Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.939
Filtrar
1.
Biomolecules ; 14(5)2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38785999

RESUMEN

Recently, the vascular protective effect of anti-diabetic agents has been receiving much attention. Sodium glucose cotransporter 2 (SGLT2) inhibitors had demonstrated reductions in cardiovascular (CV) events. However, the therapeutic effect of dapagliflozin on angiogenesis in peripheral arterial disease was unclear. This study aimed to explore the effect and mechanism of dapagliflozin on angiogenesis after hindlimb ischemia. We first evaluated the effect of dapagliflozin on post-ischemic angiogenesis in the hindlimbs of rats. Laser doppler imaging was used to detect the hindlimb blood perfusion. In addition, we used immunohistochemistry to detect the density of new capillaries after ischemia. The relevant signaling pathways of dapagliflozin affecting post-ischemic angiogenesis were screened through phosphoproteomic detection, and then the mechanism of dapagliflozin affecting post-ischemic angiogenesis was verified at the level of human umbilical vein endothelial cells (HUVECs). After subjection to excision of the left femoral artery, all rats were randomly distributed into two groups: the dapagliflozin group (left femoral artery resection, receiving intragastric feeding with dapagliflozin (1 mg/kg/d), for 21 consecutive days) and the model group, that is, the positive control group (left femoral artery resection, receiving intragastric feeding with citric acid-sodium citrate buffer solution (1 mg/kg/d), for 21 consecutive days). In addition, the control group, that is the negative control group (without left femoral artery resection, receiving intragastric feeding with citric acid-sodium citrate buffer solution (1 mg/kg/d), for 21 consecutive days) was added. At day 21 post-surgery, the dapagliflozin-treatment group had the greatest blood perfusion, accompanied by elevated capillary density. The results showed that dapagliflozin could promote angiogenesis after hindlimb ischemia. Then, the ischemic hindlimb adductor-muscle tissue samples from three rats of model group and dapagliflozin group were taken for phosphoproteomic testing. The results showed that the PI3K-Akt-eNOS signaling pathway was closely related to the effect of dapagliflozin on post-ischemic angiogenesis. Our study intended to verify this mechanism from the perspective of endothelial cells. In vitro, dapagliflozin enhanced the tube formation, migration, and proliferation of HUVECs under ischemic and hypoxic conditions. Additionally, the dapagliflozin administration upregulated the expression of angiogenic factors phosphorylated Akt (p-Akt) and phosphorylated endothelial nitric oxide synthase (p-eNOS), as well as vascular endothelial growth factor A (VEGFA), both in vivo and in vitro. These benefits could be blocked by either phosphoinositide 3-kinase (PI3K) or eNOS inhibitor. dapagliflozin could promote angiogenesis after ischemia. This effect might be achieved by promoting the activation of the PI3K-Akt-eNOS signaling pathway. This study provided a new perspective, new ideas, and a theoretical basis for the treatment of peripheral arterial disease.


Asunto(s)
Compuestos de Bencidrilo , Glucósidos , Miembro Posterior , Células Endoteliales de la Vena Umbilical Humana , Isquemia , Neovascularización Fisiológica , Óxido Nítrico Sintasa de Tipo III , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Transducción de Señal , Animales , Glucósidos/farmacología , Compuestos de Bencidrilo/farmacología , Miembro Posterior/irrigación sanguínea , Óxido Nítrico Sintasa de Tipo III/metabolismo , Isquemia/tratamiento farmacológico , Isquemia/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Ratas , Humanos , Transducción de Señal/efectos de los fármacos , Masculino , Neovascularización Fisiológica/efectos de los fármacos , Ratas Sprague-Dawley , Angiogénesis
2.
Nature ; 629(8012): 660-668, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38693258

RESUMEN

Ischaemic diseases such as critical limb ischaemia and myocardial infarction affect millions of people worldwide1. Transplanting endothelial cells (ECs) is a promising therapy in vascular medicine, but engrafting ECs typically necessitates co-transplanting perivascular supporting cells such as mesenchymal stromal cells (MSCs), which makes clinical implementation complicated2,3. The mechanisms that enable MSCs to facilitate EC engraftment remain elusive. Here we show that, under cellular stress, MSCs transfer mitochondria to ECs through tunnelling nanotubes, and that blocking this transfer impairs EC engraftment. We devised a strategy to artificially transplant mitochondria, transiently enhancing EC bioenergetics and enabling them to form functional vessels in ischaemic tissues without the support of MSCs. Notably, exogenous mitochondria did not integrate into the endogenous EC mitochondrial pool, but triggered mitophagy after internalization. Transplanted mitochondria co-localized with autophagosomes, and ablation of the PINK1-Parkin pathway negated the enhanced engraftment ability of ECs. Our findings reveal a mechanism that underlies the effects of mitochondrial transfer between mesenchymal and endothelial cells, and offer potential for a new approach for vascular cell therapy.


Asunto(s)
Células Endoteliales , Células Madre Mesenquimatosas , Mitocondrias , Mitofagia , Proteínas Quinasas , Ubiquitina-Proteína Ligasas , Animales , Mitocondrias/metabolismo , Ratones , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Células Endoteliales/metabolismo , Células Endoteliales/citología , Humanos , Ubiquitina-Proteína Ligasas/metabolismo , Masculino , Proteínas Quinasas/metabolismo , Autofagosomas/metabolismo , Isquemia/metabolismo , Isquemia/terapia , Isquemia/patología , Femenino , Metabolismo Energético , Trasplante de Células Madre Mesenquimatosas , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Ratones Endogámicos C57BL
3.
Biochem Biophys Res Commun ; 716: 150002, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38697011

RESUMEN

Type 2 diabetes mellitus (T2DM) significantly impairs the functionality and number of endothelial progenitor cells (EPCs) and resident endothelial cells, critical for vascular repair and regeneration, exacerbating the risk of vascular complications. GLP-1 receptor agonists, like dulaglutide, have emerged as promising therapeutic agents due to their multifaceted effects, including the enhancement of EPC activity and protection of endothelial cells. This study investigates dulaglutide's effects on peripheral blood levels of CD34+ and CD133+ cells in a mouse model of lower limb ischemia and its protective mechanisms against high-glucose-induced damage in endothelial cells. Results demonstrated that dulaglutide significantly improves blood flow, reduces tissue damage and inflammation in ischemic limbs, and enhances glycemic control. Furthermore, dulaglutide alleviated high-glucose-induced endothelial cell damage, evident from improved tube formation, reduced reactive oxygen species accumulation, and restored endothelial junction integrity. Mechanistically, dulaglutide mitigated mitochondrial fission in endothelial cells under high-glucose conditions, partly through maintaining SIRT1 expression, which is crucial for mitochondrial dynamics. This study reveals the potential of dulaglutide as a therapeutic option for vascular complications in T2DM patients, highlighting its role in improving endothelial function and mitochondrial integrity.


Asunto(s)
Diabetes Mellitus Experimental , Células Progenitoras Endoteliales , Péptidos Similares al Glucagón , Glucosa , Fragmentos Fc de Inmunoglobulinas , Dinámicas Mitocondriales , Proteínas Recombinantes de Fusión , Sirtuina 1 , Animales , Fragmentos Fc de Inmunoglobulinas/farmacología , Péptidos Similares al Glucagón/análogos & derivados , Péptidos Similares al Glucagón/farmacología , Péptidos Similares al Glucagón/uso terapéutico , Sirtuina 1/metabolismo , Dinámicas Mitocondriales/efectos de los fármacos , Células Progenitoras Endoteliales/efectos de los fármacos , Células Progenitoras Endoteliales/metabolismo , Proteínas Recombinantes de Fusión/farmacología , Masculino , Ratones , Glucosa/metabolismo , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/patología , Ratones Endogámicos C57BL , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patología , Hipoglucemiantes/farmacología , Humanos , Isquemia/metabolismo , Isquemia/tratamiento farmacológico , Isquemia/patología
4.
Sci Rep ; 14(1): 11372, 2024 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-38762650

RESUMEN

The aim of this study was to identify angiogenic microRNAs (miRNAs) that could be used in the treatment of hindlimb ischemic tissues. miRNAs contained in extracellular vesicles (EVs) deriving from the plasma were analyzed in C57BL/6 mice, which have ischemia tolerance, and in BALB/c mice without ischemia tolerance as part of a hindlimb ischemia model; as a result 43 angiogenic miRNA candidates were identified. An aortic ring assay was employed by using femoral arteries isolated from BALC/c mice and EVs containing miRNA; as a result, the angiogenic miRNA candidates were limited to 14. The blood flow recovery was assessed after injecting EVs containing miRNA into BALB/c mice with hindlimb ischemia, and miR-709 was identified as a promising angiogenic miRNA. miR-709-encapsulating EVs were found to increase the expression levels of the fibroblast growth factor 2 (FGF2) mRNA in the thigh tissues of hindlimb ischemia model BALB/c mice. miR-709 was also found to bind to the 3'UTR of glycogen synthase kinase 3 beta (GSK3B) in three places. GSK3B-knockdown human artery-derived endothelial cells were found to express high levels of FGF2, and were characterized by increased cell proliferation. These findings indicate that miR-709 induces an upregulation of FGF2 through the downregulation of GSK3B.


Asunto(s)
Factor 2 de Crecimiento de Fibroblastos , Glucógeno Sintasa Quinasa 3 beta , Miembro Posterior , Isquemia , Ratones Endogámicos BALB C , MicroARNs , Neovascularización Fisiológica , Animales , Humanos , Masculino , Ratones , Regiones no Traducidas 3' , Proliferación Celular , Modelos Animales de Enfermedad , Regulación hacia Abajo , Células Endoteliales/metabolismo , Vesículas Extracelulares/metabolismo , Factor 2 de Crecimiento de Fibroblastos/metabolismo , Factor 2 de Crecimiento de Fibroblastos/genética , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Glucógeno Sintasa Quinasa 3 beta/genética , Miembro Posterior/irrigación sanguínea , Isquemia/metabolismo , Isquemia/genética , Ratones Endogámicos C57BL , MicroARNs/genética , MicroARNs/metabolismo , Neovascularización Fisiológica/genética , Regulación hacia Arriba
5.
PLoS One ; 19(5): e0303758, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38768136

RESUMEN

Nitric oxide (NO) promotes angiogenesis via various mechanisms; however, the effective transmission of NO in ischemic diseases is unclear. Herein, we tested whether NO-releasing nanofibers modulate therapeutic angiogenesis in an animal hindlimb ischemia model. Male wild-type C57BL/6 mice with surgically-induced hindlimb ischemia were treated with NO-releasing 3-methylaminopropyltrimethoxysilane (MAP3)-derived or control (i.e., non-NO-releasing) nanofibers, by applying them to the wound for 20 min, three times every two days. The amount of NO from the nanofiber into tissues was assessed by NO fluorometric assay. The activity of cGMP-dependent protein kinase (PKG) was determined by western blot analysis. Perfusion ratios were measured 2, 4, and 14 days after inducing ischemia using laser doppler imaging. On day 4, Immunohistochemistry (IHC) with F4/80 and gelatin zymography were performed. IHC with CD31 was performed on day 14. To determine the angiogenic potential of NO-releasing nanofibers, aorta-ring explants were treated with MAP3 or control fiber for 20 min, and the sprout lengths were examined after 6 days. As per either LDPI (Laser doppler perfusion image) ratio or CD31 capillary density measurement, angiogenesis in the ischemic hindlimb was improved in the MAP3 nanofiber group; further, the total nitrate/nitrite concentration in the adduct muscle increased. The number of macrophage infiltrations and matrix metalloproteinase-9 (MMP-9) activity decreased. Vasodilator-stimulated phosphoprotein (VASP), one of the major substrates for PKG, increased phosphorylation in the MAP3 group. MAP3 nanofiber or NO donor SNAP (s-nitroso-n-acetyl penicillamine)-treated aortic explants showed enhanced sprouting in an ex vivo aortic ring assay, which was partially abrogated by KT5823, a potent inhibitor of PKG. These findings suggest that the novel NO-releasing nanofiber, MAP3 activates PKG and promotes therapeutic angiogenesis in response to hindlimb ischemia.


Asunto(s)
Proteínas Quinasas Dependientes de GMP Cíclico , Miembro Posterior , Isquemia , Ratones Endogámicos C57BL , Nanofibras , Neovascularización Fisiológica , Óxido Nítrico , Animales , Nanofibras/química , Masculino , Óxido Nítrico/metabolismo , Isquemia/tratamiento farmacológico , Isquemia/metabolismo , Proteínas Quinasas Dependientes de GMP Cíclico/metabolismo , Ratones , Miembro Posterior/irrigación sanguínea , Neovascularización Fisiológica/efectos de los fármacos , Metaloproteinasa 9 de la Matriz/metabolismo , Fosfoproteínas/metabolismo , Proteínas de Microfilamentos/metabolismo , Moléculas de Adhesión Celular
6.
Acta Cir Bras ; 39: e391724, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38629650

RESUMEN

PURPOSE: To investigate inflammation and cell adhesion molecules in the vagina after ovarian ischemia-reperfusion (IR) injury. METHODS: 20 Wistar albino female rats were divided into two groups: control, and IR groups. In IR group, blood flow was restricted for 2 hours for ovarian ischemia. Then, tissues were re-blood 2 hours for reperfusion. Vagina tissues were excised and processed for histopathological analysis. Histopathological and biochemical follow-ups were performed. RESULTS: Both malondialdehyde and myeloperoxidase values were increased in IR group compared to control group. Glutathione content was decreased in IR group compared to control group. Epithelial degeneration, inflammation, dilatation, and nuclear factor-κB (NF-κB) expression were increased in IR group compared to control group. E-cadherin expression was significantly decreased in IR group. In the IR group, E-cadherin showed a positive reaction in adenomas, gland-like cryptic structures, cellular junctions with clustered inflammatory cells. In the IR group, NF-κB expression was increased in basement membrane, inflammatory cells, in blood vessels. CONCLUSIONS: Ovarian ischemia caused degeneration of epithelial cells in the vaginal region and disruptions in the cell junction complex, which leads to activation of E-cadherin and NF-κB signaling pathway and alterations in reproductive and embryonal development in the vaginal region.


Asunto(s)
Cadherinas , FN-kappa B , Daño por Reperfusión , Animales , Femenino , Ratas , Cadherinas/metabolismo , Inflamación , Isquemia/metabolismo , FN-kappa B/metabolismo , Ratas Wistar , Daño por Reperfusión/patología , Ovario/patología , Vagina/metabolismo , Vagina/patología
7.
Int J Mol Med ; 53(5)2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38577949

RESUMEN

Several studies have shown that berberine (BBR) is effective in protecting against myocardial ischemia­reperfusion injury (MI/RI). However, the precise molecular mechanism remains elusive. The present study observed the mechanism and the safeguarding effect of BBR against hypoxia/reoxygenation (H/R) myocardial injury in H9c2 cells. BBR pretreatment significantly improved the decrease of cell viability, P62 protein, Rho Family GTPase 3 (RhoE) protein, ubiquinone subunit B8 protein, ubiquinol­cytochrome c reductase core protein U, the Bcl­2­associated X protein/B­cell lymphoma 2 ratio, glutathione (GSH) and the GSH/glutathione disulphide (GSSG) ratio induced by H/R, while reducing the increase in lactate dehydrogenase, microtubule­associated protein 1 light 3 protein, caspase­3 activity, reactive oxygen species, GSSG and malonaldehyde caused by H/R. Transmission electron microscopy and LysoTracker Red DND­99 staining results showed that BBR pretreatment inhibited H/R­induced excessive autophagy by mediating RhoE. BBR also inhibited mitochondrial permeability transition, maintained the stability of the mitochondrial membrane potential, reduced the apoptotic rate, and increased the level of caspase­3. However, the protective effects of BBR were attenuated by pAD/RhoE­small hairpin RNA, rapamycin (an autophagy activator) and compound C (an AMP­activated protein kinase inhibitor). These new findings suggested that BBR protects the myocardium from MI/RI by inhibiting excessive autophagy, maintaining mitochondrial function, improving the energy supply and redox homeostasis, and attenuating apoptosis through the RhoE/AMP­activated protein kinase pathway.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Autofagia , Berberina , Daño por Reperfusión Miocárdica , Proteínas Quinasas Activadas por AMP/metabolismo , Apoptosis , Berberina/farmacología , Caspasa 3/metabolismo , Disulfuro de Glutatión/metabolismo , Isquemia/metabolismo , Daño por Reperfusión Miocárdica/tratamiento farmacológico , Daño por Reperfusión Miocárdica/prevención & control , Daño por Reperfusión Miocárdica/etiología , Miocardio/patología , Miocitos Cardíacos/metabolismo , Animales , Ratas
8.
FASEB J ; 38(8): e23585, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38661043

RESUMEN

Fractional laser ablation is a technique developed in dermatology to induce remodeling of skin scars by creating a dense pattern of microinjuries. Despite remarkable clinical results, this technique has yet to be tested for scars in other tissues. As a first step toward determining the suitability of this technique, we aimed to (1) characterize the response to microinjuries in the healthy and cirrhotic liver, and (2) determine the underlying cause for any differences in response. Healthy and cirrhotic rats were treated with a fractional laser then euthanized from 0 h up to 14 days after treatment. Differential expression was assessed using RNAseq with a difference-in-differences model. Spatial maps of tissue oxygenation were acquired with hyperspectral imaging and disruptions in blood supply were assessed with tomato lectin perfusion. Healthy rats showed little damage beyond the initial microinjury and healed completely by 7 days without scarring. In cirrhotic rats, hepatocytes surrounding microinjury sites died 4-6 h after ablation, resulting in enlarged and heterogeneous zones of cell death. Hepatocytes near blood vessels were spared, particularly near the highly vascularized septa. Gene sets related to ischemia and angiogenesis were enriched at 4 h. Laser-treated regions had reduced oxygen saturation and broadly disrupted perfusion of nodule microvasculature, which matched the zones of cell death. Our results demonstrate that the cirrhotic liver has an exacerbated response to microinjuries and increased susceptibility to ischemia from microvascular damage, likely related to the vascular derangements that occur during cirrhosis development. Modifications to the fractional laser tool, such as using a femtosecond laser or reducing the spot size, may be able to prevent large disruptions of perfusion and enable further development of a laser-induced microinjury treatment for cirrhosis.


Asunto(s)
Isquemia , Cirrosis Hepática , Animales , Ratas , Cirrosis Hepática/metabolismo , Cirrosis Hepática/patología , Masculino , Isquemia/metabolismo , Isquemia/patología , Hígado/metabolismo , Hígado/patología , Terapia por Láser/métodos , Ratas Sprague-Dawley , Hepatocitos/metabolismo
9.
J Am Heart Assoc ; 13(9): e029880, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38639336

RESUMEN

BACKGROUND: Cellular therapies have been investigated to improve blood flow and prevent amputation in peripheral artery disease with limited efficacy in clinical trials. Alginate-encapsulated mesenchymal stromal cells (eMSCs) demonstrated improved retention and survival and promoted vascular generation in murine hind limb ischemia through their secretome, but large animal evaluation is necessary for human applicability. We sought to determine the efficacy of eMSCs for peripheral artery disease-induced limb ischemia through assessment in our durable swine hind limb ischemia model. METHODS AND RESULTS: Autologous bone marrow eMSCs or empty alginate capsules were intramuscularly injected 2 weeks post-hind limb ischemia establishment (N=4/group). Improvements were quantified for 4 weeks through walkway gait analysis, contrast angiography, blood pressures, fluorescent microsphere perfusion, and muscle morphology and histology. Capsules remained intact with mesenchymal stromal cells retained for 4 weeks. Adenosine-induced perfusion deficits and muscle atrophy in ischemic limbs were significantly improved by eMSCs versus empty capsules (mean±SD, 1.07±0.19 versus 0.41±0.16, P=0.002 for perfusion ratios and 2.79±0.12 versus 1.90±0.62 g/kg, P=0.029 for ischemic muscle mass). Force- and temporal-associated walkway parameters normalized (ratio, 0.63±0.35 at week 3 versus 1.02±0.19 preligation; P=0.17), and compensatory footfall patterning was diminished in eMSC-administered swine (12.58±8.46% versus 34.85±15.26%; P=0.043). Delivery of eMSCs was associated with trending benefits in collateralization, local neovascularization, and muscle fibrosis. Hypoxia-cultured porcine mesenchymal stromal cells secreted vascular endothelial growth factor and tissue inhibitor of metalloproteinase 2. CONCLUSIONS: This study demonstrates the promise of the mesenchymal stromal cell secretome at improving peripheral artery disease outcomes and the potential for this novel swine model to serve as a component of the preclinical pipeline for advanced therapies.


Asunto(s)
Alginatos , Modelos Animales de Enfermedad , Miembro Posterior , Isquemia , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas , Animales , Trasplante de Células Madre Mesenquimatosas/métodos , Miembro Posterior/irrigación sanguínea , Células Madre Mesenquimatosas/metabolismo , Isquemia/fisiopatología , Isquemia/terapia , Isquemia/metabolismo , Porcinos , Neovascularización Fisiológica , Enfermedad Arterial Periférica/terapia , Enfermedad Arterial Periférica/fisiopatología , Enfermedad Arterial Periférica/patología , Inyecciones Intramusculares , Flujo Sanguíneo Regional , Músculo Esquelético/irrigación sanguínea , Investigación Biomédica Traslacional , Células Cultivadas
10.
Eur Rev Med Pharmacol Sci ; 28(7): 2817-2826, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38639521

RESUMEN

OBJECTIVE: Testicular ischemia-reperfusion induced by testicular torsion-detorsion increases the level of reactive oxygen species, leading to testicular damage. Allicin, one of the most active ingredients in garlic, is a significant exogenous antioxidant. In the research, the efficacy of allicin in treating testicular ischemia-reperfusion injury was assessed. MATERIALS AND METHODS: The study included sixty Sprague-Dawley male rats. Three groups with 20 rats per group were created as follows: control group, testicular ischemia/reperfusion-induced group, and testicular ischemia-reperfusion plus treatment with allicin group. The control group underwent a sham operation of the left testis without other interventions. In the testicular ischemia/reperfusion-induced group, rat left testis was subjected to 720° torsion for two hours and then detorsion. In the allicin-treated group, in addition to testicular ischemia-reperfusion, 50 mg/kg of allicin was injected intraperitoneally, starting immediately following detorsion. Testicular tissue samples were obtained to measure the protein expression of xanthine oxidase, which is a major source of reactive oxygen species formation, malondialdehyde level (a reliable marker of reactive oxygen species), and testicular spermatogenic function. RESULTS: Testicular ischemia-reperfusion significantly increased the expression of xanthine oxidase and malondialdehyde levels in ipsilateral testes while reducing testicular spermatogenic function. The expression of xanthine oxidase and malondialdehyde levels were significantly lower in ipsilateral testes, whereas testicular spermatogenic function in the allicin-treated group was significantly higher compared with those in the testicular ischemia-reperfusion group. CONCLUSIONS: Our findings indicate that allicin administration improves ischemia/reperfusion-induced testicular damage by limiting reactive oxygen species generation via inhibition of xanthine oxidase expression.


Asunto(s)
Disulfuros , Daño por Reperfusión , Torsión del Cordón Espermático , Ácidos Sulfínicos , Ratas , Masculino , Animales , Humanos , Torsión del Cordón Espermático/tratamiento farmacológico , Torsión del Cordón Espermático/complicaciones , Torsión del Cordón Espermático/metabolismo , Ratas Sprague-Dawley , Xantina Oxidasa/metabolismo , Xantina Oxidasa/farmacología , Especies Reactivas de Oxígeno/metabolismo , Testículo , Daño por Reperfusión/metabolismo , Antioxidantes/farmacología , Isquemia/metabolismo , Malondialdehído/metabolismo
11.
Cell Commun Signal ; 22(1): 223, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38594728

RESUMEN

BACKGROUND: Autophagy is a lysosome-dependent degradation pathway that regulates macrophage activation, differentiation, and polarization. Autophagy related 5 (Atg5) is a key protein involved in phagocytic membrane elongation in autophagic vesicles that forms a complex with Atg12 and Atg16L1. Alterations in Atg5 are related to both acute and chronic kidney diseases in experimental models. However, the role of macrophage-expressed Atg5 in acute kidney injury remains unclear. METHODS: Using a myeloid cell-specific Atg5 knockout (MΦ atg5-/-) mouse, we established renal ischemia/reperfusion and unilateral ureteral obstruction models to evaluate the role of macrophage Atg5 in renal macrophage migration and fibrosis. RESULTS: Based on changes in the serum urea nitrogen and creatinine levels, Atg5 deletion had a minimal effect on renal function in the early stages after mild injury; however, MΦ atg5-/- mice had reduced renal fibrosis and reduced macrophage recruitment after 4 weeks of ischemia/reperfusion injury and 2 weeks of unilateral ureteral obstruction injury. Atg5 deficiency impaired the CCL20-CCR6 axis after severe ischemic kidneys. Chemotactic responses of bone marrow-derived monocytes (BMDMs) from MΦ atg5-/- mice to CCL20 were significantly attenuated compared with those of wild-type BMDMs, and this might be caused by the inhibition of PI3K, AKT, and ERK1/2 activation. CONCLUSIONS: Our data indicate that Atg5 deficiency decreased macrophage migration by impairing the CCL20-CCR6 axis and inhibited M2 polarization, thereby improving kidney fibrosis.


Asunto(s)
Obstrucción Ureteral , Animales , Ratones , Proteína 5 Relacionada con la Autofagia/metabolismo , Fibrosis , Isquemia/metabolismo , Riñón/metabolismo , Macrófagos/metabolismo , Ratones Endogámicos C57BL , Receptores CCR6/metabolismo , Obstrucción Ureteral/complicaciones , Obstrucción Ureteral/metabolismo , Obstrucción Ureteral/patología
12.
Fluids Barriers CNS ; 21(1): 35, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38622710

RESUMEN

Early breach of the blood-brain barrier (BBB) and consequently extravasation of blood-borne substances into the brain parenchyma is a common hallmark of ischemic stroke. Although BBB breakdown is associated with an increased risk of cerebral hemorrhage and poor clinical prognosis, the cause and mechanism of this process are largely unknown. The aim of this study was to establish an imaging and analysis protocol which enables investigation of the dynamics of BBB breach in relation to hemodynamic properties along the arteriovenous axis. Using longitudinal intravital two-photon imaging following photothrombotic induction of ischemic stroke through a cranial window, we were able to study the response of the cerebral vasculature to ischemia, from the early critical hours to the days/weeks after the infarct. We demonstrate that disruption of the BBB and hemodynamic parameters, including perturbed blood flow, can be studied at single-vessel resolution in the three-dimensional space as early as 30 min after vessel occlusion. Further, we show that this protocol permits longitudinal studies on the response of individual blood vessels to ischemia over time, thus enabling detection of (maladaptive) vascular remodeling such as intussusception, angiogenic sprouting and entanglement of vessel networks. Taken together, this in vivo two-photon imaging and analysis protocol will be useful in future studies investigating the molecular and cellular mechanisms, and the spatial contribution, of BBB breach to disease progression which might ultimately aid the development of new and more precise treatment strategies for ischemic stroke.


Asunto(s)
Isquemia Encefálica , Accidente Cerebrovascular Isquémico , Accidente Cerebrovascular , Humanos , Barrera Hematoencefálica/metabolismo , Accidente Cerebrovascular/metabolismo , Isquemia Encefálica/diagnóstico por imagen , Isquemia Encefálica/metabolismo , Isquemia/metabolismo
13.
Eur J Pharmacol ; 974: 176621, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38679118

RESUMEN

BACKGROUND AND AIM: Necrosis of random-pattern flaps restricts their application in clinical practice. Puerarin has come into focus due to its promising therapeutic effects in ischemic diseases. Here, we employed Puerarin and investigated its role and potential mechanisms in flap survival. EXPERIMENTAL PROCEDURE: The effect of Puerarin on the viability of human umbilical vein endothelial cells (HUVECs) was assessed by CCK-8, EdU staining, migration, and scratch assays. Survival area measurement and laser Doppler blood flow (LDBF) were utilized to assess the viability of ischemic injury flaps. Levels of molecules related to oxidative stress, pyroptosis, autophagy, transcription factor EB (TFEB), and the AMPK-TRPML1-Calcineurin signaling pathway were detected using western blotting, immunofluorescence, dihydroethidium (DHE) staining, RT-qPCR and Elisa. KEY RESULTS: The findings demonstrated that Puerarin enhanced the survivability of ischemic flaps. Autophagy, oxidative stress, and pyroptosis were implicated in the ability of Puerarin in improving flap survival. Increased autophagic flux and augmented tolerance to oxidative stress contribute to Puerarin's suppression of pyroptosis. Additionally, Puerarin modulated the activity of TFEB through the AMPK-TRPML1-Calcineurin signaling pathway, thereby enhancing autophagic flux. CONCLUSIONS AND IMPLICATIONS: Puerarin promoted flap survival from ischemic injury through upregulation of TFEB-mediated autophagy and inhibition of oxidative stress. Our findings offered valuable support for the clinical application of Puerarin in the treatment of ischemic diseases, including random-pattern flaps.


Asunto(s)
Autofagia , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice , Células Endoteliales de la Vena Umbilical Humana , Isquemia , Isoflavonas , Piroptosis , Especies Reactivas de Oxígeno , Isoflavonas/farmacología , Isoflavonas/uso terapéutico , Autofagia/efectos de los fármacos , Humanos , Piroptosis/efectos de los fármacos , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Isquemia/tratamiento farmacológico , Isquemia/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Animales , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Masculino , Estrés Oxidativo/efectos de los fármacos , Colgajos Quirúrgicos/irrigación sanguínea , Ratones , Transducción de Señal/efectos de los fármacos , Piel/efectos de los fármacos , Piel/metabolismo , Piel/irrigación sanguínea , Piel/patología
14.
Int J Mol Sci ; 25(6)2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38542330

RESUMEN

Angiogenesis is a critical physiological response to ischemia but becomes pathological when dysregulated and driven excessively by inflammation. We recently identified a novel angiogenic role for tripartite-motif-containing protein 2 (TRIM2) whereby lentiviral shRNA-mediated TRIM2 knockdown impaired endothelial angiogenic functions in vitro. This study sought to determine whether these effects could be translated in vivo and to determine the molecular mechanisms involved. CRISPR/Cas9-generated Trim2-/- mice that underwent a periarterial collar model of inflammation-induced angiogenesis exhibited significantly less adventitial macrophage infiltration relative to wildtype (WT) littermates, concomitant with decreased mRNA expression of macrophage marker Cd68 and reduced adventitial proliferating neovessels. Mechanistically, TRIM2 knockdown in endothelial cells in vitro attenuated inflammation-driven induction of critical angiogenic mediators, including nuclear HIF-1α, and curbed the phosphorylation of downstream effector eNOS. Conversely, in a hindlimb ischemia model of hypoxia-mediated angiogenesis, there were no differences in blood flow reperfusion to the ischemic hindlimbs of Trim2-/- and WT mice despite a decrease in proliferating neovessels and arterioles. TRIM2 knockdown in vitro attenuated hypoxia-driven induction of nuclear HIF-1α but had no further downstream effects on other angiogenic proteins. Our study has implications for understanding the role of TRIM2 in the regulation of angiogenesis in both pathophysiological contexts.


Asunto(s)
Angiogénesis , Células Endoteliales , Animales , Ratones , Células Endoteliales/metabolismo , Miembro Posterior/irrigación sanguínea , Hipoxia/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Inflamación/metabolismo , Isquemia/metabolismo , Neovascularización Patológica/metabolismo , Neovascularización Fisiológica/genética
15.
Cells ; 13(5)2024 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-38474360

RESUMEN

Embolism, hyperglycemia, high intraocular pressure-induced increased reactive oxygen species (ROS) production, and microglial activation result in endothelial/retinal ganglion cell death. Here, we conducted in vitro and in vivo ischemia/reperfusion (I/R) efficacy studies of a hybrid antioxidant-nitric oxide donor small molecule, SA-10, to assess its therapeutic potential for ocular stroke. METHODS: To induce I/R injury and inflammation, we subjected R28 and primary microglial cells to oxygen glucose deprivation (OGD) for 6 h in vitro or treated these cells with a cocktail of TNF-α, IL-1ß and IFN-γ for 1 h, followed by the addition of SA-10 (10 µM). Inhibition of microglial activation, ROS scavenging, cytoprotective and anti-inflammatory activities were measured. In vivo I/R-injured mouse retinas were treated with either PBS or SA-10 (2%) intravitreally, and pattern electroretinogram (ERG), spectral-domain optical coherence tomography, flash ERG and retinal immunocytochemistry were performed. RESULTS: SA-10 significantly inhibited microglial activation and inflammation in vitro. Compared to the control, the compound SA-10 significantly attenuated cell death in both microglia (43% vs. 13%) and R28 cells (52% vs. 17%), decreased ROS (38% vs. 68%) production in retinal microglia cells, preserved neural retinal function and increased SOD1 in mouse eyes. CONCLUSION: SA-10 is protective to retinal neurons by decreasing oxidative stress and inflammatory cytokines.


Asunto(s)
Daño por Reperfusión , Células Ganglionares de la Retina , Ratones , Animales , Especies Reactivas de Oxígeno/metabolismo , Células Ganglionares de la Retina/metabolismo , Daño por Reperfusión/metabolismo , Isquemia/metabolismo , Antiinflamatorios/uso terapéutico , Inflamación/metabolismo , Reperfusión
16.
Biomed Pharmacother ; 173: 116407, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38460367

RESUMEN

Acute kidney injury frequently occurs after cardiac surgery, and is primarily attributed to renal ischemia-reperfusion (I/R) injury and inflammation from surgery and cardiopulmonary bypass. Vitamin C, an antioxidant that is often depleted in critically ill patients, could potentially mitigate I/R-induced oxidative stress at high doses. We investigated the effectiveness of high-dose vitamin C in preventing I/R-induced renal injury. The ideal time and optimal dosage for administration were determined in a two-phase experiment on Sprague-Dawley rats. The rats were assigned to four groups: sham, IRC (I/R + saline), and pre- and post-vitC (vitamin C before and after I/R, respectively), with vitamin C administered at 200 mg/kg. Additional groups were examined for dose modification based on the optimal timing determined: V100, V200, and V300 (100, 200, and 300 mg/kg, respectively). Renal I/R was achieved through 45 min of ischemia followed by 24 h of reperfusion. Vitamin C administration during reperfusion significantly reduced renal dysfunction and tubular damage, more than pre-ischemic administration. Doses of 100 and 200 mg/kg during reperfusion reduced oxidative stress markers, including myeloperoxidase and inflammatory responses by decreasing high mobility group box 1 release and nucleotide-binding and oligomerization domain-like receptor 3 inflammasome. Overall beneficial effect was most prominent with 200 mg/kg. The 300 mg/kg dose, however, showed no additional benefits over the IRC group regarding serum blood urea nitrogen and creatinine levels and histological evaluation. During reperfusion, high-dose vitamin C administration (200 mg/kg) significantly decreased renal I/R injury by effectively attenuating the major triggers of oxidative stress and inflammation.


Asunto(s)
Lesión Renal Aguda , Antineoplásicos , Daño por Reperfusión , Humanos , Ratas , Animales , Ratas Sprague-Dawley , Riñón , Estrés Oxidativo , Lesión Renal Aguda/metabolismo , Ácido Ascórbico/farmacología , Ácido Ascórbico/uso terapéutico , Ácido Ascórbico/metabolismo , Daño por Reperfusión/patología , Antineoplásicos/farmacología , Inflamación/metabolismo , Isquemia/metabolismo , Creatinina
17.
Arterioscler Thromb Vasc Biol ; 44(6): 1225-1245, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38511325

RESUMEN

BACKGROUND: Restoring the capacity of endothelial progenitor cells (EPCs) to promote angiogenesis is the major therapeutic strategy of diabetic peripheral artery disease. The aim of this study was to investigate the effects of GLP-1 (glucagon-like peptide 1; 32-36)-an end product of GLP-1-on angiogenesis of EPCs and T1DM (type 1 diabetes) mice, as well as its interaction with the classical GLP-1R (GLP-1 receptor) pathway and its effect on mitochondrial metabolism. METHODS: In in vivo experiments, we conducted streptozocin-induced type 1 diabetic mice as a murine model of unilateral hind limb ischemia to examine the therapeutic potential of GLP-1(32-36) on angiogenesis. We also generated Glp1r-/- mice to detect whether GLP-1R is required for angiogenic function of GLP-1(32-36). In in vitro experiments, EPCs isolated from the mouse bone marrow and human umbilical cord blood samples were used to detect GLP-1(32-36)-mediated angiogenic capability under high glucose treatment. RESULTS: We demonstrated that GLP-1(32-36) did not affect insulin secretion but could significantly rescue angiogenic function and blood perfusion in ischemic limb of streptozocin-induced T1DM mice, a function similar to its parental GLP-1. We also found that GLP-1(32-36) promotes angiogenesis in EPCs exposed to high glucose. Specifically, GLP-1(32-36) has a causal role in improving fragile mitochondrial function and metabolism via the GLP-1R-mediated pathway. We further demonstrated that GLP-1(32-36) rescued diabetic ischemic lower limbs by activating the GLP-1R-dependent eNOS (endothelial NO synthase)/cGMP/PKG (protein kinase G) pathway. CONCLUSIONS: Our study provides a novel mechanism with which GLP-1(32-36) acts in modulating metabolic reprogramming toward glycolytic flux in partnership with GLP-1R for improved angiogenesis in high glucose-exposed EPCs and T1DM murine models. We propose that GLP-1(32-36) could be used as a monotherapy or add-on therapy with existing treatments for peripheral artery disease. REGISTRATION: URL: www.ebi.ac.uk/metabolights/; Unique identifier: MTBLS9543.


Asunto(s)
Diabetes Mellitus Experimental , Células Progenitoras Endoteliales , Péptido 1 Similar al Glucagón , Receptor del Péptido 1 Similar al Glucagón , Glucólisis , Miembro Posterior , Isquemia , Ratones Endogámicos C57BL , Ratones Noqueados , Neovascularización Fisiológica , Transducción de Señal , Animales , Isquemia/tratamiento farmacológico , Isquemia/fisiopatología , Isquemia/metabolismo , Receptor del Péptido 1 Similar al Glucagón/metabolismo , Receptor del Péptido 1 Similar al Glucagón/agonistas , Neovascularización Fisiológica/efectos de los fármacos , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/metabolismo , Glucólisis/efectos de los fármacos , Péptido 1 Similar al Glucagón/análogos & derivados , Péptido 1 Similar al Glucagón/farmacología , Humanos , Miembro Posterior/irrigación sanguínea , Masculino , Células Progenitoras Endoteliales/metabolismo , Células Progenitoras Endoteliales/efectos de los fármacos , Angiopatías Diabéticas/metabolismo , Angiopatías Diabéticas/fisiopatología , Angiopatías Diabéticas/tratamiento farmacológico , Angiopatías Diabéticas/etiología , Óxido Nítrico Sintasa de Tipo III/metabolismo , Diabetes Mellitus Tipo 1/tratamiento farmacológico , Diabetes Mellitus Tipo 1/metabolismo , Células Cultivadas , Inductores de la Angiogénesis/farmacología , Fragmentos de Péptidos/farmacología , Ratones , Músculo Esquelético/irrigación sanguínea , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/metabolismo , Modelos Animales de Enfermedad , Incretinas/farmacología , Angiogénesis
18.
Mol Metab ; 83: 101923, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38521183

RESUMEN

OBJECTIVES: We have previously shown that lactate is an essential metabolite for macrophage polarisation during ischemia-induced muscle regeneration. Recent in vitro work has implicated histone lactylation, a direct derivative of lactate, in macrophage polarisation. Here, we explore the in vivo relevance of histone lactylation for macrophage polarisation after muscle injury. METHODS: To evaluate macrophage dynamics during muscle regeneration, we subjected mice to ischemia-induced muscle damage by ligating the femoral artery. Muscle samples were harvested at 1, 2, 4, and 7 days post injury (dpi). CD45+CD11b+F4/80+CD64+ macrophages were isolated and processed for RNA sequencing, Western Blotting, and CUT&Tag-sequencing to investigate gene expression, histone lactylation levels, and histone lactylation genomic localisation and enrichment, respectively. RESULTS: We show that, over time, macrophages in the injured muscle undergo extensive gene expression changes, which are similar in nature and in timing to those seen after other types of muscle-injuries. We find that the macrophage histone lactylome is modified between 2 and 4 dpi, which is a crucial window for macrophage polarisation. Absolute histone lactylation levels increase, and, although subtly, the genomic enrichment of H3K18la changes. Overall, we find that histone lactylation is important at both promoter and enhancer elements. Lastly, H3K18la genomic profile changes from 2 to 4 dpi were predictive for gene expression changes later in time, rather than being a reflection of prior gene expression changes. CONCLUSIONS: Our results suggest that histone lactylation dynamics are functionally important for the function of macrophages during muscle regeneration.


Asunto(s)
Histonas , Isquemia , Macrófagos , Ratones Endogámicos C57BL , Músculo Esquelético , Regeneración , Animales , Macrófagos/metabolismo , Ratones , Histonas/metabolismo , Músculo Esquelético/metabolismo , Isquemia/metabolismo , Masculino , Expresión Génica/genética
19.
Cells ; 13(6)2024 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-38534369

RESUMEN

Activin A is known to impede tubular repair following renal ischemia, whereas exogenous follistatin, an activin A antagonist, has been shown to ameliorate kidney damage in rats. Despite these findings, the precise role of endogenous follistatin in the kidney has yet to be elucidated. In this study, we investigated the localization of follistatin in the normal human kidney and its potential utility as a marker for acute kidney injury (AKI). In a total of 118 AKI patients and 16 healthy adults, follistatin levels in serum and urine were quantified using ELISA, and correlations with clinical parameters were analyzed. Follistatin-producing cells were positive for Na-Cl co-transporter and uromodulin, but negative for aquaporin 1 and aquaporin 2. Unlike healthy adults, urinary follistatin significantly increased in AKI patients, correlating positively with AKI severity. Urinary follistatin levels were notably higher in patients needing renal replacement therapy. Significant correlations were observed with urinary protein, α1 microglobulin, and urinary NGAL, but not with urinary KIM-1, urinary L-FABP, urinary NAG, urinary ß2 microglobulin, or serum creatinine. Interestingly, no correlation between urinary and serum follistatin levels was identified, indicating a renal origin for urinary follistatin. In conclusion, follistatin, produced by distal tubules, is detectable in the urine of AKI patients, suggesting its potential as a valuable marker for monitoring acute tubular damage severity in AKI.


Asunto(s)
Lesión Renal Aguda , Folistatina , Adulto , Animales , Humanos , Ratas , Creatinina , Folistatina/metabolismo , Isquemia/metabolismo , Riñón/metabolismo
20.
Int Immunopharmacol ; 131: 111853, 2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38503014

RESUMEN

Acute lung injury (ALI) is a common postoperative complication, particularly in pediatric patients after liver transplantation. Hepatic ischemia-reperfusion (HIR) increases the release of exosomes (IR-Exos) in peripheral circulation. However, the role of IR-Exos in the pathogenesis of ALI induced by HIR remains unclear. Here, we explored the role of exosomes derived from the HIR-injured liver in ALI development. Intravenous injection of IR-Exos caused lung inflammation in naive rats, whereas pretreatment with an inhibitor of exosomal secretion (GW4869) attenuated HIR-related lung injury. In vivo and in vitro results show that IR-Exos promoted proinflammatory responses and M1 macrophage polarization. Furthermore, miRNA profiling of serum identified miR-122-5p as the exosomal miRNA with the highest increase in young rats with HIR compared with controls. Additionally, IR-Exos transferred miR-122-5p to macrophages and promoted proinflammatory responses and M1 phenotype polarization by targeting suppressor of cytokine signaling protein 1(SOCS-1)/nuclear factor (NF)-κB. Importantly, the pathological role of exosomal miR-122-5p in initiating lung inflammation was reversed by inhibition of miR-122-5p. Clinically, high levels of miR-122-5p were found in serum and correlated to the severity of lung injury in pediatric living-donor liver transplant recipients with ALI. Taken together, our findings reveal that IR-Exos transfer liver-specific miR-122-5p to alveolar macrophages and elicit ALI by inducing M1 macrophage polarization via the SOCS-1/NF-κB signaling pathway.


Asunto(s)
Lesión Pulmonar Aguda , Exosomas , Trasplante de Hígado , MicroARNs , Neumonía , Daño por Reperfusión , Humanos , Ratas , Animales , Niño , Macrófagos Alveolares/metabolismo , Exosomas/metabolismo , Donadores Vivos , MicroARNs/genética , MicroARNs/metabolismo , Lesión Pulmonar Aguda/metabolismo , Daño por Reperfusión/metabolismo , Isquemia/metabolismo , Neumonía/metabolismo , Hígado/patología , FN-kappa B/metabolismo , Reperfusión
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA