Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 614
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-39133214

RESUMEN

Two novel rod-shaped, strictly aerobic, non-motile and Gram-stain-negative bacterial strains, designated SDUM040013T and SDUM040014T, were isolated from kelp seedlings in Weihai, PR China. Cells of strain SDUM040013T were 0.3-0.4 µm wide and 0.8-1.8 µm long, catalase-positive and oxidase-positive. Growth of SDUM040013T was observed at 0-37 °C (optimum, 28-30 °C) and pH 5.5-9 (optimum, pH 8.0) and in the presence of 1-8 % (w/v) NaCl (optimum, 2 %). The DNA G+C content of strain SDUM040013T was 50.5 %. Strain SDUM040013T showed the highest 16S rRNA gene sequence similarity (97.1 %) to Gilvimarinus chinensis. Cells of strain SDUM040014T were 0.4-0.5 µm wide and 1.0-1.4 µm long, catalase-positive and oxidase-positive. Growth of SDUM040014T was observed at 4-40 °C (optimum, 28-30 °C) and pH 5.5-9 (optimum, pH 8.5) and in the presence of 0-8 % (w/v) NaCl (optimum, 2 %). The DNA G+C content of strain SDUM040014T was 56.5 %. Strain SDUM040014T showed the highest 16S rRNA gene sequence similarity (96.2%) to Gilvimarinus polysaccharolyticus. The isoprenoid quinone of both strains was Q-8 and the predominant fatty acids were summed feature 3 (C16 : 1 ω7c and/or C16 : 1 ω6c), summed feature 8 (C18 : 1 ω7c) and C16 : 0. Diphosphatidylglycerol, phosphatidylglycerol and phosphatidylethanolamine were the major polar lipids. Given these phenotypic and chemotaxonomic properties, as well as phylogenetic data, strains SDUM040013T and SDUM040014T were considered to represent two novel species of the genus Gilvimarinus, for which the names Gilvimarinus gilvus sp. nov. and Gilvimarinus algae sp. nov. are proposed. The type strains are SDUM040013T (=KCTC 8123T=MCCC 1H01413T) and SDUM040014T (=KCTC 8124T=MCCC 1H01414T), respectively.


Asunto(s)
Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano , Ácidos Grasos , Kelp , Filogenia , ARN Ribosómico 16S , Plantones , Análisis de Secuencia de ADN , ARN Ribosómico 16S/genética , Ácidos Grasos/química , China , ADN Bacteriano/genética , Kelp/microbiología , Plantones/microbiología , Ubiquinona/análogos & derivados
2.
New Phytol ; 243(5): 1887-1898, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38984686

RESUMEN

The role of maternal tissue in embryogenesis remains enigmatic in many complex organisms. Here, we investigate the contribution of maternal tissue to apical-basal patterning in the kelp embryo. Focussing on Undaria pinnatifida, we studied the effects of detachment from the maternal tissue using microsurgery, staining of cell wall modifications, morphometric measurements, flow cytometry, genotyping and a modified kelp fertilisation protocol synchronising kelp embryogenesis. Detached embryos are rounder and often show aberrant morphologies. When a part of the oogonial cell wall remains attached to the zygote, the apical-basal patterning is rescued. Furthermore, the absence of contact with maternal tissue increases parthenogenesis, highlighting the critical role of maternal signals in the initial stages of development. These results show a key role for the connection to the maternal oogonial cell wall in apical-basal patterning in kelps. This observation is reminiscent of another brown alga, Fucus, where the cell wall directs the cell fate. Our findings suggest a conserved mechanism across phylogenetically distant oogamous lineages, where localised secretion of sulphated F2 fucans mediates the establishment of the apical-basal polarity. In this model, the maternal oogonial cell wall mediates basal cell fate determination by providing an extrinsic patterning cue to the future kelp embryo.


Asunto(s)
Pared Celular , Undaria , Undaria/fisiología , Pared Celular/metabolismo , Tipificación del Cuerpo , Kelp/fisiología , Partenogénesis , Algas Comestibles
3.
Nutrients ; 16(13)2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38999824

RESUMEN

Parkinson's disease (PD) is a degenerative neurological disorder defined by the deterioration and loss of dopamine-producing neurons in the substantia nigra, leading to a range of motor impairments and non-motor symptoms. The underlying mechanism of this neurodegeneration remains unclear. This research examined the neuroprotective properties of Ecklonia cava polyphenols (ECPs) in mitigating neuronal damage induced by rotenone via the activation of the nuclear factor erythroid 2-related factor 2 (Nrf2)-antioxidant response element (ARE) pathway. Using human neuroblastoma SH-SY5Y cells and PD model mice, we found that ECP, rich in the antioxidant polyphenol phlorotannin, boosted the gene expression and functionality of the antioxidant enzyme NAD(P)H quinone oxidoreductase-1. ECP also promoted Nrf2 nuclear translocation and increased p62 expression, suggesting that p62 helps sustain Nrf2 activation via a positive feedback loop. The neuroprotective effect of ECP was significantly reduced by Compound C (CC), an AMP-activated protein kinase (AMPK) inhibitor, which also suppressed Nrf2 nuclear translocation. In PD model mice, ECPs improved motor functions impaired by rotenone, as assessed by the pole test and wire-hanging test, and restored intestinal motor function and colon tissue morphology. Additionally, ECPs increased tyrosine hydroxylase expression in the substantia nigra, indicating a protective effect on dopaminergic neurons. These findings suggest that ECP has a preventative effect on PD.


Asunto(s)
Factor 2 Relacionado con NF-E2 , Fármacos Neuroprotectores , Enfermedad de Parkinson , Polifenoles , Rotenona , Animales , Humanos , Masculino , Ratones , Elementos de Respuesta Antioxidante/efectos de los fármacos , Antioxidantes/farmacología , Línea Celular Tumoral , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL , NAD(P)H Deshidrogenasa (Quinona)/metabolismo , Fármacos Neuroprotectores/farmacología , Factor 2 Relacionado con NF-E2/metabolismo , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/prevención & control , Enfermedad de Parkinson/tratamiento farmacológico , Polifenoles/farmacología , Transducción de Señal/efectos de los fármacos , Kelp/química
4.
Microb Ecol ; 87(1): 91, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38960913

RESUMEN

Coelopidae (Diptera), known as kelp flies, exhibit an ecological association with beached kelp and other rotting seaweeds. This unique trophic specialization necessitates significant adaptations to overcome the limitations of an algal diet. We aimed to investigate whether the flies' microbiome could be one of these adaptive mechanisms. Our analysis focused on assessing composition and diversity of adult and larval microbiota of the kelp fly Coelopa frigida. Feeding habits of the larvae of this species have been subject of numerous studies, with debates whether they directly consume kelp or primarily feed on associated bacteria. By using a 16S rRNA metabarcoding approach, we found that the larval microbiota displayed considerably less diversity than adults, heavily dominated by only four operational taxonomic units (OTUs). Phylogenetic placement recovered the most dominant OTU of the larval microbiome, which is the source of more than half of all metabarcoding sequence reads, as an undescribed genus of Orbaceae (Gammaproteobacteria). Interestingly, this OTU is barely found among the 15 most abundant taxa of the adult microbiome, where it is responsible for less than 2% of the metabarcoding sequence reads. The other three OTUs dominating the larval microbiome have been assigned as Psychrobacter (Gammaproteobacteria), Wohlfahrtiimonas (Gammaproteobacteria), and Cetobacterium (Fusobacteriota). Moreover, we also uncovered a distinct shift in the functional composition between the larval and adult stages, where our taxonomic profiling suggests a significant decrease in functional diversity in larval samples. Our study offers insights into the microbiome dynamics and functional composition of Coelopa frigida.


Asunto(s)
Bacterias , Dípteros , Larva , Microbiota , Filogenia , ARN Ribosómico 16S , Animales , Dípteros/microbiología , Larva/microbiología , ARN Ribosómico 16S/genética , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , Código de Barras del ADN Taxonómico , Kelp/microbiología
5.
Oecologia ; 205(2): 365-381, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38836933

RESUMEN

Surface temperature of the oceans has increased globally over the past decades. In coastal areas influenced by eastern boundary upwelling systems (EBUS), winds push seawater offshore and deep, cold and nutrient-rich seawater rise towards the surface, partially buffering global warming. On the North coast of Portugal, the NW Iberian upwelling system allows extensive kelp forests to thrive in these "boreal-like" conditions, fostering highly diverse and productive communities. However, the warming of the upper layer of the ocean may weaken this upwelling, leading to higher sea surface temperature and lower nutrient input in the coastal areas. The effects of these changes on the structure and function of coastal ecosystems remain unexplored. The present study aimed to examine the combined effects of elevated temperature and nutrient depletion on semi-naturally structured assemblages. The eco-physiological responses investigated included growth, chlorophyll fluorescence and metabolic rates at the levels of individual species and whole assemblages. Our findings showed interactive effects of the combination of elevated temperature with nutrient depletion on the large canopy-forming species (i.e., kelp). As main contributor to community response, those effects drove the whole assemblage responses to significant losses in productivity levels. We also found an additive effect of elevated temperature and reduced nutrients on sub-canopy species (i.e., Chondrus crispus), while turfs were only affected by temperature. Our results suggest that under weakening upwelling scenarios, the ability of the macroalgal assemblages to maintain high productivity rates could be seriously affected and predict a shift in community composition with the loss of marine forests.


Asunto(s)
Ecosistema , Nutrientes , Temperatura , Portugal , Agua de Mar , Clorofila , Kelp , Calentamiento Global
6.
Nat Ecol Evol ; 8(7): 1285-1297, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38831017

RESUMEN

Long-term, large-scale experimental studies provide critical information about how global change influences communities. When environmental changes are severe, they can trigger abrupt transitions from one community type to another leading to a regime shift. From 2014 to 2016, rocky intertidal habitats in the northeast Pacific Ocean experienced extreme temperatures during a multi-year marine heatwave (MHW) and sharp population declines of the keystone predator Pisaster ochraceus due to sea star wasting disease (SSWD). Here we measured the community structure before, during and after the MHW onset and SSWD outbreak in a 15-year succession experiment conducted in a rocky intertidal meta-ecosystem spanning 13 sites on four capes in Oregon and northern California, United States. Kelp abundance declined during the MHW due to extreme temperatures, while gooseneck barnacle and mussel abundances increased due to reduced predation pressure after the loss of Pisaster from SSWD. Using several methods, we detected regime shifts from substrate- or algae-dominated to invertebrate-dominated alternative states at two capes. After water temperatures cooled and Pisaster population densities recovered, community structure differed from pre-disturbance conditions, suggesting low resilience. Consequently, thermal stress and predator loss can result in regime shifts that fundamentally alter community structure even after restoration of baseline conditions.


Asunto(s)
Estrellas de Mar , Animales , Estrellas de Mar/fisiología , Oregon , California , Océano Pacífico , Thoracica/fisiología , Ecosistema , Bivalvos/fisiología , Cambio Climático , Dinámica Poblacional , Calor Extremo/efectos adversos , Kelp
7.
Environ Res ; 257: 119299, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-38824984

RESUMEN

Kelp forests (KFs) are one of the most significant marine ecosystems in the planet. They serve as a refuge for a wide variety of marine species of ecological and economic importance. Additionally, they aid with carbon sequestration, safeguard the coastline, and maintain water quality. Microplastic (MP) and polybrominated diphenyl ethers (PBDEs) concentrations were analyzed across trophic levels in KFs around Todos Santos Bay. Spatial variation patterns were compared at three sites in 2021 and temporal change at Todos Santos Island (TSI) in 2021 and 2022. We analyzed these MPs and PBDEs in water, primary producers (Macrocystis pyrifera), grazers (Strongylocentrotus purpuratus), predators (Semicossyphus pulcher), and kelp detritus. MPs were identified in all samples (11 synthetic and 1 semisynthetic polymer) and confirmed using Fourier-transform infrared microspectroscopy-attenuated total reflectance (µ-FTIR-ATR). The most abundant type of MP is polyester fibers. Statistically significant variations in MP concentration were found only in kelps, with the greatest average concentrations in medium-depth kelps from TSI in 2022 (0.73 ± 0.58 MP g-1 ww) and in the kelp detritus from TSI in 2021 (0.96 ± 0.64 MP g-1 ww). Similarly, PBDEs were found in all samples, with the largest concentration found in sea urchins from Punta San Miguel (0.93 ± 0.24 ng g-1 ww). The similarity of the polymers can indicate a trophic transfer of MPs. This study shows the extensive presence of MP and PBDE subtropical trophic web of a KF, but correlating these compounds in environmental samples is highly complex, influenced by numerous factors that could affect their presence and behavior. However, this suggests that there is a potential risk to the systems and the services that KFs offer.


Asunto(s)
Monitoreo del Ambiente , Cadena Alimentaria , Éteres Difenilos Halogenados , Kelp , Microplásticos , Contaminantes Químicos del Agua , Éteres Difenilos Halogenados/análisis , Kelp/química , Contaminantes Químicos del Agua/análisis , Animales , Microplásticos/análisis
8.
Bioresour Technol ; 406: 130988, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38885723

RESUMEN

Alginate is a major component of brown macroalgae, and its efficient utilization is critical for developing sustainable technologies. Vibrio natriegens is a fast-growing marine bacterium that has gained massive attention due to its potential as an alternative industrial chassis. However, V. natriegens cannot naturally metabolize alginate, limiting its usage in marine biomass conversion. In this study, V. natriegens was engineered to utilize marine biomass, kelp, as a carbon source. A total of 33.8 kb of the genetic cluster for alginate assimilation from Vibrio sp. dhg was integrated into V. natriegens by natural transformation. Engineered V. natriegens was further modified to produce 1.8 mg/L of isopentenol from 16 g/L of crude kelp powder. This study not only presents the very first case in which V. natriegens can be naturally transformed with large DNA fragments but also highlights the potential of this strain for converting marine biomass into valuable products.


Asunto(s)
Alginatos , Familia de Multigenes , Vibrio , Vibrio/genética , Vibrio/metabolismo , Biomasa , Kelp/genética , Kelp/metabolismo , Hemiterpenos/metabolismo , Ácido Glucurónico
9.
Mar Environ Res ; 199: 106572, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38843653

RESUMEN

Organisms respond to their environment in various ways, including moving, adapting, acclimatising or a combination of responses. Within estuarine habitats, organisms are exposed to naturally variable environmental conditions. In urbanised estuaries, these natural variations can interact with human stressors such as habitat modification and pollution. Here, we investigated trait variation in the golden kelp Ecklonia radiata across an urban estuary - Sydney Harbour, Australia. We found that kelp morphology differed significantly between the more human-modified inner and the less modified outer harbour. Kelp individuals were smaller, had fewer laminae, and lacked spines in the inner harbour where it was warmer, more contaminated and less light was available. Inner harbour populations were characterised by lower tissue nitrogen and higher lead concentrations. These findings provide insights into how environmental variation could affect kelp morphology and physiology, and the high trait variation suggests adaptive capacity in E. radiata.


Asunto(s)
Monitoreo del Ambiente , Estuarios , Kelp , Kelp/fisiología , Ecosistema , Contaminantes Químicos del Agua/análisis , Australia
10.
J Vis Exp ; (208)2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38912782

RESUMEN

Canopy-forming kelps are essential foundation species, supporting biodiversity and providing ecosystem services valued at more than USD$500 billion annually. The global decline of giant kelp forests due to climate-driven ecological stressors underscores the need for innovative restoration strategies. An emerging restoration technique known as 'green gravel' aims to seed young kelps over large areas without extensive underwater labor and represents a promising restoration tool due to cost-effectiveness and scalability. This video article illustrates a protocol and tools for culturing giant kelp, Macrocystis pyrifera. It also provides a resource for further studies to address the successes and limitations of this method in field settings. We outline field and laboratory-based methods for collecting reproductive tissue, sporulating, inoculating, rearing, maintaining, and monitoring substrates seeded with early life stages using the 'green gravel' technique. The protocol simplifies and centralizes current restoration practices in this field to support researchers, managers, and stakeholders in meeting kelp conservation objectives.


Asunto(s)
Macrocystis , Macrocystis/fisiología , Kelp/fisiología , Conservación de los Recursos Naturales/métodos
11.
Mar Drugs ; 22(6)2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38921562

RESUMEN

Experiments conducted on triple-negative breast cancer have shown that fucoidan from Lessonia trabeculata (FLt) exhibits cytotoxic and antitumor properties. However, further research is necessary to gain a complete understanding of its bioactivity and level of cytotoxicity. The cytotoxic effect of FLt was determined by the 2,5-diphenyl-2H-tetrazolium bromide (MTT) assay. Apoptosis was analyzed using annexin V and caspase 3/7 staining kit and DNA fragmentation. In addition, transcriptional expression of antiapoptotic (Bcl-2 and XIAP) and proapoptotic (caspase 8, caspase 9, and AIF) genes were analyzed in TNBC 4T1 cells. After 72 h of culture, the IC50 for FLt was 561 µg/mL, while doxorubicin (Dox) had an IC50 of 0.04 µg/mL. In addition, assays for FLt + Dox were performed. Annexin V and caspase 3/7 revealed that FLt induces early and late-stage apoptosis. DNA fragmentation results support necrotic death of 4T1 cells. Similarly, transcripts that prevent cell death were decreased, while transcripts that promote cell death were increased. This study showed that FLt induces apoptosis by both caspase-dependent and caspase-independent mechanisms. These findings suggest that FLt may have potential applications in breast cancer treatment. Further research will provide more information to elucidate the mechanism of action of FLt.


Asunto(s)
Apoptosis , Caspasas , Polisacáridos , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Polisacáridos/farmacología , Animales , Femenino , Caspasas/metabolismo , Ratones , Antineoplásicos/farmacología , Doxorrubicina/farmacología , Humanos , Adenocarcinoma/tratamiento farmacológico , Adenocarcinoma/patología , Fragmentación del ADN/efectos de los fármacos , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/patología , Kelp
12.
Sci Total Environ ; 945: 174065, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-38897470

RESUMEN

Kelps are recognized for providing many ecosystem services in coastal areas and considered in ocean acidification (OA) mitigation. However, assessing OA modification requires an understanding of the multiple parameters involved in carbonate chemistry, especially in highly dynamic systems. We studied the effects of sugar kelp (Saccharina latissima) on an experimental farm at the north end of Hood Canal, Washington-a low retentive coastal system. In this field mesocosm study, two oyster species (Magallana gigas, Ostrea lurida) were exposed at locations in the mid, edge, and outside the kelp array. The Hood Head Sugar Kelp Farm Model outputs were used to identify dominating factors in spatial and temporal kelp dynamics, while wavelet spectrum analyses helped in understanding predictability patterns. This was linked to the measured biological responses (dissolution, growth, isotopes) of the exposed organisms. Positioned in an area of high (sub)-diel tidal fluxes with low retention potential, there were no measurable alterations of the seawater pH at the study site, demonstrating that the kelp array could not induce a direct mitigating effect against OA. However, beneficial responses in calcifiers were still observed, which are linked to two causes: increased pH predictability and improved provisioning through kelp-derived particulate organic resource utilization and as such, kelp improved habitat suitability and indirectly created refugia against OA. This study can serve as an analogue for many coastal bay habitats where prevailing physical forcing drives chemical changes. Future macrophyte studies that investigate OA mitigating effects should focus also on the importance of predictability patterns, which can additionally improve the conditions for marine calcifiers and ecosystem services vulnerable to or compromised by OA, including aquaculture sustainability.


Asunto(s)
Kelp , Agua de Mar , Agua de Mar/química , Concentración de Iones de Hidrógeno , Animales , Refugio de Fauna , Washingtón , Ecosistema , Monitoreo del Ambiente , Ostreidae , Acidificación de los Océanos
13.
Ecology ; 105(7): e4334, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38887829

RESUMEN

Ecological theory predicts that kelp forests structured by trophic cascades should experience recovery and persistence of their foundation species when herbivores become rare. Yet, climate change may be altering the outcomes of top-down forcing in kelp forests, especially those located in regions that have rapidly warmed in recent decades, such as the Gulf of Maine. Here, using data collected annually from 30+ sites spanning >350 km of coastline, we explored the dynamics of Maine's kelp forests in the ~20 years after a fishery-induced elimination of sea urchin herbivores. Although forests (Saccharina latissima and Laminaria digitata) had broadly returned to Maine in the late 20th century, we found that forests in northeast Maine have since experienced slow but significant declines in kelp, and forest persistence in the northeast was juxtaposed by a rapid, widespread collapse in the southwest. Forests collapsed in the southwest apparently because ocean warming has-directly and indirectly-made this area inhospitable to kelp. Indeed, when modeling drivers of change using causal techniques from econometrics, we discovered that unusually high summer seawater temperatures the year prior, unusually high spring seawater temperatures, and high sea urchin densities each negatively impacted kelp abundance. Furthermore, the relative power and absolute impact of these drivers varied geographically. Our findings reveal that ocean warming is redefining the outcomes of top-down forcing in this system, whereby herbivore removal no longer predictably leads to a sustained dominance of foundational kelps but instead has led to a waning dominance (northeast) or the rise of a novel phase state defined by "turf" algae (southwest). Such findings indicate that limiting climate change and managing for low herbivore abundances will be essential for preventing further loss of the vast forests that still exist in northeast Maine. They also more broadly highlight that climate change is "rewriting the rules" of nature, and thus that ecological theory and practice must be revised to account for shifting species and processes.


Asunto(s)
Explotaciones Pesqueras , Cadena Alimentaria , Kelp , Animales , Kelp/fisiología , Cambio Climático , Maine , Océanos y Mares , Erizos de Mar/fisiología , New England , Factores de Tiempo , Herbivoria
14.
ISME J ; 18(1)2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-38709876

RESUMEN

The microbiomes in macroalgal holobionts play vital roles in regulating macroalgal growth and ocean carbon cycling. However, the virospheres in macroalgal holobionts remain largely underexplored, representing a critical knowledge gap. Here we unveil that the holobiont of kelp (Saccharina japonica) harbors highly specific and unique epiphytic/endophytic viral species, with novelty (99.7% unknown) surpassing even extreme marine habitats (e.g. deep-sea and hadal zones), indicating that macroalgal virospheres, despite being closest to us, are among the least understood. These viruses potentially maintain microbiome equilibrium critical for kelp health via lytic-lysogenic infections and the expression of folate biosynthesis genes. In-situ kelp mesocosm cultivation and metagenomic mining revealed that kelp holobiont profoundly reshaped surrounding seawater and sediment virus-prokaryote pairings through changing surrounding environmental conditions and virus-host migrations. Some kelp epiphytic viruses could even infect sediment autochthonous bacteria after deposition. Moreover, the presence of ample viral auxiliary metabolic genes for kelp polysaccharide (e.g. laminarin) degradation underscores the underappreciated viral metabolic influence on macroalgal carbon cycling. This study provides key insights into understanding the previously overlooked ecological significance of viruses within macroalgal holobionts and the macroalgae-prokaryotes-virus tripartite relationship.


Asunto(s)
Bacterias , Kelp , Microbiota , Agua de Mar , Kelp/microbiología , Agua de Mar/microbiología , Agua de Mar/virología , Bacterias/genética , Bacterias/clasificación , Bacterias/metabolismo , Bacterias/aislamiento & purificación , Metagenómica , Algas Marinas/microbiología , Algas Marinas/virología , Sedimentos Geológicos/microbiología , Sedimentos Geológicos/virología , Células Procariotas/virología , Células Procariotas/metabolismo , Bacteriófagos/genética , Bacteriófagos/fisiología , Bacteriófagos/aislamiento & purificación , Viroma
15.
Mar Drugs ; 22(5)2024 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-38786594

RESUMEN

Marine macroalgae are increasingly recognized for their significant biological and economic potential. The key to unlocking this potential lies in the efficient degradation of all carbohydrates from the macroalgae biomass. However, a variety of polysaccharides (alginate, cellulose, fucoidan, and laminarin), are difficult to degrade simultaneously in a short time. In this study, the brown alga Saccharina japonica was found to be rapidly and thoroughly degraded by the marine bacterium Agarivorans albus B2Z047. This strain harbors a broad spectrum of carbohydrate-active enzymes capable of degrading various polysaccharides, making it uniquely equipped to efficiently break down both fresh and dried kelp, achieving a hydrolysis rate of up to 52%. A transcriptomic analysis elucidated the presence of pivotal enzyme genes implicated in the degradation pathways of alginate, cellulose, fucoidan, and laminarin. This discovery highlights the bacterium's capability for the efficient and comprehensive conversion of kelp biomass, indicating its significant potential in biotechnological applications for macroalgae resource utilization.


Asunto(s)
Phaeophyceae , Polisacáridos , Algas Marinas , Algas Marinas/metabolismo , Phaeophyceae/metabolismo , Polisacáridos/metabolismo , Hidrólisis , Biomasa , Glucanos/metabolismo , Flavobacteriaceae/metabolismo , Kelp/metabolismo
16.
PLoS One ; 19(5): e0303536, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38787811

RESUMEN

Species range shifts due to changing ocean conditions are occurring around the world. As species move, they build new interaction networks as they shift from or into new ecological communities. Typically, species ranges are modeled individually, but biotic interactions have been shown to be important to creating more realistic modeling outputs for species. To understand the importance of consumer interactions in Eastern Pacific kelp forest species distributions, we used a Maxent framework to model a key foundation species, giant kelp (Macrocystis pyrifera), and a dominant herbivore, purple sea urchins (Strongylocentrotus purpuratus). With neither species having previously been modeled in the Eastern Pacific, we found evidence for M. pyrifera expansion in the northern section of its range, with no projected contraction at the southern range edge. Despite its known co-occurrence with M. pyrifera, models of S. purpuratus showed a non-concurrent southern range contraction and a co-occurring northern range expansion. While the co-occurring shifts may lead to increased spatial competition for suitable substrate, this non-concurrent contraction could result in community wide impacts such as herbivore release, tropicalization, or ecosystem restructuring.


Asunto(s)
Ecosistema , Kelp , Animales , Kelp/fisiología , Océano Pacífico , Erizos de Mar/fisiología , Bosques , Macrocystis/fisiología , Modelos Biológicos
17.
Sci Rep ; 14(1): 11071, 2024 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-38745036

RESUMEN

The southern coast of Africa is one of the few places in the world where water temperatures are predicted to cool in the future. This endemism-rich coastline is home to two sister species of kelps of the genus Ecklonia maxima and Ecklonia radiata, each associated with specific thermal niches, and occuring primarily on opposite sides of the southern tip of Africa. Historical distribution records indicate that E. maxima has recently shifted its distribution ~ 70 km eastward, to sites where only E. radiata was previously reported. The contact of sister species with contrasting thermal affinities and the occurrence of mixed morphologies raised the hypothesis that hybridization might be occurring in this contact zone. Here we describe the genetic structure of the genus Ecklonia along the southern coast of Africa and investigate potential hybridization and cryptic diversity using a combination of nuclear microsatellites and mitochondrial markers. We found that both species have geographically discrete genetic clusters, consistent with expected phylogeographic breaks along this coastline. In addition, depth-isolated populations were found to harbor unique genetic diversity, including a third Ecklonia lineage. Mito-nuclear discordance and high genetic divergence in the contact zones suggest multiple hybridization events between Ecklonia species. Discordance between morphological and molecular identification suggests the potential influence of abiotic factors leading to convergent phenotypes in the contact zones. Our results highlight an example of cryptic diversity and hybridization driven by contact between two closely related keystone species with contrasting thermal affinities.


Asunto(s)
Variación Genética , Kelp , Filogenia , Kelp/genética , Kelp/clasificación , Filogeografía , Repeticiones de Microsatélite/genética , Hibridación Genética , ADN Mitocondrial/genética , África Austral
18.
Environ Microbiol Rep ; 16(3): e13270, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38778582

RESUMEN

In coastal marine ecosystems, kelp forests serve as a vital habitat for numerous species and significantly influence local nutrient cycles. Bull kelp, or Nereocystis luetkeana, is a foundational species in the iconic kelp forests of the northeast Pacific Ocean and harbours a complex microbial community with potential implications for kelp health. Here, we report the isolation and functional characterisation of 16 Nereocystis-associated bacterial species, comprising 13 Gammaproteobacteria, 2 Flavobacteriia and 1 Actinomycetia. Genome analyses of these isolates highlight metabolisms potentially beneficial to the host, such as B vitamin synthesis and nitrogen retention. Assays revealed that kelp-associated bacteria thrive on amino acids found in high concentrations in the ocean and in the kelp (glutamine and asparagine), generating ammonium that may facilitate host nitrogen acquisition. Multiple isolates have genes indicative of interactions with key elemental cycles in the ocean, including carbon, nitrogen and sulphur. We thus report a collection of kelp-associated microbial isolates that provide functional insight for the future study of kelp-microbe interactions.


Asunto(s)
Ecosistema , Kelp , Secuenciación Completa del Genoma , Kelp/microbiología , Kelp/metabolismo , Kelp/genética , Bacterias/genética , Bacterias/clasificación , Bacterias/metabolismo , Bacterias/aislamiento & purificación , Nitrógeno/metabolismo , Genoma Bacteriano , Océano Pacífico , Filogenia , Gammaproteobacteria/genética , Gammaproteobacteria/clasificación , Gammaproteobacteria/metabolismo , Gammaproteobacteria/aislamiento & purificación , Agua de Mar/microbiología , Carbono/metabolismo
19.
J Phycol ; 60(3): 768-777, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38703050

RESUMEN

Nitrate, the form of nitrogen often associated with kelp growth, is typically low in summer during periods of high macroalgal growth. More ephemeral, regenerated forms of nitrogen, such as ammonium and urea, are much less studied as sources of nitrogen for kelps, despite the relatively high concentrations of regenerated nitrogen found in the Southern California Bight, where kelps are common. To assess how nitrogen uptake by kelps varies by species and nitrogen form in southern California, USA, we measured uptake rates of nitrate, ammonium, and urea by Macrocystis pyrifera and Eisenia arborea individuals from four regions characterized by differences in nitrogen availability-Orange County, San Pedro, eastern Santa Catalina Island, and western Santa Catalina Island-during the summers of 2021 and 2022. Seawater samples collected at each location showed that overall nitrogen availability was low, but ammonium and urea were often more abundant than nitrate. We also quantified the internal %nitrogen of each kelp blade collected, which was positively associated with ambient environmental nitrogen concentrations at the time of collection. We observed that both kelp species readily took up nitrate, ammonium, and urea, with M. pyrifera taking up nitrate and ammonium more efficiently than E. arborea. Urea uptake efficiency for both species increased as internal percent nitrogen decreased. Our results indicate that lesser-studied, more ephemeral forms of nitrogen can readily be taken up by these kelps, with possible upregulation of urea uptake as nitrogen availability declines.


Asunto(s)
Compuestos de Amonio , Nitratos , Nitrógeno , Urea , Urea/metabolismo , Nitratos/metabolismo , Compuestos de Amonio/metabolismo , Nitrógeno/metabolismo , California , Kelp/metabolismo , Macrocystis/metabolismo , Agua de Mar/química
20.
Food Funct ; 15(12): 6424-6437, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38771619

RESUMEN

Obesity requires treatment to mitigate the potential development of further metabolic disorders, including diabetes, hyperlipidemia, tumor growth, and non-alcoholic fatty liver disease. We investigated the anti-obesity effect of a 30% ethanol extract of Eisenia bicyclis (Kjellman) Setchell (EEB) on 3T3-L1 preadipocytes and high-fat diet (HFD)-induced obese C57BL/6 mice. Adipogenesis transcription factors including peroxisome proliferator-activated receptor (PPAR)γ, CCAAT/enhancer-binding protein-alpha (C/EBPα), and sterol regulatory element-binding protein-1 (SREBP-1) were ameliorated through the AMP-activated protein kinase (AMPK) pathway by EEB treatment in differentiated 3T3-L1 cells. EEB attenuated mitotic clonal expansion by upregulating cyclin-dependent kinase inhibitors (CDKIs) while downregulating cyclins and CDKs. In HFD-fed mice, EEB significantly decreased the total body weight, fat tissue weight, and fat in the tissue. The protein expression of PPARγ, C/EBPα, and SREBP-1 was increased in the subcutaneous fat and liver tissues, while EEB decreased the expression levels of these transcription factors. EEB also inhibited lipogenesis by downregulating acetyl-CoA carboxylase (ACC) and fatty acid synthase (FAS) expression in the subcutaneous fat and liver tissues. Moreover, the phosphorylation of AMPK and ACC was downregulated in the HFD-induced mouse group, whereas the administration of EEB improved AMPK and ACC phosphorylation; thus, EEB treatment may be related to the AMPK pathway. Histological analysis showed that EEB reduced the adipocyte size and fat accumulation in subcutaneous fat and liver tissues, respectively. EEB promotes thermogenesis in brown adipose tissue and improves insulin and leptin levels and blood lipid profiles. Our results suggest that EEB could be used as a potential agent to prevent obesity.


Asunto(s)
Células 3T3-L1 , Proteínas Quinasas Activadas por AMP , Fármacos Antiobesidad , Dieta Alta en Grasa , Ratones Endogámicos C57BL , Obesidad , Extractos Vegetales , Transducción de Señal , Animales , Ratones , Dieta Alta en Grasa/efectos adversos , Extractos Vegetales/farmacología , Proteínas Quinasas Activadas por AMP/metabolismo , Proteínas Quinasas Activadas por AMP/genética , Masculino , Fármacos Antiobesidad/farmacología , Obesidad/tratamiento farmacológico , Obesidad/metabolismo , Transducción de Señal/efectos de los fármacos , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/metabolismo , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/genética , Adipogénesis/efectos de los fármacos , PPAR gamma/metabolismo , PPAR gamma/genética , Proteína alfa Potenciadora de Unión a CCAAT/metabolismo , Proteína alfa Potenciadora de Unión a CCAAT/genética , Adipocitos/efectos de los fármacos , Adipocitos/metabolismo , Algas Comestibles , Kelp
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...