núcleo Celular/metabolismo , Drosophila/genética , Ribonucleoproteína Heterogénea-Nuclear Grupo D/genética , Ribonucleoproteína Heterogénea-Nuclear Grupo D/metabolismo , Distrofia Muscular de Cinturas/genética , Agregación Patológica de Proteínas/metabolismo , Empalme Alternativo , Proteínas Amiloidogénicas/genética , Proteínas Amiloidogénicas/ultraestructura , Animales , Núcleo Celular/efectos de los fármacos , Citoplasma/efectos de los fármacos , Citoplasma/metabolismo , Dactinomicina/farmacología , Drosophila/metabolismo , Técnicas de Inactivación de Genes , Células HeLa , Ribonucleoproteína Heterogénea-Nuclear Grupo D/ultraestructura , Humanos , Cinética , Microscopía Electrónica de Transmisión , Células Musculares/metabolismo , Células Musculares/patología , Distrofia Muscular de Cinturas/metabolismo , Mutación , Agregación Patológica de Proteínas/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Isoformas de Proteínas/ultraestructuraRESUMEN
Drosophila melanogaster is a powerful system for characterizing alternative myosin isoforms and modeling muscle diseases, but high-resolution structures of fruit fly contractile proteins have not been determined. Here we report the first x-ray crystal structure of an insect myosin: the D melanogaster skeletal muscle myosin II embryonic isoform (EMB). Using our system for recombinant expression of myosin heavy chain (MHC) proteins in whole transgenic flies, we prepared and crystallized stable proteolytic S1-like fragments containing the entire EMB motor domain bound to an essential light chain. We solved the x-ray crystal structure by molecular replacement and refined the resulting model against diffraction data to 2.2 Å resolution. The protein is captured in two slightly different renditions of the rigor-like conformation with a citrate of crystallization at the nucleotide binding site and exhibits structural features common to myosins of diverse classes from all kingdoms of life. All atom molecular dynamics simulations on EMB in its nucleotide-free state and a derivative homology model containing 61 amino acid substitutions unique to the indirect flight muscle isoform (IFI) suggest that differences in the identity of residues within the relay and the converter that are encoded for by MHC alternative exons 9 and 11, respectively, directly contribute to increased mobility of these regions in IFI relative to EMB. This suggests the possibility that alternative folding or conformational stability within these regions contribute to the observed functional differences in Drosophila EMB and IFI myosins.
Asunto(s)
Cadenas Pesadas de Miosina/ultraestructura , Cadenas Ligeras de Miosina/ultraestructura , Isoformas de Proteínas/ultraestructura , Miosinas del Músculo Esquelético/ultraestructura , Secuencia de Aminoácidos/genética , Animales , Cristalografía por Rayos X , Drosophila melanogaster/química , Drosophila melanogaster/ultraestructura , Simulación de Dinámica Molecular , Miofibrillas/genética , Miofibrillas/ultraestructura , Cadenas Pesadas de Miosina/química , Cadenas Pesadas de Miosina/genética , Cadenas Ligeras de Miosina/química , Cadenas Ligeras de Miosina/genética , Dominios Proteicos/genética , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Estructura Terciaria de Proteína , Miosinas del Músculo Esquelético/química , Miosinas del Músculo Esquelético/genéticaRESUMEN
C-reactive protein (CRP) is a major human acute-phase reactant that is composed of five identical subunits. CRP dissociates into subunits at inflammatory loci forming monomeric CRP (mCRP) with substantially enhanced activities, which can be further activated by reducing the intra-subunit disulfide bond. However, conformational changes underlying the activation process of CRP are less well understood. Conformational changes accompanying the conversion of CRP to mCRP with or without reduction were examined with circular dichroism spectroscopy, fluorescence spectroscopy, electron microscopy, size-exclusion chromatography, and neoepitope expression. The conversion of CRP to mCRP follows a two-stage process. In the first stage, CRP dissociates into molten globular subunits characterized by intact secondary structure elements with greatly impaired tertiary packing. In the second stage, these intermediates completely lose their native subunit conformation and assemble into high-order aggregates. The inclusion of reductant accelerates the formation of molten globular subunits in the first step and promotes the formation of more compact aggregates in the second stage. We further show a significant contribution of electrostatic interactions to the stabilization of native CRP. The conformational features of dissociated subunits and the aggregation of mCRP may have a key impact on their activities.
Asunto(s)
Proteína C-Reactiva/química , Disulfuros/química , Proteína C-Reactiva/ultraestructura , Relación Dosis-Respuesta a Droga , Humanos , Microscopía Electrónica/métodos , Microscopía Fluorescente/métodos , Isoformas de Proteínas/química , Isoformas de Proteínas/ultraestructura , Estabilidad Proteica/efectos de los fármacos , Subunidades de Proteína/química , Urea/farmacologíaRESUMEN
Upstream binding transcription factor (UBTF) is a co-regulator of RNA polymerase I by constituting an initiation complex on rRNA genes. UBTF plays a role in rDNA bending and its maintenance in "open" state. It exists as two splicing variants, UBTF1 and UBTF2, which cannot be discerned with antibodies raised against UBTF. We investigated the ultrastructural localization of each variant in cells synthesizing GFP-tagged UBTF1 or UBTF2 by using anti-GFP antibodies and pre-embedding nanogold strategy. Detailed 3D distribution of UBTF1 and 2 was also studied by electron tomography. In control cells, the two isoforms are very abundant within fibrillar centers, but their repartition strongly differs. Electron tomography shows that UBTF1 is disposed as fibrils that are folded in coils whereas UBTF2 is localized homogenously, preferentially at their cortical area. As UBTF is a useful marker to trace rDNA genes, we used these data to improve our previous model of 3D organization of active transcribing rDNA gene within fibrillar centers. Finally, when rRNA synthesis is inhibited during actinomycin D treatment or entry in mitosis, UBTF1 and UBTF2 show a similar distribution along extended 3D loop-like structures. Altogether these data suggest new roles for UBTF1 and UBTF2 isoforms in the organization of active and inactive rDNA genes.
Asunto(s)
Tomografía con Microscopio Electrónico/métodos , Proteínas del Complejo de Iniciación de Transcripción Pol1/metabolismo , Isoformas de Proteínas/metabolismo , Isoformas de Proteínas/ultraestructura , Línea Celular , Humanos , Microscopía Fluorescente , Proteínas del Complejo de Iniciación de Transcripción Pol1/genéticaRESUMEN
Tropomyosins (Tpm) determine the functional capacity of actin filaments in an isoform-specific manner. The primary isoform in cancer cells is Tpm3.1 and compounds that target Tpm3.1 show promising results as anti-cancer agents both in vivo and in vitro. We have determined the molecular mechanism of interaction of the lead compound ATM-3507 with Tpm3.1-containing actin filaments. When present during co-polymerization of Tpm3.1 with actin, 3H-ATM-3507 is incorporated into the filaments and saturates at approximately one molecule per Tpm3.1 dimer and with an apparent binding affinity of approximately 2 µM. In contrast, 3H-ATM-3507 is poorly incorporated into preformed Tpm3.1/actin co-polymers. CD spectroscopy and thermal melts using Tpm3.1 peptides containing the C-terminus, the N-terminus, and a combination of the two forming the overlap junction at the interface of adjacent Tpm3.1 dimers, show that ATM-3507 shifts the melting temperature of the C-terminus and the overlap junction, but not the N-terminus. Molecular dynamic simulation (MDS) analysis predicts that ATM-3507 integrates into the 4-helix coiled coil overlap junction and in doing so, likely changes the lateral movement of Tpm3.1 across the actin surface resulting in an alteration of filament interactions with actin binding proteins and myosin motors, consistent with the cellular impact of ATM-3507.
Asunto(s)
Citoesqueleto de Actina/metabolismo , Antineoplásicos/farmacología , Tropomiosina/antagonistas & inhibidores , Antineoplásicos/química , Antineoplásicos/uso terapéutico , Dicroismo Circular , Cristalografía por Rayos X , Humanos , Simulación de Dinámica Molecular , Neoplasias/tratamiento farmacológico , Conformación Proteica en Hélice alfa/efectos de los fármacos , Dominios Proteicos/genética , Isoformas de Proteínas/antagonistas & inhibidores , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Isoformas de Proteínas/ultraestructura , Multimerización de Proteína/efectos de los fármacos , Multimerización de Proteína/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/ultraestructura , Relación Estructura-Actividad , Termodinámica , Tropomiosina/metabolismo , Tropomiosina/ultraestructuraRESUMEN
Our studies reveal that the oral colonizer and cause of infective endocarditis Streptococcus oralis subsp. dentisani displays a striking monolateral distribution of surface fibrils. Furthermore, our data suggest that these fibrils impact the structure of adherent bacterial chains. Mutagenesis studies indicate that these fibrils are dependent on three serine-rich repeat proteins (SRRPs), here named fibril-associated protein A (FapA), FapB, and FapC, and that each SRRP forms a different fibril with a distinct distribution. SRRPs are a family of bacterial adhesins that have diverse roles in adhesion and that can bind to different receptors through modular nonrepeat region domains. Amino acid sequence and predicted structural similarity searches using the nonrepeat regions suggested that FapA may contribute to interspecies interactions, that FapA and FapB may contribute to intraspecies interactions, and that FapC may contribute to sialic acid binding. We demonstrate that a fapC mutant was significantly reduced in binding to saliva. We confirmed a role for FapC in sialic acid binding by demonstrating that the parental strain was significantly reduced in adhesion upon addition of a recombinantly expressed, sialic acid-specific, carbohydrate binding module, while the fapC mutant was not reduced. However, mutation of a residue previously shown to be essential for sialic acid binding did not decrease bacterial adhesion, leaving the precise mechanism of FapC-mediated adhesion to sialic acid to be defined. We also demonstrate that the presence of any one of the SRRPs is sufficient for efficient biofilm formation. Similar structures were observed on all infective endocarditis isolates examined, suggesting that this distribution is a conserved feature of this S. oralis subspecies.
Asunto(s)
Proteínas Bacterianas/ultraestructura , Biopelículas/crecimiento & desarrollo , Saliva/metabolismo , Ácidos Siálicos/metabolismo , Streptococcus oralis/genética , Secuencia de Aminoácidos , Adhesión Bacteriana , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Endocarditis Bacteriana/microbiología , Endocarditis Bacteriana/patología , Expresión Génica , Humanos , Mutación , Unión Proteica , Dominios Proteicos , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Isoformas de Proteínas/ultraestructura , Saliva/química , Ácidos Siálicos/química , Streptococcus oralis/química , Streptococcus oralis/metabolismoRESUMEN
Light-sensitive G protein-coupled receptors (GPCRs)-rhodopsins-absorb photons to isomerize their covalently bound retinal, triggering conformational changes that result in downstream signaling cascades. Monostable rhodopsins release retinal upon isomerization as opposed to the retinal in bistable rhodopsins that "reisomerize" upon absorption of a second photon. Understanding the mechanistic differences between these light-sensitive GPCRs has been hindered by the scarcity of recombinant models of the latter. Here, we reveal the high-resolution crystal structure of a recombinant bistable rhodopsin, jumping spider rhodopsin-1, bound to the inverse agonist 9-cis retinal. We observe a water-mediated network around the ligand hinting toward the basis of their bistable nature. In contrast to bovine rhodopsin (monostable), the transmembrane bundle of jumping spider rhodopsin-1 as well that of the bistable squid rhodopsin adopts a more "activation-ready" conformation often observed in other nonphotosensitive class A GPCRs. These similarities suggest the role of jumping spider rhodopsin-1 as a potential model system in the study of the structure-function relationship of both photosensitive and nonphotosensitive class A GPCRs.
Asunto(s)
Proteínas de Artrópodos/ultraestructura , Rodopsina/ultraestructura , Transducción de Señal/efectos de la radiación , Arañas , Animales , Proteínas de Artrópodos/aislamiento & purificación , Proteínas de Artrópodos/metabolismo , Cristalografía por Rayos X , Células HEK293 , Humanos , Ligandos , Luz , Simulación de Dinámica Molecular , Isoformas de Proteínas/aislamiento & purificación , Isoformas de Proteínas/metabolismo , Isoformas de Proteínas/ultraestructura , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/ultraestructura , Rodopsina/aislamiento & purificación , Rodopsina/metabolismo , Estereoisomerismo , Relación Estructura-ActividadRESUMEN
Elastin is an essential structural protein in the extracellular matrix of vertebrates. It is the core component of elastic fibers, which enable connective tissues such as those of the skin, lungs or blood vessels to stretch and recoil. This function is provided by elastin's exceptional properties, which mainly derive from a unique covalent cross-linking between hydrophilic lysine-rich motifs of units of the monomeric precursor tropoelastin. To date, elastin's cross-linking is poorly investigated. Here, we purified elastin from human tissue and cleaved it into soluble peptides using proteases with different specificities. We then analyzed elastin's molecular structure by identifying unmodified residues, post-translational modifications and cross-linked peptides by high-resolution mass spectrometry and amino acid analysis. The data revealed the presence of multiple isoforms in parallel and a complex and heterogeneous molecular interconnection. We discovered that the same lysine residues in different monomers were simultaneously involved in various cross-link types or remained unmodified. Furthermore, both types of cross-linking domains, Lys-Pro and Lys-Ala domains, participate not only in bifunctional inter- but also in intra-domain cross-links. We elucidated the sequences of several desmosine-containing peptides and the contribution of distinct domains such as 6, 14 and 25. In contrast to earlier assumptions proposing that desmosine cross-links are formed solely between two domains, we elucidated the structure of a peptide that proves a desmosine formation with participation of three Lys-Ala domains. In summary, these results provide new and detailed insights into the cross-linking process, which takes place within and between human tropoelastin units in a stochastic manner.
Asunto(s)
Elastina/química , Lisina/química , Péptidos/química , Tropoelastina/química , Secuencia de Aminoácidos/genética , Desmosina/química , Tejido Elástico/química , Tejido Elástico/ultraestructura , Elastina/ultraestructura , Matriz Extracelular/química , Matriz Extracelular/ultraestructura , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Espectrometría de Masas , Estructura Molecular , Isoformas de Proteínas/química , Isoformas de Proteínas/ultraestructura , Procesamiento Proteico-Postraduccional/genética , Piel/química , Tropoelastina/ultraestructuraRESUMEN
Apolipoprotein E4 (ApoE4) is one of three (E2, E3 and E4) human isoforms of an α-helical, 299-amino-acid protein. Homozygosity for the ε4 allele is the major genetic risk factor for developing late-onset Alzheimer's disease (AD). ApoE2, ApoE3 and ApoE4 differ at amino acid positions 112 and 158, and these sequence variations may confer conformational differences that underlie their participation in the risk of developing AD. Here, we compared the shape, oligomerization state, conformation and stability of ApoE isoforms using a range of complementary biophysical methods including small-angle x-ray scattering, analytical ultracentrifugation, circular dichroism, x-ray fiber diffraction and transmission electron microscopy We provide an in-depth and definitive study demonstrating that all three proteins are similar in stability and conformation. However, we show that ApoE4 has a propensity to polymerize to form wavy filaments, which do not share the characteristics of cross-ß amyloid fibrils. Moreover, we provide evidence for the inhibition of ApoE4 fibril formation by ApoE3. This study shows that recombinant ApoE isoforms show no significant differences at the structural or conformational level. However, self-assembly of the ApoE4 isoform may play a role in pathogenesis, and these results open opportunities for uncovering new triggers for AD onset.
Asunto(s)
Enfermedad de Alzheimer/metabolismo , Amiloide/metabolismo , Apolipoproteína E4/metabolismo , Enfermedad de Alzheimer/etiología , Enfermedad de Alzheimer/patología , Amiloide/química , Amiloide/ultraestructura , Apolipoproteína E4/química , Apolipoproteína E4/ultraestructura , Humanos , Conformación Proteica , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Isoformas de Proteínas/ultraestructura , Multimerización de Proteína , Estabilidad Proteica , Factores de RiesgoRESUMEN
Human apolipoprotein E (apoE) is a major component of lipoprotein particles, and under physiological conditions, is involved in plasma cholesterol transport. Human apolipoprotein E found in three isoforms (E2; E3; E4) is a member of a family of apolipoproteins that under pathological conditions are detected in extracellular amyloid depositions in several amyloidoses. Interestingly, the lipid-free apoE form has been shown to be co-localized with the amyloidogenic Aß peptide in amyloid plaques in Alzheimer's disease, whereas in particular, the apoE4 isoform is a crucial risk factor for late-onset Alzheimer's disease. Evidence at the experimental level proves that apoE self-assembles into amyloid fibrilsin vitro, although the misfolding mechanism has not been clarified yet. Here, we explored the mechanistic insights of apoE misfolding by testing short apoE stretches predicted as amyloidogenic determinants by AMYLPRED, and we computationally investigated the dynamics of apoE and an apoE-Αß complex. Our in vitro biophysical results prove that apoE peptide-analogues may act as the driving force needed to trigger apoE aggregation and are supported by the computational apoE outcome. Additional computational work concerning the apoE-Αß complex also designates apoE amyloidogenic regions as important binding sites for oligomeric Αß; taking an important step forward in the field of Alzheimer's anti-aggregation drug development.
Asunto(s)
Enfermedad de Alzheimer/genética , Péptidos beta-Amiloides/química , Amiloidosis/genética , Apolipoproteínas E/química , Enfermedad de Alzheimer/patología , Amiloide/química , Amiloide/genética , Amiloide/ultraestructura , Péptidos beta-Amiloides/genética , Péptidos beta-Amiloides/ultraestructura , Amiloidosis/patología , Apolipoproteínas E/ultraestructura , Sitios de Unión , Colesterol/química , Colesterol/genética , Humanos , Placa Amiloide/genética , Placa Amiloide/patología , Placa Amiloide/ultraestructura , Agregación Patológica de Proteínas/genética , Agregación Patológica de Proteínas/patología , Pliegue de Proteína , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/ultraestructuraRESUMEN
Green fluorescent protein (GFP) is amenable to recombinant expression in various kinds of cells and is widely used in life science research. We found that the recombinant expression of GFPuv, a commonly-used mutant of GFP, in E. coli produced two distinct molecular species as judged by in-gel fluorescence SDS-PAGE. These molecular species, namely form I and II, could be separately purified by anion-exchange chromatography without any remarkable differences in the fluorescence spectra. Mass spectrometric analyses revealed that the molecular mass of form I is almost the same as the calculated value, while that of form II is approximately 1 Da larger than that of form I. Further mass spectrometric top-down sequencing pinpointed the modification in GFPuv form II, where the ε-amino group of the C-terminal Lys238 residue is converted into the hydroxyl group. No equivalent modification was observed in the native GFP in jellyfish Aequorea victoria, suggesting that this modification is not physiologically relevant. Crystal structure analysis of the two species verified the structural identity of the backbone and the vicinity of the chromophore. The modification found in this study may also be generated in other GFP variants as well as in other recombinant expression systems.