Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 546
Filtrar
1.
Antonie Van Leeuwenhoek ; 117(1): 76, 2024 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-38705910

RESUMEN

Despite being one of the most abundant elements in soil, phosphorus (P) often becomes a limiting macronutrient for plants due to its low bioavailability, primarily locked away in insoluble organic and inorganic forms. Phosphate solubilizing and mineralizing bacteria, also called phosphobacteria, isolated from P-deficient soils have emerged as a promising biofertilizer alternative, capable of converting these recalcitrant P forms into plant-available phosphates. Three such phosphobacteria strains-Serratia sp. RJAL6, Klebsiella sp. RCJ4, and Enterobacter sp. 198-previously demonstrated their particular strength as plant growth promoters for wheat, ryegrass, or avocado under abiotic stresses and P deficiency. Comparative genomic analysis of their draft genomes revealed several genes encoding key functionalities, including alkaline phosphatases, isonitrile secondary metabolites, enterobactin biosynthesis and genes associated to the production of indole-3-acetic acid (IAA) and gluconic acid. Moreover, overall genome relatedness indexes (OGRIs) revealed substantial divergence between Serratia sp. RJAL6 and its closest phylogenetic neighbours, Serratia nematodiphila and Serratia bockelmanii. This compelling evidence suggests that RJAL6 merits classification as a novel species. This in silico genomic analysis provides vital insights into the plant growth-promoting capabilities and provenance of these promising PSRB strains. Notably, it paves the way for further characterization and potential application of the newly identified Serratia species as a powerful bioinoculant in future agricultural settings.


Asunto(s)
Enterobacter , Genoma Bacteriano , Genómica , Ácidos Indolacéticos , Filogenia , Serratia , Microbiología del Suelo , Ácidos Indolacéticos/metabolismo , Serratia/genética , Serratia/aislamiento & purificación , Serratia/metabolismo , Serratia/clasificación , Enterobacter/genética , Enterobacter/aislamiento & purificación , Enterobacter/clasificación , Enterobacter/metabolismo , Klebsiella/genética , Klebsiella/metabolismo , Klebsiella/aislamiento & purificación , Klebsiella/clasificación , Desarrollo de la Planta , Suelo/química , Reguladores del Crecimiento de las Plantas/metabolismo
2.
Molecules ; 29(10)2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38792038

RESUMEN

Lignin, the largest non-carbohydrate component of lignocellulosic biomass, is also a recalcitrant component of the plant cell wall. While the aerobic degradation mechanism of lignin has been well-documented, the anaerobic degradation mechanism is still largely elusive. In this work, a versatile facultative anaerobic lignin-degrading bacterium, Klebsiella aerogenes TL3, was isolated from a termite gut, and was found to metabolize a variety of carbon sources and produce a single kind or multiple kinds of acids. The percent degradation of alkali lignin reached 14.8% under anaerobic conditions, and could reach 17.4% in the presence of glucose within 72 h. Based on the results of infrared spectroscopy and 2D nuclear magnetic resonance analysis, it can be inferred that the anaerobic degradation of lignin may undergo the cleavage of the C-O bond (ß-O-4), as well as the C-C bond (ß-5 and ß-ß), and involve the oxidation of the side chain, demethylation, and the destruction of the aromatic ring skeleton. Although the anaerobic degradation of lignin by TL3 was slightly weaker than that under aerobic conditions, it could be further enhanced by adding glucose as an electron donor. These results may shed new light on the mechanisms of anaerobic lignin degradation.


Asunto(s)
Lignina , Lignina/metabolismo , Anaerobiosis , Glucosa/metabolismo , Klebsiella/metabolismo , Biomasa , Biodegradación Ambiental , Animales
3.
Front Cell Infect Microbiol ; 14: 1322113, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38585654

RESUMEN

Background: Dopamine, a frequently used therapeutic agent for critically ill patients, has been shown to be implicated in clinical infections recently, however, the precise mechanisms underlying this association remain elusive. Klebsiella quasivariicola, a novel strain belonging to the Klebsiella species, exhibits potential pathogenic attributes. The impact of dopamine on K. quasivariicola infection has aroused our interest. Objective: Considering the contribution of host immune factors during infection, this study aimed to investigate the intricate interactions between K. quasivariicola, dopamine, and macrophages were explored. Methods: RAW264.7 cells and C57/BL6 mice were infected with K. quasivariicola, and the bacterial growth within macrophage, the production of inflammatory cytokines and the pathological changes in mice lungs were detected, in the absence or presence of dopamine. Results: Dopamine inhibited the growth of K. quasivariicola in the medium, but promoted bacterial growth when co-cultured with macrophages. The expression of proinflammatory cytokines increased in RAW 264.7 cells infected with K. quasivariicola, and a significant rise was observed upon the addition of dopamine. The infection of K. quasivariicola in mice induced an inflammatory response and lung injury, which were exacerbated by the administration of dopamine. Conclusions: Our findings suggest that dopamine may be one of the potential risk factors associated with K. quasivariicola infection. This empirical insight provides solid references for clinical precision medicine. Furthermore, an in vitro model of microbes-drugs-host immune cells for inhibitor screening was proposed to more accurately replicate the complex in vivo environment. This fundamental work had contributed to the present understanding of the crosstalk between pathogen, dopamine and host immune cells.


Asunto(s)
Infecciones por Klebsiella , Pulmón , Humanos , Ratones , Animales , Pulmón/patología , Dopamina , Klebsiella pneumoniae/metabolismo , Macrófagos/microbiología , Citocinas/metabolismo , Klebsiella/metabolismo , Proliferación Celular , Infecciones por Klebsiella/microbiología , Ratones Endogámicos C57BL
4.
Plant Physiol Biochem ; 210: 108624, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38636254

RESUMEN

Heavy metals are one of the most damaging environmental toxins that hamper growth of plants. These noxious chemicals include lead (Pb), arsenic (As), nickel (Ni), cadmium (Cd) and chromium (Cr). Chromium is one of the toxic metal which induces various oxidative processes in plants. The emerging role of nanoparticles as pesticides, fertilizers and growth regulators have attracted the attention of various scientists. Current study was conducted to explore the potential of zinc oxide nanoparticles (ZnONPs) alone and in combination with plant growth promoting rhizobacteria (PGPR) Klebsiella sp. SBP-8 in Cr stress alleviation in Brassica juncea (L.). Chromium stress reduced shoot fresh weight (40%), root fresh weight (28%), shoot dry weight (28%) and root dry weight (34%) in B. juncea seedlings. Chromium stressed B. juncea plants showed enhanced levels of malondialdehyde (MDA), electrolyte leakage (EL), hydrogen peroxide (H2O2) and superoxide ion (O2• -). However, co-supplementation of ZnONPs and Klebsiella sp. SBP-8 escalated the activity of antioxidant enzymes i.e., superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX) in B. juncea grown in normal and Cr-toxic soil. It is further proposed that combined treatment of ZnONPs and Klebsiella sp. SBP-8 may be useful for alleviation of other abiotic stresses in plants.


Asunto(s)
Antioxidantes , Cromo , Klebsiella , Planta de la Mostaza , Óxido de Zinc , Planta de la Mostaza/efectos de los fármacos , Planta de la Mostaza/microbiología , Planta de la Mostaza/metabolismo , Cromo/toxicidad , Cromo/metabolismo , Antioxidantes/metabolismo , Klebsiella/metabolismo , Klebsiella/efectos de los fármacos , Óxido de Zinc/farmacología , Adsorción , Nanopartículas del Metal/química , Nanopartículas/química , Contaminantes del Suelo/toxicidad
5.
Bioresour Technol ; 400: 130691, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38599347

RESUMEN

Indole acetic acid (IAA) as a plant hormone, was one of the valuable products of anaerobic fermentation. However, the enriching method remained unknown. Moreover, whether zero valent iron (ZVI) could enhance IAA production was unexplored. In this work, IAA producing bacteria Klebsiella (63 %) was enriched successfully. IAA average production rate and concentration were up to 3 mg/L/h and 56 mg/L. With addition of 1 g/L ZVI, IAA average production rate and concentration was increased for 2 and 3 folds. Mechanisms indicated ZVI increased Na+K+-ATP activity and electron transport activity for 2 folds and 1 fold. Moreover, macro transcription determined indole pyruvate pathway activity like primary-amine oxidase, indole pyruvate decarboxylase and aldehyde dehydrogenase were increased for 146 %, 187 %, and 557 %, respectively. Therefore, ZVI was suitable for enhancement IAA production from mixed culture anaerobic fermentation.


Asunto(s)
Fermentación , Ácidos Indolacéticos , Hierro , Triptófano , Ácidos Indolacéticos/metabolismo , Triptófano/metabolismo , Anaerobiosis , Hierro/metabolismo , Klebsiella/metabolismo
6.
Bioresour Technol ; 400: 130693, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38608785

RESUMEN

The synchronous bioelectricity generation and dissimilatory nitrate reduction to ammonium (DNRA) pathway in Klebsiella variicola C1 was investigated. The presence of bioelectricity facilitated cell growth on the anodic biofilms, consequently enhancing the nitrate removal efficiency decreasing total nitrogen levels and causing a negligible accumulation of NO2- in the supernatant. Genomic analysis revealed that K. variicola C1 possessed a complete DNRA pathway and largely annotated electron shuttles. The up-regulated expression of genes narG and nirB, encoding nitrite oxidoreductase and nitrite reductase respectively, was closely associated with increased extracellular electron transfer (EET). High-throughput sequencing analysis was employed to investigate the impact of bioelectricity on microbial community composition within cathodic biofilms. Results indicated that Halomonas, Marinobacter and Prolixibacteraceae were enriched at the cathode electrodes. In conclusion, the integration of a DNRA strain with MFC facilitated the efficient removal of wastewater containing high concentrations of NO3- and enabled the environmentally friendly recovery of NH4+.


Asunto(s)
Compuestos de Amonio , Fuentes de Energía Bioeléctrica , Biopelículas , Electrodos , Nitratos , Fuentes de Energía Bioeléctrica/microbiología , Nitratos/metabolismo , Compuestos de Amonio/metabolismo , Klebsiella/metabolismo , Klebsiella/genética , Aguas Residuales/microbiología , Microbiota/fisiología , Oxidación-Reducción , Electricidad
7.
J Agric Food Chem ; 72(10): 5176-5184, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38417018

RESUMEN

Microbial degradation is a highly efficient and reliable approach for mitigating the contamination of sulfonylurea herbicides, such as chlorimuron-ethyl, in soil and water. In this study, we aimed to assess whether Kj-mhpC plays a pivotal role in the degradation of chlorimuron-ethyl. Kj-mhpC enzyme purified via prokaryotic expression exhibited the highest catalytic activity for chlorimuron-ethyl at 35 °C and pH 7. Bioinformatic analysis and three-dimensional homologous modeling of Kj-mhpC were conducted. Additionally, the presence of Mg+ and Cu2+ ions partially inhibited but Pb2+ ions completely inhibited the enzymatic activity of Kj-mhpC. LC/MS revealed that Kj-mhpC hydrolyzes the ester bond of chlorimuron-ethyl, resulting in the formation of 2-(4-chloro-6-methoxypyrimidine-2-amidoformamidesulfonyl) benzoic acid. Furthermore, the point mutation of serine at position 67 (Ser67) confirmed that it is the key amino acid at the active site for degrading chlorimuron-ethyl. This study enhanced the understanding of how chlorimuron-ethyl is degraded by microorganisms and provided a reference for bioremediation of the environment polluted with chlorimuron-ethyl.


Asunto(s)
Herbicidas , Pirimidinas , Contaminantes del Suelo , Klebsiella/genética , Klebsiella/metabolismo , Esterificación , Contaminantes del Suelo/metabolismo , Herbicidas/metabolismo , Compuestos de Sulfonilurea/metabolismo , Iones
8.
Bioresour Technol ; 394: 130184, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38086459

RESUMEN

A novel strain with heterotrophic nitrification and aerobic denitrification was screened and identified as Klebsiella sp. TSH15 by 16S rRNA. The results demonstrated that the ammonia-N and nitrate-N removal rates were 2.99 mg/L/h and 2.53 mg/L/h under optimal conditions, respectively. The analysis of the whole genome indicated that strain TSH15 contained the key genes involved in assimilatory/dissimilatory nitrate reduction and ammonia assimilation, including nas, nar, nir, nor, glnA, gltB, gdhA, and amt. The relative expression levels of key nitrogen removal genes were further detected by RT-qPCR. The results indicated that the N metabolic pathways of strain TSH15 were the conversion of nitrate or nitrite to ammonia by assimilatory/dissimilatory nitrate reduction (NO3-→NO2-→NH4+) and further conversion of ammonia to glutamate (NH4+-N â†’ Glutamate) by ammonia assimilation. These results indicated that the strain TSH15 had the potential to be applied to practical sewage treatment in the future.


Asunto(s)
Amoníaco , Desnitrificación , Amoníaco/metabolismo , Nitratos/metabolismo , Klebsiella/genética , Klebsiella/metabolismo , Nitrógeno/metabolismo , ARN Ribosómico 16S , Aerobiosis , Nitrificación , Nitritos/metabolismo , Procesos Heterotróficos , Glutamatos/metabolismo
9.
Environ Toxicol ; 39(4): 2254-2264, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38148636

RESUMEN

CA is a plant derivative with antibacterial and antiviral pharmacological effects, however, the therapeutic effect of CA on Klebsiella pneumonia and its mechanism study is still unclear. A rat KP model was established in vitro, a pneumonia cell model was established in vivo, the histopathological changes in the lungs were observed by HE staining after CA treatment, the expression of relevant inflammatory factors was detected by ELISA, the changes in the expression of proteins related to the AhR-Src-STAT3-IL-10 signaling pathway were detected by Western blot and immunofluorescence in the lungs, and the interactions between the proteins were verified by COIP relationship. The results showed that CA was able to attenuate the injury and inflammatory response of lung tissues, and molecular docking showed that there were binding sites between CA and AhR, and COIP demonstrated that AhR interacted with both STAT3 and Ser. In addition, CA was able to up-regulate the expression levels of pathway-related proteins of AhR, IL-10, p-Src, and p-STAT3, and AhR knockdown was able to reduce LPS-induced inflammatory responses and up-regulate pathway-related proteins, whereas CA treatment of AhR-knockdown-treated A549 cells did not show any statistically significant difference compared with the AhR knockdown group, demonstrating that CA exerts its pharmacological effects. These findings elucidated the mechanism of CA in the treatment of KP and demonstrated that CA is a potential therapeutic agent for KP.


Asunto(s)
Ácidos Cafeicos , Interleucina-10 , Neumonía , Ratas , Animales , Simulación del Acoplamiento Molecular , Receptores de Hidrocarburo de Aril/genética , Receptores de Hidrocarburo de Aril/metabolismo , Transducción de Señal , Neumonía/tratamiento farmacológico , Klebsiella/metabolismo
10.
Bioresour Technol ; 387: 129604, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37544543

RESUMEN

Mixed pollutant wastewater has been a difficult problem due to the high toxicity of water bodies and the difficulty of treatment. Rice husk biochar modified with nano-iron tetroxide (RBC-nFe3O4) by polyvinyl alcohol cross-linking internal doping was used to introduce iron-reducing bacteria Klebsiella sp. FC61 to construct a bioreactor. The results of the long-term operation of the bioreactor showed that the removal efficiency of ammonia nitrogen (NH4+-N) and chemical oxygen demand best reached 90.18 and 98.49%, respectively. In addition, in the co-presence of Ni2+, Cd2+, and ciprofloxacin, the bioreactor was still able to remove pollutants efficiently by RBC-nFe3O4 and bio-iron precipitation inside the biocarrier. During the long-term operation, Klebsiella was always the dominant species in the bioreactor. And the sequencing data for functional prediction showed that the biocarrier contained a variety of enzymes and proteins involved in Feammox-related activities to ensure the stable and efficient operation of the bioreactor.


Asunto(s)
Hidrogeles , Microbiota , Hidrogeles/metabolismo , Aguas Residuales , Hierro/metabolismo , Reactores Biológicos/microbiología , Nitrógeno/metabolismo , Bacterias/genética , Bacterias/metabolismo , Klebsiella/genética , Klebsiella/metabolismo
11.
ACS Infect Dis ; 9(5): 1123-1136, 2023 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-37130087

RESUMEN

The wide spread of carbapenem-hydrolyzing ß-lactamases in Gram-negative bacteria has diminished the utility of the last-resort carbapenem antibiotics, significantly narrowing the available therapeutic options. In the Enterobacteriaceae family, which includes many important clinical pathogens such as Klebsiella pneumoniae and Escherichia coli, production of class D ß-lactamases from the OXA-48-type family constitutes the major mechanism of resistance to carbapenems. To address the public health threat posed by these enzymes, novel, effective therapeutics are urgently needed. Here, we report evaluation of a novel, C5α-methyl-substituted carbapenem, NA-1-157, and show that its MICs against bacteria producing OXA-48-type enzymes were reduced by 4- to 32-fold when compared to meropenem. When combined with commercial carbapenems, the potency of NA-1-157 was further enhanced, resulting in target potentiation concentrations ranging from 0.125 to 2 µg/mL. Kinetic studies demonstrated that the compound is poorly hydrolyzed by OXA-48, with a catalytic efficiency 30- to 50-fold lower than those of imipenem and meropenem. Acylation of OXA-48 by NA-1-157 was severely impaired, with a rate 10,000- to 36,000-fold slower when compared to the commercial carbapenems. Docking, molecular dynamics, and structural studies demonstrated that the presence of the C5α-methyl group in NA-1-157 creates steric clashes within the active site, leading to differences in the position and the hydrogen-bonding pattern of the compound, which are incompatible with efficient acylation. This study demonstrates that NA-1-157 is a promising novel carbapenem for treatment of infections caused by OXA-48-producing bacterial pathogens.


Asunto(s)
Antibacterianos , Carbapenémicos , Carbapenémicos/farmacología , Meropenem/farmacología , Antibacterianos/farmacología , Klebsiella/metabolismo , Cinética , beta-Lactamasas/metabolismo , Escherichia coli/metabolismo
12.
Nat Metab ; 5(5): 896-909, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37157031

RESUMEN

Drugs can be modified or degraded by the gut microbiota, which needs to be considered in personalized therapy. The clinical efficacy of the antidiabetic drug acarbose, an inhibitor of α-glucosidase, varies greatly among individuals for reasons that are largely unknown. Here we identify in the human gut acarbose-degrading bacteria, termed Klebsiella grimontii TD1, whose presence is associated with acarbose resistance in patients. Metagenomic analyses reveal that the abundance of K. grimontii TD1 is higher in patients with a weak response to acarbose and increases over time with acarbose treatment. In male diabetic mice, co-administration of K. grimontii TD1 reduces the hypoglycaemic effect of acarbose. Using induced transcriptome and protein profiling, we further identify an acarbose preferred glucosidase, Apg, in K. grimontii TD1, which can degrade acarbose into small molecules with loss of inhibitor function and is widely distributed in human intestinal microorganisms, especially in Klebsiella. Our results suggest that a comparatively large group of individuals could be at risk of acarbose resistance due to its degradation by intestinal bacteria, which may represent a clinically relevant example of non-antibiotic drug resistance.


Asunto(s)
Acarbosa , Microbioma Gastrointestinal , Hipoglucemiantes , Hipoglucemiantes/metabolismo , Humanos , Acarbosa/metabolismo , Klebsiella/genética , Klebsiella/metabolismo , Inhibidores de Glicósido Hidrolasas/metabolismo , Resistencia a Medicamentos , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Masculino , Femenino , Persona de Mediana Edad , Animales , Ratones , Ratones Endogámicos C57BL , RNA-Seq , Adolescente , Adulto Joven , Adulto , Anciano , Anciano de 80 o más Años
13.
Molecules ; 28(6)2023 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-36985482

RESUMEN

To prevent the rapidly increasing prevalence of bacterial resistance, it is crucial to discover new antibacterial agents. The emergence of Klebsiella pneumoniae carbapenemase (KPC)-producing Enterobacteriaceae has been associated with a higher mortality rate in gulf union countries and worldwide. Compared to physical and chemical approaches, green zinc oxide nanoparticle (ZnO-NP) synthesis is thought to be significantly safer and more ecofriendly. The present study used molecular dynamics (MD) to examine how ZnO-NPs interact with porin protein (GLO21), a target of ß-lactam antibiotics, and then tested this interaction in vitro by determining the zone of inhibition (IZ), minimum inhibitory concentration (MIC), and minimum bactericidal concentration (MBC), as well as the alteration of KPC's cell surface. The nanoparticles produced were characterized by UV-Vis spectroscopy, zetasizer, Fourier-transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM). In silico investigation was conducted using a variety of computational techniques, including Autodock Vina for protein and ligand docking and Desmond for MD simulation. The candidate ligands that interact with the GLO21 protein were biosynthesized ZnO-NPs, meropenem, imipenem, and cefepime. Analysis of MD revealed that the ZnO-NPs had the highest log P value (-9.1 kcal/mol), which indicates higher permeability through the bacterial surface, followed by cefepime (-7.9 kcal/mol), meropenem (-7.5 kcal/mol), and imipenem (-6.4 kcal/mol). All tested compounds and ZnO-NPs possess similar binding sites of porin proteins. An MD simulation study showed a stable system for ZnO-NPs and cefepime, as confirmed by RMSD and RMSF values during 100 ns trajectories. The test compounds were further inspected for their intersection with porin in terms of hydrophobic, hydrogen, and ionic levels. In addition, the stability of these bonds were measured by observing the protein-ligand contact within 100 ns trajectories. ZnO-NPs showed promising results for fighting KPC, represented in MIC (0.2 mg/mL), MBC (0.5 mg/mL), and ZI (24 mm diameter). To draw the conclusion that ZnO-NP is a potent antibacterial agent and in order to identify potent antibacterial drugs that do not harm human cells, further in vivo studies are required.


Asunto(s)
Nanopartículas del Metal , Nanopartículas , Neumonía , Óxido de Zinc , Humanos , Óxido de Zinc/química , Carbapenémicos/farmacología , Meropenem/farmacología , Klebsiella/metabolismo , Cefepima , Porinas/metabolismo , Simulación de Dinámica Molecular , Ligandos , Antibacterianos/farmacología , Antibacterianos/química , Nanopartículas/química , Imipenem/farmacología , Monobactamas , Pruebas de Sensibilidad Microbiana , Klebsiella pneumoniae/metabolismo , Nanopartículas del Metal/química , Espectroscopía Infrarroja por Transformada de Fourier
14.
J Appl Microbiol ; 134(2)2023 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-36724283

RESUMEN

AIMS: The prevalent distribution of plasmid-mediated ß-lactam resistance is the most pressing global problem in enteric diseases. The current work aims to characterize plasmid-carrying ß-lactam resistant Enterobacteriaceae isolates from North East India for horizontal gene transfer (HGT) and plasmid adaptation study. METHODS AND RESULTS: In vitro transconjugation and transformation showed overall high conjugation frequency (4.11 × 10-1-9.2 × 10-1) and moderate transformation efficiency/µg DNA (1.02 × 102 -1 × 103), and the highest conjugation frequency (9.2 × 10-1) and transformation efficiency (1 × 103) for Escherichia species S-10. Intra/intergenus plasmid transformation efficiency was highest for the transformation of Klebsiella pneumoniae S-2 to Shigellaflexneri S-42 (1.3 × 103) and lowest for Escherichia species S-10 to Escherichia fergusonii S-30 (2 × 102). In the plasmid stability test, S-10 was detected with the highest plasmid carrying frequency (83.44%) and insignificant segregational loss rate (0.0004) until the 60th day with low plasmid cost on the host. The above findings were also validated by whole-plasmid sequencing of Escherichia species S-10. The genome was identified with two plasmids constituting multiple phage proteins, relaxosomal protein NikA, replication protein RepA, and the plasmid maintenance proteins (ParA, RelE/ParE), thus assisting stable plasmid maintenance. CONCLUSIONS: The results thus indicate that the high conjugation ability and low plasmid fitness cost might lead to horizontal gene transfer of the plasmid to the environment due to their prolonged adaptation in nonselective conditions, intensifying the infection's severity.


Asunto(s)
Toxinas Bacterianas , Proteínas de Escherichia coli , Humanos , Niño , beta-Lactamasas/genética , beta-Lactamasas/metabolismo , Escherichia coli/genética , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/metabolismo , Plásmidos/genética , Klebsiella/metabolismo , India , Transferencia de Gen Horizontal , Antibacterianos/farmacología , Proteínas de Escherichia coli/genética
15.
Int J Med Microbiol ; 313(2): 151576, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36812841

RESUMEN

INTRODUCTION: Pneumonia is an inflammation-related respiratory infection and chlorogenic acid (CGA) possesses a wide variety of bioactive properties, such as anti-inflammation and anti-bacteria. AIM: This study explored the anti-inflammatory mechanism of CGA in Klebsiella pneumoniae (Kp)-induced rats with severe pneumonia. METHODS: The pneumonia rat models were established by infection with Kp and treated with CGA. Survival rates, bacterial load, lung water content, and cell numbers in the bronchoalveolar lavage fluid were recorded, lung pathological changes were scored, and levels of inflammatory cytokines were determined by enzyme-linked immunosorbent assay. RLE6TN cells were infected with Kp and treated with CGA. The expression levels of microRNA (miR)-124-3p, p38, and mitogen-activated protein kinase (MAPK)-activated protein kinase 2 (MK2) in lung tissues and RLE6TN cells were quantified by real-time quantitative polymerase chain reaction or Western blotting. The binding of miR-124-3p to p38 was validated by the dual-luciferase and RNA pull-down assays. In vitro, the functional rescue experiments were performed using miR-124-3p inhibitor or p38 agonist. RESULTS: Kp-induced pneumonia rats presented high mortality, increased lung inflammatory infiltration and the release of inflammatory cytokines, and enhanced bacterial load, while CGA treatment improved rat survival rates and the above situations. CGA increased miR-124-3p expression, and miR-124-3p inhibited p38 expression and inactivated the p38MAPK pathway. Inhibition of miR-124-3p or activation of the p38MAPK pathway reversed the alleviative effect of CGA on pneumonia in vitro. CONCLUSION: CGA upregulated miR-124-3p expression and inactivated the p38MAPK pathway to downregulate inflammatory levels, facilitating the recovery of Kp-induced pneumonia rats.


Asunto(s)
MicroARNs , Neumonía , Ratas , Animales , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/uso terapéutico , Klebsiella pneumoniae/genética , Ácido Clorogénico/farmacología , Ácido Clorogénico/uso terapéutico , Klebsiella/genética , Klebsiella/metabolismo , MicroARNs/genética , Neumonía/tratamiento farmacológico , Neumonía/microbiología , Citocinas/metabolismo , Antiinflamatorios/farmacología
16.
PLoS One ; 18(1): e0280150, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36630464

RESUMEN

BACKGROUND: Antibiotic resistance has become an enduring threat to human health. This has prompted extensive research to identify the determinants responsible in a bid to fight the spread of resistance and also develop new antibiotics. However, routine procedures focus on identifying genetic determinants of resistance only on phenotypically resistant isolates. We aimed to characterise plasmid mediated resistance determinants in key Enterobacteriaceae isolates with differential phenotypic susceptibility profiles and evaluated the contribution of resistance genes on phenotypic expression of susceptibility. METHODS: The study was carried out on 200 Enterobacteriaceae isolates belonging to the genera E. coli, Salmonella, and Klebsiella; 100 resistant and 100 susceptible to quinolones, aminoglycosides, and ESBL-producing as determined by disk diffusion. Reduced susceptibility in susceptible isolates was determined as an increased MIC by broth microdilution. Plasmid-borne resistance genes were sought in all isolates by endpoint PCR. We performed correlations tests to determine the relationship between the occurrence of resistance genes and increased MIC in susceptible isolates. We then used the notion of penetrance to show adequacy between resistance gene carriage and phenotypic resistance as well as diagnostic odds ratio to evaluate how predictable phenotypic susceptibility profile could determine the presence of resistant genes in the isolates. RESULTS: Reduced susceptibility was detected in 30% (9/30) ESBL negative, 50% (20/40) quinolone-susceptible and 53.33% (16/30) aminoglycoside-susceptible isolates. Plasmid-borne resistance genes were detected in 50% (15/30) of ESBL negative, 65% (26/40) quinolone susceptible and 66.67% (20/30) aminoglycoside susceptible isolates. Reduced susceptibility increased the risk of susceptible isolates carrying resistance genes (ORs 4.125, 8.36, and 8.89 respectively for ESBL, quinolone, and aminoglycoside resistance genes). Resistance gene carriage correlated significantly to reduced susceptibility for quinolone and aminoglycoside resistance genes (0.002 and 0.015 at CI95). Gene carriage correlated with phenotypic resistance at an estimated 64.28% for ESBL, 56.90% for quinolone, and 58.33% for aminoglycoside resistance genes. CONCLUSIONS: A high carriage of plasmid-mediated genes for ESBL, quinolone, and aminoglycoside resistance was found among the Enterobacteriaceae tested. However, gene carriage was not always correlated with phenotypic expression. This allows us to suggest that assessing genetic determinants of resistance should not be based on AST profile only. Further studies, including assessing the role of chromosomal determinants will shed light on other factors that undermine antimicrobial susceptibility locally.


Asunto(s)
Escherichia coli , Quinolonas , Animales , Humanos , Escherichia coli/metabolismo , Antibacterianos/farmacología , Klebsiella/genética , Klebsiella/metabolismo , Pollos/genética , Camerún , beta-Lactamasas/genética , Farmacorresistencia Bacteriana/genética , Plásmidos/genética , Aminoglicósidos/farmacología , Quinolonas/farmacología , Salmonella/genética , Salmonella/metabolismo , Pruebas de Sensibilidad Microbiana
17.
Sci Total Environ ; 870: 161805, 2023 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-36708818

RESUMEN

The emergence of extended-spectrum ß-lactamase (ESBL)- and especially carbapenemases in Enterobacterales has led to limited therapeutic options. Therefore, it is critical to fully understand all potential routes of transmission, especially in high-risk sources such as hospital wastewater. This study aimed to quantify four enteric opportunistic pathogens (EOPs), total, ESBL- and carbapenem-resistant coliforms and their corresponding resistance genes (two ESBL and five carbapenemase genes) and to characterize enterobacterial isolates from hospital wastewater from two large hospitals in Zagreb over two seasons. Culturing revealed similar average levels of total and carbapenem-resistant coliforms (3.4 × 104 CFU/mL), and 10-fold lower levels of presumptive ESBL coliforms (3 × 103 CFU/mL). Real-time PCR revealed the highest E. coli levels among EOPs (105 cell equivalents/mL) and the highest levels of the blaKPC gene (up to 10-1 gene copies/16S copies) among all resistance genes examined. Of the 69 ESBL- and 90 carbapenemase-producing Enterobacterales (CPE) isolates from hospital wastewater, all were multidrug-resistant and most were identified as Escherichia coli, Citrobacter, Enterobacter, and Klebsiella. Among ESBL isolates, blaCTX-M-15 was the most prevalent ESBL gene, whereas in CPE isolates, blaKPC-2 and blaNDM-1 were the most frequently detected CP genes, followed by blaOXA-48. Molecular epidemiology using PFGE, MLST and whole-genome sequencing (WGS) revealed that clinically relevant variants such as E. coli ST131 (blaCTX-M-15/blaTEM-116) and ST541 (blaKPC-2), K. pneumoniae ST101 (blaOXA-48/blaNDM-1), and Enterobacter cloacae complex ST277 (blaKPC-2/blaNDM-1) were among the most frequently detected clone types. WGS also revealed a diverse range of resistance genes and plasmids in these and other isolates, as well as transposons and insertion sequences in the flanking regions of the blaCTX-M, blaOXA-48, and blaKPC-2 genes, suggesting the potential for mobilization. We conclude that hospital wastewater is a potential secondary reservoir of clinically important pathogens and resistance genes and therefore requires effective pretreatment before discharge to the municipal sewer system.


Asunto(s)
Antibacterianos , Escherichia coli , Antibacterianos/farmacología , Aguas Residuales , Tipificación de Secuencias Multilocus , Croacia , Proteínas Bacterianas/genética , beta-Lactamasas/genética , Klebsiella pneumoniae , Hospitales , Klebsiella/genética , Klebsiella/metabolismo , Enterobacter/genética , Carbapenémicos/farmacología , Pruebas de Sensibilidad Microbiana
18.
Chemosphere ; 313: 137375, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36435315

RESUMEN

Co-contamination by antibiotics and heavy metal is common in the environment, however, there is scarce information about antibiotics biodegradation under heavy metals stress. In this study, Klebsiella sp. Strain YB1 was isolated which is capable of biodegrading chloramphenicol (CAP) with a biodegradation efficiency of 22.41% at an initial CAP of 10 mg L-1 within 2 days. CAP biodegradation which fitted well with the first-order kinetics. YB1 still degrades CAP under Cd stress, however 10 mg L-1 Cd inhibited CAP biodegradation by 15.1%. Biotransformation pathways remained the same under Cd stress, but two new products (Cmpd 19 and Cmpd 20) were identified. Five parallel metabolism pathways of CAP were proposed with/without Cd stress, including one novel pathway (pathway 5) that has not been reported before. In pathway 5, the initial reaction was oxidation of CAP by disruption of C-C bond at the side chain of C1 and C2 with the formation of 4-nitrobenzyl alcohol and CY7, then these intermediates were oxidized into p-nitrobenzoic acid and CY1, respectively. CAP acetyltransferase and nitroreductase and 2,3/4,5-dioxygenase may play an important role in CAP biodegradation through genome analysis and prediction. This study deepens our understanding of mechanism of antibiotic degradation under heavy metal stress in the environment.


Asunto(s)
Cadmio , Metales Pesados , Antibacterianos/farmacología , Biodegradación Ambiental , Biotransformación , Cadmio/metabolismo , Cloranfenicol/farmacología , Klebsiella/genética , Klebsiella/metabolismo , Genoma Bacteriano
19.
Environ Pollut ; 316(Pt 2): 120645, 2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-36375580

RESUMEN

Klebsiella quasipneumoniae subsp. similipneumoniae has emerged as a human pathogen and sporadic isolates from non-clinical sources were reported. Here, we described the phenotypic- and genomic-characteristics of a multidrug-resistant (MDR) and potentially hypervirulent (MDR-hv) Klebsiella quasipneumoniae subsp. similipneumoniae (KqA1) isolated from hospital wastewater. The antibiotic susceptibility profile of KqA1 was investigated using disk-diffusion method, broth microdilution method, and agar dilution method, and the genetic characteristics of antimicrobial resistance, mobile genetics elements, and virulence were evaluated by genomic DNA sequencing on the Illumina® NovaSeq6000 platform as well as by bioinformatic analysis. Resistome analyses revealed the presence of genes related to resistance to ß-lactams, aminoglycosides, quinolones, tetracyclines, sulfonamides, trimethoprim, chloramphenicol, macrolides, and fosfomycin. New genetic contexts to blaGES-16 (carbapenemase gene) and to fosA (fosfomycin resistance gene) were described. A set of mechanisms that can contribute to antibiotic resistance, commonly detected in Klebsiella spp., was also found including chromosomal mutations, efflux systems, proteins, and regulators. Moreover, KqA1 presented genes related to tolerance to metals (arsenic, copper, nickel, cobalt, magnesium, cadmium, zinc, tellurium, selenium) and to biocides (quaternary-ammonium compounds). The isolate was classified as potentially hypervirulent due to a wide range of virulence factors found associated to regulation, motility, biofilm, effector delivery systems, immune modulation, nutritional/metabolic factors, adherence, invasion, and competitive advantage. The occurrence of MDR-hv KqA1 in hospital wastewater points out how this environment matrix plays a crucial role in the maintenance and selection of critical bacterial pathogens. Regarding One Health perspective, it is evident the need for multidisciplinary implementation of control measures for antibiotic-resistant bacteria, not only in hospital settings but also in a general environmental context to mitigate the dissemination of MDR and hv bacteria.


Asunto(s)
Fosfomicina , Aguas Residuales , Humanos , Factores de Virulencia/genética , Pruebas de Sensibilidad Microbiana , Klebsiella/genética , Klebsiella/metabolismo , beta-Lactamasas/genética , beta-Lactamasas/metabolismo , Farmacorresistencia Bacteriana Múltiple/genética , Antibacterianos/farmacología , Hospitales
20.
Methods Mol Biol ; 2594: 13-28, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36264485

RESUMEN

This protocol describes a method for verifying the specific transcription factor regulating glycerol dehydratase (GDH) expression in Klebsiella. DNA pull-down accompanied with mass spectrometry is used to screen and identify the transcription factor interacting with the promoter region of the key gene in Klebsiella. EMSA method is used to validate the specific binding of the transcription factor to the promoter region in vitro. In addition, the target DNA fragments are constructed by fusion PCR to prepare competent cells from Klebsiella for electrical transformation and further transformed to obtain key gene deletion strains to verify the transcription factor responsible for the target gene expression in Klebsiella.


Asunto(s)
Klebsiella , Factores de Transcripción , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Klebsiella/genética , Klebsiella/metabolismo , Regiones Promotoras Genéticas , Regulación de la Expresión Génica , ADN , Transcripción Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA