Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.037
Filtrar
1.
Chembiochem ; 22(9): 1668-1675, 2021 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-33403742

RESUMEN

Kanamycin A is the major 2-deoxystreptamine (2DOS)-containing aminoglycoside antibiotic produced by Streptomyces kanamyceticus. The 2DOS moiety is linked with 6-amino-6-deoxy-d-glucose (6ADG) at O-4 and 3-amino-3-deoxy-d-glucose at O-6. Because the 6ADG moiety is derived from d-glucosamine (GlcN), deamination at C-2 and introduction of C-6-NH2 are required in the biosynthesis. A dehydrogenase, KanQ, and an aminotransferase, KanB, are presumed to be responsible for the introduction of C-6-NH2 , although the substrates have not been identified. Here, we examined the substrate specificity of KanQ to better understand the biosynthetic pathway. It was found that KanQ oxidized kanamycin C more efficiently than the 3''-deamino derivative. Furthermore, the substrate specificity of an oxygenase, KanJ, that is responsible for deamination at C-2 of the GlcN moiety was examined, and the crystal structure of KanJ was determined. It was found that C-6-NH2 is important for substrate recognition by KanJ. Thus, the modification of the GlcN moiety occurs after pseudo-trisaccharide formation, followed by the introduction of C-6-NH2 by KanQ/KanB and deamination at C-2 by KanJ.


Asunto(s)
Antibacterianos/metabolismo , Kanamicina/biosíntesis , Polisacáridos/química , Antibacterianos/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Glicosilación , Kanamicina/análogos & derivados , Cinética , Oxidorreductasas/genética , Oxidorreductasas/metabolismo , Streptomyces/enzimología , Especificidad por Sustrato , Transaminasas/genética , Transaminasas/metabolismo
2.
FEBS J ; 288(4): 1366-1386, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-32592631

RESUMEN

Kanamycin A is an aminoglycoside antibiotic isolated from Streptomyces kanamyceticus and used against a wide spectrum of bacteria, including Mycobacterium tuberculosis. Biosynthesis of kanamycin involves an oxidative deamination step catalyzed by kanamycin B dioxygenase (KanJ), thereby the C2' position of kanamycin B is transformed into a keto group upon release of ammonia. Here, we present for the first time, structural models of KanJ with several ligands, which along with the results of ITC binding assays and HPLC activity tests explain substrate specificity of the enzyme. The large size of the binding pocket suggests that KanJ can accept a broad range of substrates, which was confirmed by activity tests. Specificity of the enzyme with respect to its substrate is determined by the hydrogen bond interactions between the methylamino group of the antibiotic and highly conserved Asp134 and Cys150 as well as between hydroxyl groups of the substrate and Asn120 and Gln80. Upon antibiotic binding, the C terminus loop is significantly rearranged and Gln80 and Asn120, which are directly involved in substrate recognition, change their conformations. Based on reaction energy profiles obtained by density functional theory (DFT) simulations, we propose a mechanism of ketone formation involving the reactive FeIV  = O and proceeding either via OH rebound, which yields a hemiaminal intermediate or by abstraction of two hydrogen atoms, which leads to an imine species. At acidic pH, the latter involves a lower barrier than the OH rebound, whereas at basic pH, the barrier leading to an imine vanishes completely. DATABASES: Structural data are available in PDB database under the accession numbers: 6S0R, 6S0T, 6S0U, 6S0W, 6S0V, 6S0S. Diffraction images are available at the Integrated Resource for Reproducibility in Macromolecular Crystallography at http://proteindiffraction.org under DOIs: 10.18430/m36s0t, 10.18430/m36s0u, 10.18430/m36s0r, 10.18430/m36s0s, 10.18430/m36s0v, 10.18430/m36s0w. A data set collection of computational results is available in the Mendeley Data database under DOI: 10.17632/sbyzssjmp3.1 and in the ioChem-BD database under DOI: 10.19061/iochem-bd-4-18.


Asunto(s)
Proteínas Bacterianas/metabolismo , Dioxigenasas/metabolismo , Kanamicina/análogos & derivados , Streptomyces/enzimología , Aminoglicósidos/química , Aminoglicósidos/metabolismo , Antibacterianos/química , Antibacterianos/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Biocatálisis , Secuencia de Carbohidratos , Dominio Catalítico , Cristalografía por Rayos X , Dioxigenasas/química , Dioxigenasas/genética , Kanamicina/química , Kanamicina/metabolismo , Cinética , Simulación de Dinámica Molecular , Datos de Secuencia Molecular , Unión Proteica , Conformación Proteica , Streptomyces/genética , Especificidad por Sustrato
3.
Microbiologyopen ; 8(6): e00747, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30449069

RESUMEN

Kanamycin B as the secondary metabolite of wild-type Streptomyces kanamyceticus (S. kanamyceticus) ATCC12853 is often used for the synthesis of dibekacin and arbekacin. To construct the strain has the ability for kanamycin B production; the pSET152 derivatives from Escherichia coli ET12567 were introduced to S. kanamyceticus by intergeneric conjugal transfer. In this study, we established a reliable genetic manipulation system for S. kanamyceticus. The key factors of conjugal transfer were evaluated, including donor-to-recipient ratio, heat-shock, and the overlaying time of antibiotics. When spores were used as recipient, the optimal conjugation frequency was up to 6.7 × 10-6 . And mycelia were used as an alternative recipient for conjugation instead of spores; the most suitable donor-to-recipient ratio is 1:1 (107 :107 ). After incubated for only 10-12 hr and overlaid with antibiotics subsequently, the conjugation frequency can reach to 6.2 × 10-5 which is sufficient for gene knockout and other genetic operation. Based on the optimized conjugal transfer condition, kanJ was knocked out successfully. The kanamycin B yield of kanJ-disruption strain can reach to 543.18 ± 42 mg/L while the kanamycin B yield of wild-type strain was only 46.57 ± 12 mg/L. The current work helps improve the content of kanamycin B in the fermentation broth of S. kanamyceticus effectively to ensure the supply for the synthesis of several critical semisynthetic antibiotics.


Asunto(s)
Conjugación Genética , Técnicas de Transferencia de Gen , Streptomyces/genética , Antibacterianos/biosíntesis , Escherichia coli/genética , Fermentación , Kanamicina/análogos & derivados , Kanamicina/biosíntesis , Plásmidos/genética , Streptomyces/metabolismo
4.
ACS Chem Biol ; 12(11): 2779-2787, 2017 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-28876898

RESUMEN

Gentamicins are heavily methylated, clinically valuable pseudotrisaccharide antibiotics produced by Micromonospora echinospora. GenN has been characterized as an S-adenosyl-l-methionine-dependent methyltransferase with low sequence similarity to other enzymes. It is responsible for the 3″-N-methylation of 3″-dehydro-3″-amino-gentamicin A2, an essential modification of ring III in the biosynthetic pathway to the gentamicin C complex. Purified recombinant GenN also efficiently catalyzes 3″-N-methylation of related aminoglycosides kanamycin B and tobramycin, which both contain an additional hydroxymethyl group at the C5″ position in ring III. We have obtained eight cocrystal structures of GenN, at a resolution of 2.2 Šor better, including the binary complex of GenN and S-adenosyl-l-homocysteine (SAH) and the ternary complexes of GenN, SAH, and several aminoglycosides. The GenN structure reveals several features not observed in any other N-methyltransferase that fit it for its role in gentamicin biosynthesis. These include a novel N-terminal domain that might be involved in protein:protein interaction with upstream enzymes of the gentamicin X2 biosynthesis and two long loops that are involved in aminoglycoside substrate recognition. In addition, the analysis of structures of GenN in complex with different ligands, supported by the results of active site mutagenesis, has allowed us to propose a catalytic mechanism and has revealed the structural basis for the surprising ability of native GenN to act on these alternative substrates.


Asunto(s)
Aminoglicósidos/metabolismo , Antibacterianos/metabolismo , Proteínas Bacterianas/metabolismo , Gentamicinas/metabolismo , Metiltransferasas/metabolismo , Micromonospora/enzimología , Proteínas Bacterianas/química , Cristalografía por Rayos X , Kanamicina/análogos & derivados , Kanamicina/metabolismo , Metiltransferasas/química , Micromonospora/química , Micromonospora/metabolismo , Modelos Moleculares , Conformación Proteica , Especificidad por Sustrato , Tobramicina/metabolismo
5.
Chem Commun (Camb) ; 53(64): 8976-8979, 2017 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-28744538

RESUMEN

This work describes chiral phosphoric acid (CPA)-catalyzed desymmetrizative glycosylation of meso-diol derived from 2-deoxystreptamine. The chirality of CPA dictates the outcome of the glycosylation reactions, and the use of enantiomeric CPAs results in either C4-glycosylated (67 : 33 d.r.) or C6-glycosylated (86 : 14 d.r.) 2-deoxystreptamines. These glycosylated products can be converted to aminoglycosides, and the application of this strategy to the synthesis of protected iso-neamine and iso-kanamycin B with inverted connection at the C4 and C6 positions is described.


Asunto(s)
Aminoglicósidos/síntesis química , Ácidos Fosfóricos/química , Aminoglicósidos/química , Catálisis , Framicetina/síntesis química , Glicosilación , Hexosaminas/química , Kanamicina/análogos & derivados , Kanamicina/síntesis química , Estereoisomerismo
6.
PLoS One ; 12(7): e0181971, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28753625

RESUMEN

Both kanamycin A and kanamycin B, antibiotic components produced by Streptomyces kanamyceticus, have medical value. Two different pathways for kanamycin biosynthesis have been reported by two research groups. In this study, to obtain an optimal kanamycin A-producing strain and a kanamycin B-high-yield strain, we first examined the native kanamycin biosynthetic pathway in vivo. Based on the proposed parallel biosynthetic pathway, kanN disruption should lead to kanamycin A accumulation; however, the kanN-disruption strain produced neither kanamycin A nor kanamycin B. We then tested the function of kanJ and kanK. The main metabolite of the kanJ-disruption strain was identified as kanamycin B. These results clarified that kanamycin biosynthesis does not proceed through the parallel pathway and that synthesis of kanamycin A from kanamycin B is catalyzed by KanJ and KanK in S. kanamyceticus. As expected, the kanamycin B yield of the kanJ-disruption strain was 3268±255 µg/mL, 12-fold higher than that of the original strain. To improve the purity of kanamycin A and reduce the yield of kanamycin B in the fermentation broth, four different kanJ- and kanK-overexpressing strains were constructed through either homologous recombination or site-specific integration. The overexpressing strain containing three copies of kanJ and kanK in its genome exhibited the lowest kanamycin B yield (128±20 µg/mL), which was 54% lower than that of the original strain. Our experimental results demonstrate that kanamycin A is derived from KanJ-and-KanK-catalyzed conversion of kanamycin B in S. kanamyceticus. Moreover, based on the clarified biosynthetic pathway, we obtained a kanamycin B-high-yield strain and an optimized kanamycin A-producing strain with minimal byproduct.


Asunto(s)
Vías Biosintéticas , Kanamicina/análogos & derivados , Kanamicina/biosíntesis , Ingeniería Metabólica/métodos , Streptomyces/metabolismo , Vías Biosintéticas/genética , Proliferación Celular , Genotipo , Metaboloma , Metabolómica , Familia de Multigenes , Reacción en Cadena en Tiempo Real de la Polimerasa , Recombinación Genética/genética , Streptomyces/genética , Streptomyces/crecimiento & desarrollo , Transcripción Genética
7.
J Antibiot (Tokyo) ; 70(4): 423-428, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-27599765

RESUMEN

A radical S-adenosyl-l-methionine dehydratase AprD4 and an NADPH-dependent reductase AprD3 are responsible for the C3'-deoxygenation of pseudodisaccharide paromamine in the biosynthesis of apramycin. These enzymes are involved in the construction of the characteristic structural motif that is not modified by 3'-phosphotransferase in aminoglycoside-resistant bacterial strains. AprD4 catalyzes the C3'-dehydration of paromamine via a radical-mediated reaction mechanism to give 4'-oxolividamine, which is then reduced by AprD3 with NADPH to afford lividamine. In the present study, the substrate specificity of this unique combination of enzymes has been investigated. AprD4 was found to recognize paromamine, neamine, kanamycin C, and kanamycin B to afford 5'-deoxyadenosine as one of products during the C3'-dehydration of aminoglycosides, but not 2'-N-acetylparomamine and paromomycin. Only paromamine and kanamycin C were converted to the corresponding C3'-deoxygenated compounds by AprD4 and AprD3. AprD3 recognizes the 4'-oxolividamine moiety, including the pseudotrisaccharide kanamycin C, and seems to reject the amino group at C6' of neamine and kanamycin B. Chirally deuterium-labeled NADPH was used to identify that that AprD3 transfers the pro-S hydrogen atom of NADPH when reducing 4'-oxolividamine to give lividamine.


Asunto(s)
Actinobacteria/enzimología , Aminoglicósidos/metabolismo , Antibacterianos/metabolismo , Hidroliasas/metabolismo , Kanamicina/análogos & derivados , NADP/metabolismo , Nebramicina/análogos & derivados , Especificidad por Sustrato
8.
J Org Chem ; 81(22): 10651-10663, 2016 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-27715046

RESUMEN

A concise and novel method for site-selective alkylation of 1,3,6',3″-tetraazidokanamycin has been developed that leads to the divergent synthesis of three classes of kanamycin A derivatives. These new amphiphilic kanamycin derivatives bearing alkyl chains length of 4, 6, 7, 8, 9, 10, 12, 14, and 16 have been tested for their antibacterial and antifungal activities. The antibacterial effect of the synthesized kanamycin derivatives declines or disappears as compared to the original kanamycin A. Several compounds, especially those with octyl chain at O-4″ and/or O-6″ positions on the ring III of kanamycin A, show very strong activity as antifungal agents. In addition, these compounds display no toxicity toward mammalian cells. Finally, computational calculation has revealed possible factors that are responsible for the observed regioselectivity. The simplicity in chemical synthesis and the fungal specific property make the lead compounds ideal candidates for the development of novel antifungal agents.


Asunto(s)
Antifúngicos/química , Kanamicina/análogos & derivados , Antibacterianos/química , Antibacterianos/farmacología , Antifúngicos/farmacología , Aspergillus flavus/efectos de los fármacos , Conformación de Carbohidratos , Secuencia de Carbohidratos , Espectroscopía de Resonancia Magnética con Carbono-13 , Escherichia coli/efectos de los fármacos , Fusarium/efectos de los fármacos , Kanamicina/química , Kanamicina/farmacología , Pruebas de Sensibilidad Microbiana , Espectroscopía de Protones por Resonancia Magnética , Espectrometría de Masa por Ionización de Electrospray , Staphylococcus aureus/efectos de los fármacos
9.
J Med Chem ; 59(17): 8008-18, 2016 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-27509271

RESUMEN

We studied six pairs of aminoglycosides and their corresponding ribosylated derivatives synthesized by attaching a ß-O-linked ribofuranose to the 5-OH of the deoxystreptamine ring of the parent pseudo-oligosaccharide antibiotic. Ribosylation of the 4,6-disubstituted 2-deoxystreptamine aminoglycoside kanamycin B led to improved selectivity for inhibition of prokaryotic relative to cytosolic eukaryotic in vitro translation. For the pseudodisaccharide aminoglycoside scaffolds neamine and nebramine, ribosylated derivatives were both more potent antimicrobials and more selective to inhibition of prokaryotic translation. On the basis of the results of this study, we suggest that modification of the 5-OH position of the streptamine ring of other natural or semisynthetic pseudodisaccharide aminoglycoside scaffolds containing an equatorial amine at the 2' sugar position with a ß-O-linked ribofuranose is a promising avenue for the development of novel aminoglycoside antibiotics with improved efficacy and reduced toxicity.


Asunto(s)
Aminoglicósidos/química , Antibacterianos/química , Proteínas de Escherichia coli/antagonistas & inhibidores , Ribosa/química , Trisacáridos/química , Aminoglicósidos/síntesis química , Aminoglicósidos/farmacología , Antibacterianos/síntesis química , Antibacterianos/farmacología , Proteínas de Escherichia coli/biosíntesis , Framicetina/síntesis química , Framicetina/química , Framicetina/farmacología , Bacterias Gramnegativas/efectos de los fármacos , Bacterias Gramnegativas/metabolismo , Kanamicina/análogos & derivados , Kanamicina/síntesis química , Kanamicina/química , Kanamicina/farmacología , Pruebas de Sensibilidad Microbiana , Relación Estructura-Actividad , Trisacáridos/síntesis química , Trisacáridos/farmacología
10.
J Am Chem Soc ; 138(20): 6463-74, 2016 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-27123740

RESUMEN

Development of strong and selective binders from promiscuous lead compounds represents one of the most expensive and time-consuming tasks in drug discovery. We herein present a novel fragment-based combinatorial strategy for the optimization of multivalent polyamine scaffolds as DNA/RNA ligands. Our protocol provides a quick access to a large variety of regioisomer libraries that can be tested for selective recognition by combining microdialysis assays with simple isotope labeling and NMR experiments. To illustrate our approach, 20 small libraries comprising 100 novel kanamycin-B derivatives have been prepared and evaluated for selective binding to the ribosomal decoding A-Site sequence. Contrary to the common view of NMR as a low-throughput technique, we demonstrate that our NMR methodology represents a valuable alternative for the detection and quantification of complex mixtures, even integrated by highly similar or structurally related derivatives, a common situation in the context of a lead optimization process. Furthermore, this study provides valuable clues about the structural requirements for selective A-site recognition.


Asunto(s)
Técnicas Químicas Combinatorias , Resonancia Magnética Nuclear Biomolecular/métodos , Ácidos Nucleicos/química , Bibliotecas de Moléculas Pequeñas/química , Descubrimiento de Drogas , Kanamicina/análogos & derivados , Kanamicina/química , Microdiálisis , Simulación de Dinámica Molecular , Teoría Cuántica
11.
ACS Chem Biol ; 11(6): 1720-8, 2016 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-27097021

RESUMEN

The development of small molecules that target RNA is challenging yet, if successful, could advance the development of chemical probes to study RNA function or precision therapeutics to treat RNA-mediated disease. Previously, we described Inforna, an approach that can mine motifs (secondary structures) within target RNAs, which is deduced from the RNA sequence, and compare them to a database of known RNA motif-small molecule binding partners. Output generated by Inforna includes the motif found in both the database and the desired RNA target, lead small molecules for that target, and other related meta-data. Lead small molecules can then be tested for binding and affecting cellular (dys)function. Herein, we describe Inforna 2.0, which incorporates all known RNA motif-small molecule binding partners reported in the scientific literature, a chemical similarity searching feature, and an improved user interface and is freely available via an online web server. By incorporation of interactions identified by other laboratories, the database has been doubled, containing 1936 RNA motif-small molecule interactions, including 244 unique small molecules and 1331 motifs. Interestingly, chemotype analysis of the compounds that bind RNA in the database reveals features in small molecule chemotypes that are privileged for binding. Further, this updated database expanded the number of cellular RNAs to which lead compounds can be identified.


Asunto(s)
ARN/química , Secuencia de Bases , Diseño de Fármacos , Humanos , Informática , Kanamicina/análogos & derivados , Kanamicina/química , MicroARNs/química , Bibliotecas de Moléculas Pequeñas , Relación Estructura-Actividad
12.
Biochemistry ; 54(51): 7425-37, 2015 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-26560864

RESUMEN

Kanamycin is an aminoglycoside antibiotic used in the treatment of drug-resistant tuberculosis. Mutations at the rRNA A-site have been associated with kanamycin resistance in Mycobacterium tuberculosis clinical isolates. Understanding the effect of these mutations on the conformation of the M. tuberculosis A-site is critical for understanding the mechanisms of antibiotic resistance in M. tuberculosis. In this work, we have studied RNA hairpins derived from the M. tuberculosis A-site, the wild type and three mutants at the following positions (M. tuberculosis/Escherichia coli numbering): A1400/1408 → G, C1401/1409 → U, and the double mutant G1483/1491 C1401/1409 → UA. Specifically, we used circular dichroism, ultraviolet spectroscopy, and fluorescence spectroscopy to characterize the conformation, stability, and binding affinity of kanamycin-B and other aminoglycoside antibiotics for these RNA hairpins. Our results show that the mutations affect the conformation of the decoding site, with the mutations at position 1401/1409 resulting in significant destabilizations. Interestingly, the mutants bind paromomycin with weaker affinity than the wild type, but they bind kanamycin-B with similar affinity than the wild type. The results suggest that the presence of mutations does not prevent kanamycin-B from binding. Instead, kanamycin may promote different interactions with a third partner in the mutants compared to the wild type. Furthermore, our results with longer and shorter hairpins suggest that the region of the A-site that varies among organisms may have modulating effects on the binding and interactions of the A-site.


Asunto(s)
Antibacterianos/química , Kanamicina/análogos & derivados , Mutación , Mycobacterium tuberculosis/química , ARN Bacteriano/química , Ribosomas/química , Dicroismo Circular , Kanamicina/química , Estructura Molecular , Mycobacterium tuberculosis/genética , Conformación de Ácido Nucleico , ARN Bacteriano/genética , Espectrometría de Fluorescencia , Espectrofotometría Ultravioleta
13.
J Med Chem ; 58(23): 9124-32, 2015 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-26592740

RESUMEN

Cationic amphiphiles derived from aminoglycosides (AGs) have been shown to exhibit enhanced antimicrobial activity. Through the attachment of hydrophobic residues such as linear alkyl chains on the AG backbone, interesting antibacterial and antifungal agents with a novel mechanism of action have been developed. Herein, we report the design and synthesis of seven kanamycin B (KANB) derivatives. Their antibacterial and antifungal activities, along with resistance/enzymatic, hemolytic, and cytotoxicity assays were also studied. Two of these compounds, with a C12 and C14 aliphatic chain attached at the 6″-position of KANB through a thioether linkage, exhibited good antibacterial and antifungal activity, were poorer substrates than KANB for several AG-modifying enzymes, and could delay the development of resistance in bacteria and fungi. Also, they were both relatively less hemolytic than the known membrane targeting antibiotic gramicidin and the known antifungal agent amphotericin B and were not toxic at their antifungal MIC values. Their oxidation to sulfones was also demonstrated to have no effect on their activities. Moreover, they both acted synergistically with posaconazole, an azole currently used in the treatment of human fungal infections.


Asunto(s)
Antibacterianos/química , Antibacterianos/farmacología , Antifúngicos/química , Antifúngicos/farmacología , Kanamicina/análogos & derivados , Animales , Antibacterianos/síntesis química , Antibacterianos/toxicidad , Antifúngicos/síntesis química , Antifúngicos/toxicidad , Bacterias/efectos de los fármacos , Infecciones Bacterianas/tratamiento farmacológico , Línea Celular , Supervivencia Celular/efectos de los fármacos , Diseño de Fármacos , Farmacorresistencia Microbiana , Hongos/efectos de los fármacos , Hemólisis/efectos de los fármacos , Humanos , Kanamicina/síntesis química , Kanamicina/química , Kanamicina/farmacología , Kanamicina/toxicidad , Ratones , Micosis/tratamiento farmacológico , Tensoactivos/síntesis química , Tensoactivos/química , Tensoactivos/farmacología , Tensoactivos/toxicidad
15.
Biomed Chromatogr ; 29(3): 396-401, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25042110

RESUMEN

A novel method for the direct determination of kanamycin B in the presence of kanamycin A in fermentation broth using high performance liquid chromatography with evaporative light scattering detector (HPLC-ELSD) was developed. An Agilent Technologies C18 column was utilized, evaporation temperature of 40°C and nitrogen pressure of 3.5 bar, the optimized mobile phase was water-acetonitrile (65:35, v/v), containing 11.6 mm heptafluorobutyric acid (isocratic elution with flow rate of 0.5 mL/min) with the gain 11. Kanamycin B was eluted at 5.6 min with an asymmetry factor of 1.827. The method showed good linearity over the concentration range of 0.05 to 0.80 mg/mL for the kanamycin B (r(2) = 0.9987). The intra-day and inter-day coefficients of variation obtained from kanamycin B were less than 4.3%. Mean recovery of kanamycin B from spiked fermentation broth was 95%. The developed method was applied to the determination of kanamycin B without any interference from other constituents in the fermentation broth. This method offers simple, rapid and quantitative detection of kanamycin B.


Asunto(s)
Cromatografía Líquida de Alta Presión/métodos , Kanamicina/análogos & derivados , Dispersión de Radiación , Calibración , Fraccionamiento Químico/métodos , Cromatografía Líquida de Alta Presión/instrumentación , Medios de Cultivo/análisis , Medios de Cultivo/química , Estabilidad de Medicamentos , Fermentación , Kanamicina/análisis , Kanamicina/aislamiento & purificación , Luz , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Temperatura
16.
Nucleic Acids Res ; 42(20): e159, 2014 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-25249623

RESUMEN

Ribonuclease P (RNase P) is an essential endonuclease that catalyzes the 5' end maturation of precursor tRNA (pre-tRNA). Bacterial RNase P is an attractive potential antibacterial target because it is essential for cell survival and has a distinct subunit composition compared to the eukaryal counterparts. To accelerate both structure-function studies and discovery of inhibitors of RNase P, we developed the first real-time RNase P activity assay using fluorescence polarization/anisotropy (FP/FA) with a 5' end fluorescein-labeled pre-tRNAAsp substrate. This FP/FA assay also detects binding of small molecules to pre-tRNA. Neomycin B and kanamycin B bind to pre-tRNAAsp with a Kd value that is comparable to their IC50 value for inhibition of RNase P, suggesting that binding of these antibiotics to the pre-tRNA substrate contributes to the inhibitory activity. This assay was optimized for high-throughput screening (HTS) to identify specific inhibitors of RNase P from a 2880 compound library. A natural product derivative, iriginol hexaacetate, was identified as a new inhibitor of Bacillus subtilis RNase P. The FP/FA methodology and inhibitors reported here will further our understanding of RNase P molecular recognition and facilitate discovery of antibacterial compounds that target RNase P.


Asunto(s)
Antibacterianos/farmacología , Inhibidores Enzimáticos/farmacología , Polarización de Fluorescencia/métodos , Ribonucleasa P/antagonistas & inhibidores , Bacillus subtilis/enzimología , Framicetina/farmacología , Ensayos Analíticos de Alto Rendimiento/métodos , Kanamicina/análogos & derivados , Kanamicina/farmacología , División del ARN , ARN de Transferencia/metabolismo
18.
J Org Chem ; 78(2): 400-9, 2013 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-23228010

RESUMEN

A series of conformationally constrained kanamycin A derivatives with a 2'-hydroxyl group in ring I and a 5-hydroxyl group in ring II tethered by carbon chains were designed and synthesized. Pivotal 5,2'-hydroxyl groups were exposed, and the kanamycin A intermediate was synthesized from 5, 2', 4″, 6″-di-O-benzylidene-protected tetraazidokanamycin A. Cyclic kanamycin A derivatives with intramolecular 8-, 9-, 10-, and 11-membered ethers were then prepared by cesium carbonate mediated Williamson ether synthesis or a ring-closing metathesis reaction. The kanamycin A derivatives were assayed against both susceptible and resistant bacterial strains. Although no derivative showed better antibacterial activities than kanamycin A, the antibacterial activities of these cyclic kanamycin A derivatives indeed varied with the length of the bridge. Moreover, different variations of activities were observed between the susceptible and resistant bacterial strains. More tightly constrained derivative 2 with a one-carbon bridge showed better activity than the others against susceptible strains, but it was much less effective for resistant bacterial strains than derivative 3 with a two-carbon bridge and derivative 6 with an unsaturated four-carbon bridge.


Asunto(s)
Antibacterianos/síntesis química , Antibacterianos/farmacología , Hidrocarburos Aromáticos con Puentes/química , Hidrocarburos Aromáticos con Puentes/síntesis química , Kanamicina/análogos & derivados , Kanamicina/síntesis química , Kanamicina/farmacología , Antibacterianos/química , Kanamicina/química , Espectroscopía de Resonancia Magnética , Relación Estructura-Actividad
19.
Mol Biosyst ; 8(12): 3305-13, 2012 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-23090428

RESUMEN

The Mycobacterium tuberculosis enhanced intracellular survival (Eis_Mtb) protein is a clinically important aminoglycoside (AG) multi-acetylating enzyme. Eis homologues are found in a variety of mycobacterial and non-mycobacterial species. Variation of the residues lining the AG-binding pocket and positions of the loops bearing these residues in the Eis homologues dictates the substrate specificity and, thus, Eis homologues are Nature-made tools for elucidating principles of AG recognition by Eis. Here, we demonstrate that the Eis from Anabaena variabilis (Eis_Ava), the first non-mycobacterial Eis homologue reported, is a multi-acetylating AG-acetyltransferase. Eis_Ava, Eis from Mycobacterium tuberculosis (Eis_Mtb), and Eis from Mycobacterium smegmatis (Eis_Msm) have different structures of their AG-binding pockets. We perform comparative analysis of these differences and investigate how they dictate the substrate and cosubstrate recognition and acetylation of AGs by Eis.


Asunto(s)
Acetiltransferasas/química , Acetiltransferasas/metabolismo , Anabaena variabilis/enzimología , Anabaena variabilis/metabolismo , Antígenos Bacterianos/química , Proteínas Bacterianas/química , Acetilación , Acetiltransferasas/antagonistas & inhibidores , Secuencia de Aminoácidos , Inhibidores de la Enzima Convertidora de Angiotensina/química , Inhibidores de la Enzima Convertidora de Angiotensina/farmacología , Antígenos Bacterianos/metabolismo , Proteínas Bacterianas/antagonistas & inhibidores , Proteínas Bacterianas/metabolismo , Sitios de Unión , Simulación por Computador , Farmacorresistencia Bacteriana , Kanamicina/análogos & derivados , Kanamicina/metabolismo , Kanamicina/farmacología , Cinética , Modelos Moleculares , Datos de Secuencia Molecular , Mycobacterium smegmatis/enzimología , Mycobacterium smegmatis/metabolismo , Mycobacterium tuberculosis/enzimología , Mycobacterium tuberculosis/metabolismo , Filogenia , Alineación de Secuencia , Especificidad por Sustrato
20.
Antimicrob Agents Chemother ; 56(12): 6104-8, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22948879

RESUMEN

The kanamycins form an important subgroup of the 4,6-disubstituted 2-deoxystreptamine aminoglycoside antibiotics, comprising kanamycin A, kanamycin B, tobramycin, and dibekacin. These compounds interfere with protein synthesis by targeting the ribosomal decoding A site, and they differ in the numbers and locations of amino and hydroxy groups of the glucopyranosyl moiety (ring I). We synthesized kanamycin analogues characterized by subtle variations of the 2' and 6' substituents of ring I. The functional activities of the kanamycins and the synthesized analogues were investigated (i) in cell-free translation assays on wild-type and mutant bacterial ribosomes to study drug-target interaction, (ii) in MIC assays to assess antibacterial activity, and (iii) in rabbit reticulocyte translation assays to determine activity on eukaryotic ribosomes. Position 2' forms an intramolecular H bond with O5 of ring II, helping the relative orientations of the two rings with respect to each other. This bond becomes critical for drug activity when a 6'-OH substituent is present.


Asunto(s)
Antibacterianos/farmacología , Kanamicina/análogos & derivados , Kanamicina/farmacología , Aminas/química , Animales , Antibacterianos/química , Secuencia de Carbohidratos , Hidroxilación , Kanamicina/química , Luciferasas/química , Luciferasas/genética , Pruebas de Sensibilidad Microbiana , Modelos Moleculares , Datos de Secuencia Molecular , Mutación , Mycobacterium smegmatis/efectos de los fármacos , Mycobacterium smegmatis/genética , ARN Bacteriano/genética , ARN Ribosómico/genética , Conejos , Reticulocitos/efectos de los fármacos , Ribosomas/efectos de los fármacos , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA