Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Dev Cell ; 59(11): 1439-1456.e7, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38579716

RESUMEN

Basement membranes (BMs) are sheet-like structures of extracellular matrix (ECM) that provide structural support for many tissues and play a central role in signaling. They are key regulators of cell behavior and tissue functions, and defects in their assembly or composition are involved in numerous human diseases. Due to the differences between human and animal embryogenesis, ethical concerns, legal constraints, the scarcity of human tissue material, and the inaccessibility of the in vivo condition, BM regulation during human embryo development has remained elusive. Using the post-implantation amniotic sac embryoid (PASE), we delineate BM assembly upon post-implantation development and BM disassembly during primitive streak (PS) cell dissemination. Further, we show that the transcription factor Oct4 regulates the expression of BM structural components and receptors and controls BM development by regulating Akt signaling and the small GTPase Rac1. These results represent a relevant step toward a more comprehensive understanding of early human development.


Asunto(s)
Membrana Basal , Desarrollo Embrionario , Factor 3 de Transcripción de Unión a Octámeros , Transducción de Señal , Proteína de Unión al GTP rac1 , Humanos , Membrana Basal/metabolismo , Desarrollo Embrionario/genética , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Factor 3 de Transcripción de Unión a Octámeros/genética , Proteína de Unión al GTP rac1/metabolismo , Proteína de Unión al GTP rac1/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Regulación del Desarrollo de la Expresión Génica , Línea Primitiva/metabolismo , Línea Primitiva/citología , Laminina/metabolismo , Matriz Extracelular/metabolismo
2.
Dev Cell ; 59(10): 1252-1268.e13, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38579720

RESUMEN

The blueprint of the mammalian body plan is laid out during gastrulation, when a trilaminar embryo is formed. This process entails a burst of proliferation, the ingression of embryonic epiblast cells at the primitive streak, and their priming toward primitive streak fates. How these different events are coordinated remains unknown. Here, we developed and characterized a 3D culture of self-renewing mouse embryonic cells that captures the main transcriptional and architectural features of the early gastrulating mouse epiblast. Using this system in combination with microfabrication and in vivo experiments, we found that proliferation-induced crowding triggers delamination of cells that express high levels of the apical polarity protein aPKC. Upon delamination, cells become more sensitive to Wnt signaling and upregulate the expression of primitive streak markers such as Brachyury. This mechanistic coupling between ingression and differentiation ensures that the right cell types become specified at the right place during embryonic development.


Asunto(s)
Diferenciación Celular , Gastrulación , Estratos Germinativos , Animales , Ratones , Estratos Germinativos/citología , Estratos Germinativos/metabolismo , Proteínas de Dominio T Box/metabolismo , Proteínas de Dominio T Box/genética , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/metabolismo , Línea Primitiva/citología , Línea Primitiva/metabolismo , Proteínas Fetales/metabolismo , Proteínas Fetales/genética , Vía de Señalización Wnt , Proliferación Celular , Regulación del Desarrollo de la Expresión Génica , Embrión de Mamíferos/citología , Embrión de Mamíferos/metabolismo
3.
Nature ; 622(7983): 574-583, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37369348

RESUMEN

Investigating human development is a substantial scientific challenge due to the technical and ethical limitations of working with embryonic samples. In the face of these difficulties, stem cells have provided an alternative to experimentally model inaccessible stages of human development in vitro1-13. Here we show that human pluripotent stem cells can be triggered to self-organize into three-dimensional structures that recapitulate some key spatiotemporal events of early human post-implantation embryonic development. Our system reproducibly captures spontaneous differentiation and co-development of embryonic epiblast-like and extra-embryonic hypoblast-like lineages, establishes key signalling hubs with secreted modulators and undergoes symmetry breaking-like events. Single-cell transcriptomics confirms differentiation into diverse cell states of the perigastrulating human embryo14,15 without establishing placental cell types, including signatures of post-implantation epiblast, amniotic ectoderm, primitive streak, mesoderm, early extra-embryonic endoderm, as well as initial yolk sac induction. Collectively, our system captures key features of human embryonic development spanning from Carnegie stage16 4-7, offering a reproducible, tractable and scalable experimental platform to understand the basic cellular and molecular mechanisms that underlie human development, including new opportunities to dissect congenital pathologies with high throughput.


Asunto(s)
Linaje de la Célula , Implantación del Embrión , Desarrollo Embrionario , Células Madre Pluripotentes , Femenino , Humanos , Embarazo , Diferenciación Celular , Estratos Germinativos/citología , Estratos Germinativos/enzimología , Células Madre Embrionarias Humanas/citología , Placenta/citología , Células Madre Pluripotentes/citología , Línea Primitiva/citología , Línea Primitiva/embriología , Saco Vitelino/citología , Saco Vitelino/embriología
4.
Nature ; 612(7941): 732-738, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36517595

RESUMEN

Our understanding of human early development is severely hampered by limited access to embryonic tissues. Due to their close evolutionary relationship with humans, nonhuman primates are often used as surrogates to understand human development but currently suffer from a lack of in vivo datasets, especially from gastrulation to early organogenesis during which the major embryonic cell types are dynamically specified. To fill this gap, we collected six Carnegie stage 8-11 cynomolgus monkey (Macaca fascicularis) embryos and performed in-depth transcriptomic analyses of 56,636 single cells. Our analyses show transcriptomic features of major perigastrulation cell types, which help shed light on morphogenetic events including primitive streak development, somitogenesis, gut tube formation, neural tube patterning and neural crest differentiation in primates. In addition, comparative analyses with mouse embryos and human embryoids uncovered conserved and divergent features of perigastrulation development across species-for example, species-specific dependency on Hippo signalling during presomitic mesoderm differentiation-and provide an initial assessment of relevant stem cell models of human early organogenesis. This comprehensive single-cell transcriptome atlas not only fills the knowledge gap in the nonhuman primate research field but also serves as an invaluable resource for understanding human embryogenesis and developmental disorders.


Asunto(s)
Gastrulación , Macaca fascicularis , Organogénesis , Análisis de la Célula Individual , Animales , Humanos , Ratones , Gastrulación/genética , Macaca fascicularis/embriología , Macaca fascicularis/genética , Organogénesis/genética , Cuerpos Embrioides , Perfilación de la Expresión Génica , Línea Primitiva/citología , Línea Primitiva/embriología , Tubo Neural/citología , Tubo Neural/embriología , Cresta Neural/citología , Cresta Neural/embriología , Vía de Señalización Hippo , Mesodermo/citología , Mesodermo/embriología , Células Madre
5.
Stem Cell Reports ; 17(2): 231-244, 2022 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-35063128

RESUMEN

The formation of the primitive streak (PS) and the subsequent induction of neuroectoderm are hallmarks of gastrulation. Combining an in vitro reconstitution of this process based on mouse embryonic stem cells (mESCs) with a collection of knockouts in reporter mESC lines, we identified retinoic acid (RA) as a critical mediator of early neural induction triggered by TGFß or Wnt signaling inhibition. Single-cell RNA sequencing analysis captured the temporal unfolding of cell type diversification, up to the emergence of somite and neural fates. In the absence of the RA-synthesizing enzyme Aldh1a2, a sensitive RA reporter revealed a hitherto unidentified residual RA signaling that specified neural fate. Genetic evidence showed that the RA-degrading enzyme Cyp26a1 protected PS-like cells from neural induction, even in the absence of TGFß and Wnt antagonists. Overall, we characterized a multi-layered control of RA levels that regulates early neural differentiation in an in vitro PS-like system.


Asunto(s)
Diferenciación Celular/efectos de los fármacos , Neuronas/metabolismo , Tretinoina/farmacología , Familia de Aldehído Deshidrogenasa 1/deficiencia , Familia de Aldehído Deshidrogenasa 1/genética , Animales , Benzamidas/farmacología , Dioxoles/farmacología , Ectodermo/citología , Ectodermo/metabolismo , Ratones , Células Madre Embrionarias de Ratones/citología , Células Madre Embrionarias de Ratones/efectos de los fármacos , Células Madre Embrionarias de Ratones/metabolismo , Neuronas/citología , Línea Primitiva/citología , Línea Primitiva/metabolismo , Retinal-Deshidrogenasa/deficiencia , Retinal-Deshidrogenasa/genética , Ácido Retinoico 4-Hidroxilasa/metabolismo , Transducción de Señal/efectos de los fármacos , Tretinoina/metabolismo
6.
Cells ; 10(4)2021 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-33917333

RESUMEN

The endoderm, differentiated from human induced pluripotent stem cells (iPSCs), can differentiate into the small intestine and liver, which are vital for drug absorption and metabolism. The development of human iPSC-derived enterocytes (HiEnts) and hepatocytes (HiHeps) has been reported. However, pharmacokinetic function-deficiency of these cells remains to be elucidated. Here, we aimed to develop an efficient differentiation method to induce endoderm formation from human iPSCs. Cells treated with activin A for 168 h expressed higher levels of endodermal genes than those treated for 72 h. Using activin A (days 0-7), CHIR99021 and PI-103 (days 0-2), and FGF2 (days 3-7), the hiPSC-derived endoderm (HiEnd) showed 97.97% CD-117 and CD-184 double-positive cells. Moreover, HiEnts derived from the human iPSC line Windy had similar or higher expression of small intestine-specific genes than adult human small intestine. Activities of the drug transporter P-glycoprotein and drug-metabolizing enzyme cytochrome P450 (CYP) 3A4/5 were confirmed. Additionally, Windy-derived HiHeps expressed higher levels of hepatocyte- and pharmacokinetics-related genes and proteins and showed higher CYP3A4/5 activity than those derived through the conventional differentiation method. Thus, using this novel method, the differentiated HiEnts and HiHeps with pharmacokinetic functions could be used for drug development.


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Diferenciación Celular , Endodermo/citología , Enterocitos/citología , Hepatocitos/citología , Células Madre Pluripotentes Inducidas/citología , Activinas/farmacología , Proteína Morfogenética Ósea 4/farmacología , Diferenciación Celular/efectos de los fármacos , Línea Celular , Células Cultivadas , Dimetilsulfóxido/farmacología , Enterocitos/efectos de los fármacos , Células Nutrientes/citología , Factor 2 de Crecimiento de Fibroblastos/farmacología , Furanos/farmacología , Hepatocitos/efectos de los fármacos , Humanos , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Intestino Delgado/citología , Línea Primitiva/citología , Piridinas/farmacología , Pirimidinas/farmacología , Reproducibilidad de los Resultados
8.
Dev Cell ; 56(3): 366-382.e9, 2021 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-33378662

RESUMEN

The development of mouse embryos can be partially recapitulated by combining embryonic stem cells (ESCs), trophoblast stem cells (TS), and extra-embryonic endoderm (XEN) stem cells to generate embryo-like structures called ETX embryos. Although ETX embryos transcriptionally capture the mouse gastrula, their ability to recapitulate complex morphogenic events such as gastrulation is limited, possibly due to the limited potential of XEN cells. To address this, we generated ESCs transiently expressing transcription factor Gata4, which drives the extra-embryonic endoderm fate, and combined them with ESCs and TS cells to generate induced ETX embryos (iETX embryos). We show that iETX embryos establish a robust anterior signaling center that migrates unilaterally to break embryo symmetry. Furthermore, iETX embryos gastrulate generating embryonic and extra-embryonic mesoderm and definitive endoderm. Our findings reveal that replacement of XEN cells with ESCs transiently expressing Gata4 endows iETX embryos with greater developmental potential, thus enabling the study of the establishment of anterior-posterior patterning and gastrulation in an in vitro system.


Asunto(s)
Embrión de Mamíferos/citología , Células Madre Pluripotentes Inducidas/citología , Morfogénesis , Animales , Biomarcadores/metabolismo , Línea Celular , Linaje de la Célula , Células Madre Embrionarias/citología , Endodermo/citología , Transición Epitelial-Mesenquimal , Factor de Transcripción GATA4/metabolismo , Gastrulación , Ratones , Línea Primitiva/citología , Transducción de Señal
9.
Nat Commun ; 11(1): 6066, 2020 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-33247143

RESUMEN

Coordinated directional migration of cells in the mesoderm layer of the early embryo is essential for organization of the body plan. Here we show that mesoderm organization in mouse embryos depends on ß-Pix (Arhgef7), a guanine nucleotide exchange factor for Rac1 and Cdc42. As early as E7.5, ß-Pix mutants have an abnormally thick mesoderm layer; later, paraxial mesoderm fails to organize into somites. To define the mechanism of action of ß-Pix in vivo, we optimize single-cell live-embryo imaging, cell tracking, and volumetric analysis of individual and groups of mesoderm cells. Use of these methods shows that wild-type cells move in the same direction as their neighbors, whereas adjacent ß-Pix mutant cells move in random directions. Wild-type mesoderm cells have long polarized filopodia-like protrusions, which are absent in ß-Pix mutants. The data indicate that ß-Pix-dependent cellular protrusions drive and coordinate collective migration of the mesoderm in vivo.


Asunto(s)
Movimiento Celular , Extensiones de la Superficie Celular/metabolismo , Embrión de Mamíferos/citología , Mesodermo/citología , Factores de Intercambio de Guanina Nucleótido Rho/metabolismo , Animales , Polaridad Celular , Epitelio/embriología , Femenino , Gastrulación , Proteínas Fluorescentes Verdes/metabolismo , Imagenología Tridimensional , Masculino , Mesodermo/embriología , Ratones Endogámicos C57BL , Morfogénesis , Mutación/genética , Fenotipo , Línea Primitiva/citología , Reología
10.
Nature ; 582(7811): 253-258, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32523119

RESUMEN

Tissue sculpting during development has been attributed mainly to cellular events through processes such as convergent extension or apical constriction1,2. However, recent work has revealed roles for basement membrane remodelling in global tissue morphogenesis3-5. Upon implantation, the epiblast and extraembryonic ectoderm of the mouse embryo become enveloped by a basement membrane. Signalling between the basement membrane and these tissues is critical for cell polarization and the ensuing morphogenesis6,7. However, the mechanical role of the basement membrane in post-implantation embryogenesis remains unknown. Here we demonstrate the importance of spatiotemporally regulated basement membrane remodelling during early embryonic development. Specifically, we show that Nodal signalling directs the generation and dynamic distribution of perforations in the basement membrane by regulating the expression of matrix metalloproteinases. This basement membrane remodelling facilitates embryo growth before gastrulation. The establishment of the anterior-posterior axis8,9 further regulates basement membrane remodelling by localizing Nodal signalling-and therefore the activity of matrix metalloproteinases and basement membrane perforations-to the posterior side of the embryo. Perforations on the posterior side are essential for primitive-streak extension during gastrulation by rendering the basement membrane of the prospective primitive streak more prone to breaching. Thus spatiotemporally regulated basement membrane remodelling contributes to the coordination of embryo growth, morphogenesis and gastrulation.


Asunto(s)
Membrana Basal/embriología , Membrana Basal/metabolismo , Embrión de Mamíferos/embriología , Embrión de Mamíferos/metabolismo , Desarrollo Embrionario , Animales , Membrana Basal/citología , Blastocisto/citología , Blastocisto/metabolismo , Embrión de Mamíferos/citología , Matriz Extracelular/metabolismo , Femenino , Gástrula/embriología , Masculino , Metaloproteinasas de la Matriz/metabolismo , Ratones , Ligandos de Señalización Nodal/metabolismo , Línea Primitiva/citología , Línea Primitiva/embriología , Línea Primitiva/metabolismo
11.
Stem Cell Reports ; 14(2): 210-225, 2020 02 11.
Artículo en Inglés | MEDLINE | ID: mdl-32004493

RESUMEN

The effects of ascorbate on adult cell fate specification remain largely unknown. Using our stepwise and chemically defined system to derive lateral mesoderm progenitors from human pluripotent stem cells (hPSCs), we found that ascorbate increased the expression of mesenchymal stromal cell (MSC) markers, purity of MSCs, the long-term self-renewal and osteochondrogenic capacity of hPSC-MSCs in vitro. Moreover, ascorbate promoted MSC specification in an iron-dependent fashion, but not in a redox-dependent manner. Further studies revealed that iron synergized with ascorbate to regulate hPSC-MSC histone methylation, promote their long-term self-renewal, and increase their osteochondrogenic capacity. We found that one of the histone demethylases affected by ascorbate, KDM4B, was necessary to promote the specification of hPSC-MSCs. This mechanistic understanding led to the metabolic optimization of hPSC-MSCs with an extended lifespan in vitro and the ability to fully repair cartilage defects upon transplantation in vivo. Our results highlight the importance of ascorbate and iron metabolism in adult human cell fate specification.


Asunto(s)
Ácido Ascórbico/farmacología , Huesos/citología , Autorrenovación de las Células/efectos de los fármacos , Hierro/farmacología , Células Madre Mesenquimatosas/citología , Activinas/metabolismo , Proteína Morfogenética Ósea 4/metabolismo , Cartílago/patología , Células Cultivadas , Humanos , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Mesenquimatosas/metabolismo , Mesodermo/citología , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/metabolismo , Línea Primitiva/citología , Transducción de Señal/efectos de los fármacos , Factores de Tiempo , Proteínas Wnt/metabolismo , Cicatrización de Heridas/efectos de los fármacos , Quinasas Asociadas a rho/antagonistas & inhibidores , Quinasas Asociadas a rho/metabolismo
12.
Nature ; 577(7791): 537-542, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31830756

RESUMEN

Our understanding of how human embryos develop before gastrulation, including spatial self-organization and cell type ontogeny, remains limited by available two-dimensional technological platforms1,2 that do not recapitulate the in vivo conditions3-5. Here we report a three-dimensional (3D) blastocyst-culture system that enables human blastocyst development up to the primitive streak anlage stage. These 3D embryos mimic developmental landmarks and 3D architectures in vivo, including the embryonic disc, amnion, basement membrane, primary and primate unique secondary yolk sac, formation of anterior-posterior polarity and primitive streak anlage. Using single-cell transcriptome profiling, we delineate ontology and regulatory networks that underlie the segregation of epiblast, primitive endoderm and trophoblast. Compared with epiblasts, the amniotic epithelium shows unique and characteristic phenotypes. After implantation, specific pathways and transcription factors trigger the differentiation of cytotrophoblasts, extravillous cytotrophoblasts and syncytiotrophoblasts. Epiblasts undergo a transition to pluripotency upon implantation, and the transcriptome of these cells is maintained until the generation of the primitive streak anlage. These developmental processes are driven by different pluripotency factors. Together, findings from our 3D-culture approach help to determine the molecular and morphogenetic developmental landscape that occurs during human embryogenesis.


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Embrión de Mamíferos/citología , Embrión de Mamíferos/embriología , Desarrollo Embrionario , Línea Primitiva/citología , Línea Primitiva/embriología , Amnios/citología , Amnios/embriología , Blastocisto/citología , Diferenciación Celular , Linaje de la Célula , Polaridad Celular , Colágeno , Combinación de Medicamentos , Epitelio/embriología , Gastrulación , Estratos Germinativos/citología , Estratos Germinativos/embriología , Humanos , Laminina , Proteoglicanos , RNA-Seq , Análisis de la Célula Individual , Factores de Transcripción/metabolismo , Transcriptoma , Trofoblastos/citología , Saco Vitelino/citología , Saco Vitelino/embriología
13.
Cell Rep ; 29(13): 4568-4582.e5, 2019 12 24.
Artículo en Inglés | MEDLINE | ID: mdl-31875561

RESUMEN

In vitro gametogenesis is the process of making germline cells from human pluripotent stem cells. The foundation of this model is the quality of the first progenitors called primordial germ cells (PGCs), which in vivo are specified during the peri-implantation window of human development. Here, we show that human PGC (hPGC) specification begins at day 12 post-fertilization. Using single-cell RNA sequencing of hPGC-like cells (hPGCLCs) differentiated from pluripotent stem cells, we discovered that hPGCLC specification involves resetting pluripotency toward a transitional state with shared characteristics between naive and primed pluripotency, followed by differentiation into lineage-primed TFAP2A+ progenitors. Applying the germline trajectory to TFAP2C mutants reveals that TFAP2C functions in the TFAP2A+ progenitors upstream of PRDM1 to regulate the expression of SOX17. This serves to protect hPGCLCs from crossing the Weismann's barrier to adopt somatic cell fates and, therefore, is an essential mechanism for successfully initiating in vitro gametogenesis.


Asunto(s)
Linaje de la Célula , Células Germinativas/citología , Células Madre/citología , Amnios/citología , Animales , Línea Celular , Embrión de Mamíferos/citología , Desarrollo Embrionario , Gastrulación , Células Madre Embrionarias Humanas/citología , Humanos , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , Ratones , Modelos Biológicos , Mutación/genética , Línea Primitiva/citología , Factores de Transcripción SOXF/metabolismo , Factor de Transcripción AP-2/metabolismo
14.
Development ; 146(20)2019 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-31575644

RESUMEN

During early embryogenesis, mechanical constraints and localized biochemical signals co-occur around anteroposterior axis determination and symmetry breaking. Their relative roles, however, are hard to tease apart in vivo Using brachyury (Bra), a primitive streak and mesendoderm marker in mouse embryoid bodies (EBs), we studied how contact, biochemical cues and neighboring cell cues affect the positioning of a primitive streak-like locus and thus determine the anteroposterior axis. We show that a Bra-competent layer must be formed in the EB before Bra expression initiates, and that Bra onset locus position is biased by contact points of the EB with its surrounding, probably through modulation of chemical cues rather than by mechanical signaling. We can push or pull Bra onset away from contact points by introducing a separate localized Wnt signal source, or maneuver Bra onset to a few loci or to an isotropic peripheral pattern. Furthermore, we show that Foxa2-positive cells are predictive of the future location of Bra onset, demonstrating an earlier symmetry-breaking event. Our analysis of factors affecting symmetry breaking and spatial fate choice during this developmental process could prove valuable for in vitro differentiation and organoid formation.


Asunto(s)
Cuerpos Embrioides/citología , Cuerpos Embrioides/metabolismo , Animales , Diferenciación Celular/genética , Diferenciación Celular/fisiología , Células Cultivadas , Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Proteínas Fetales/genética , Proteínas Fetales/metabolismo , Regulación del Desarrollo de la Expresión Génica , Factor Nuclear 3-beta del Hepatocito/genética , Factor Nuclear 3-beta del Hepatocito/metabolismo , Ratones , Línea Primitiva/citología , Línea Primitiva/metabolismo , Proteínas de Dominio T Box/genética , Proteínas de Dominio T Box/metabolismo
15.
PLoS One ; 14(10): e0223724, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31600351

RESUMEN

A definitive endodermal cell lineage is a prerequisite for the efficient generation of mature endoderm derivatives that give rise to organs, such as the pancreas and liver. We previously reported that the induction of mesenchymal definitive endoderm cells depends on autocrine TGF-ß signaling and that pharmacological blockage of TGF-ß signaling by Repsox disrupts endoderm specification. The definitive endoderm arises from a primitive streak, which depends largely on TGF-ß signaling. If the TGF-ß pathway is blocked by Repsox, cell fate after the primitive streak induction is so-far unknown. We report here, that an induced primitive streak cell-population contained many T/SOX2 co-expressing cells, and subsequent inhibition of TGF-ß signaling by Repsox promoted neuroectodermal cell fate, which was characterized using single-cell qPCR analysis and immunostaining. The process of epithelial-to-mesenchymal transition, which is inherent to the process of definitive endoderm differentiation, was also disrupted upon Repsox treatment. Our findings may provide a new approach to produce neural progenitors.


Asunto(s)
Linaje de la Célula/efectos de los fármacos , Endodermo/citología , Transición Epitelial-Mesenquimal/efectos de los fármacos , Placa Neural/citología , Reacción en Cadena de la Polimerasa , Pirazoles/farmacología , Piridinas/farmacología , Análisis de la Célula Individual , Activinas/farmacología , Humanos , Línea Primitiva/citología , Transducción de Señal/efectos de los fármacos , Factor de Crecimiento Transformador beta/metabolismo
16.
Nature ; 573(7774): 421-425, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31511693

RESUMEN

Early human embryonic development involves extensive lineage diversification, cell-fate specification and tissue patterning1. Despite its basic and clinical importance, early human embryonic development remains relatively unexplained owing to interspecies divergence2,3 and limited accessibility to human embryo samples. Here we report that human pluripotent stem cells (hPSCs) in a microfluidic device recapitulate, in a highly controllable and scalable fashion, landmarks of the development of the epiblast and amniotic ectoderm parts of the conceptus, including lumenogenesis of the epiblast and the resultant pro-amniotic cavity, formation of a bipolar embryonic sac, and specification of primordial germ cells and primitive streak cells. We further show that amniotic ectoderm-like cells function as a signalling centre to trigger the onset of gastrulation-like events in hPSCs. Given its controllability and scalability, the microfluidic model provides a powerful experimental system to advance knowledge of human embryology and reproduction. This model could assist in the rational design of differentiation protocols of hPSCs for disease modelling and cell therapy, and in high-throughput drug and toxicity screens to prevent pregnancy failure and birth defects.


Asunto(s)
Amnios/embriología , Estratos Germinativos/embriología , Modelos Biológicos , Células Madre Pluripotentes/citología , Amnios/citología , Diferenciación Celular , Embrión de Mamíferos/citología , Embrión de Mamíferos/embriología , Femenino , Estratos Germinativos/citología , Humanos , Embarazo , Línea Primitiva/citología
17.
Development ; 146(17)2019 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-31427289

RESUMEN

Although fate maps of early embryos exist for nearly all model organisms, a fate map of the gastrulating human embryo remains elusive. Here, we use human gastruloids to piece together a rudimentary fate map for the human primitive streak (PS). This is possible because differing levels of BMP, WNT and NODAL lead to self-organization of gastruloids into homogenous subpopulations of endoderm and mesoderm, and comparative analysis of these gastruloids, together with the fate map of the mouse embryo, allows the organization of these subpopulations along an anterior-posterior axis. We also developed a novel cell tracking technique that detected robust fate-dependent cell migrations in our gastruloids comparable with those found in the mouse embryo. Taken together, our fate map and recording of cell migrations provides a first coarse view of what the human PS may resemble in vivo.


Asunto(s)
Movimiento Celular/fisiología , Rastreo Celular/métodos , Gástrula/citología , Gastrulación/fisiología , Modelos Biológicos , Línea Primitiva/citología , Animales , Diferenciación Celular/fisiología , Células Cultivadas , Embrión de Mamíferos/citología , Embrión de Mamíferos/metabolismo , Endodermo/citología , Fibroblastos/metabolismo , Gástrula/metabolismo , Estratos Germinativos/metabolismo , Células Madre Embrionarias Humanas/metabolismo , Humanos , Mesodermo/citología , Ratones/embriología , Línea Primitiva/metabolismo
18.
Nature ; 566(7745): 490-495, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30787436

RESUMEN

Across the animal kingdom, gastrulation represents a key developmental event during which embryonic pluripotent cells diversify into lineage-specific precursors that will generate the adult organism. Here we report the transcriptional profiles of 116,312 single cells from mouse embryos collected at nine sequential time points ranging from 6.5 to 8.5 days post-fertilization. We construct a molecular map of cellular differentiation from pluripotency towards all major embryonic lineages, and explore the complex events involved in the convergence of visceral and primitive streak-derived endoderm. Furthermore, we use single-cell profiling to show that Tal1-/- chimeric embryos display defects in early mesoderm diversification, and we thus demonstrate how combining temporal and transcriptional information can illuminate gene function. Together, this comprehensive delineation of mammalian cell differentiation trajectories in vivo represents a baseline for understanding the effects of gene mutations during development, as well as a roadmap for the optimization of in vitro differentiation protocols for regenerative medicine.


Asunto(s)
Diferenciación Celular/genética , Embrión de Mamíferos/citología , Embrión de Mamíferos/metabolismo , Gastrulación , Organogénesis , Análisis de la Célula Individual , Animales , Linaje de la Célula/genética , Quimera/embriología , Quimera/genética , Quimera/metabolismo , Endodermo/citología , Endodermo/embriología , Endodermo/metabolismo , Endotelio/citología , Endotelio/embriología , Endotelio/metabolismo , Femenino , Gastrulación/genética , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica/genética , Hematopoyesis/genética , Masculino , Mesodermo/citología , Mesodermo/embriología , Ratones , Mutación/genética , Células Mieloides/citología , Organogénesis/genética , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/metabolismo , Línea Primitiva/citología , Línea Primitiva/embriología , Proteína 1 de la Leucemia Linfocítica T Aguda/deficiencia , Proteína 1 de la Leucemia Linfocítica T Aguda/genética
19.
Sci Rep ; 9(1): 2765, 2019 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-30808965

RESUMEN

A major cause of chronic kidney disease (CKD) is glomerular disease, which can be attributed to a spectrum of podocyte disorders. Podocytes are non-proliferative, terminally differentiated cells. Thus, the limited supply of primary podocytes impedes CKD research. Differentiation of human pluripotent stem cells (hPSCs) into podocytes has the potential to produce podocytes for disease modeling, drug screening, and cell therapies. In the podocyte differentiation process described here, hPSCs are first induced to primitive streak-like cells by activating canonical Wnt signaling. Next, these cells progress to mesoderm precursors, proliferative nephron progenitors, and eventually become mature podocytes by culturing in a serum-free medium. Podocytes generated via this protocol adopt podocyte morphology, express canonical podocyte markers, and exhibit podocyte phenotypes, including albumin uptake and TGF-ß1 triggered cell death. This study provides a simple, defined strategy to generate podocytes for in vitro modeling of podocyte development and disease or for cell therapies.


Asunto(s)
Diferenciación Celular , Células Madre Pluripotentes/citología , Podocitos/citología , Células Cultivadas , Humanos , Mesodermo/citología , Mesodermo/metabolismo , Proteína Homeótica Nanog/genética , Proteína Homeótica Nanog/metabolismo , Factor 3 de Transcripción de Unión a Octámeros/genética , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Fenotipo , Células Madre Pluripotentes/metabolismo , Podocitos/metabolismo , Línea Primitiva/citología , Línea Primitiva/metabolismo , Proteínas Wnt/metabolismo
20.
Acta Biomater ; 86: 125-134, 2019 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-30641291

RESUMEN

Formation of the primitive streak (PS) marks one of the most important developmental milestones in embryonic development. However, our understanding of cellular mechanism(s) underlying cell fate diversification along the anterior-posterior axis of the PS remains incomplete. Furthermore, differences in biophysical phenotypes between anterior and posterior PS cells, which could affect their functions and regulate their fate decisions, remain uncharacterized. Herein, anterior and posterior PS cells were derived using human pluripotent stem cell (hPSC)-based in vitro culture systems. We observed that anterior and posterior PS cells displayed significantly different biophysical phenotypes, including cell morphology, migration, and traction force generation, which was further regulated by different levels of Activin A- and BMP4-mediated developmental signaling. Our data further suggested that intracellular cytoskeletal contraction could mediate anterior and posterior PS differentiation and phenotypic bifurcation through its effect on Activin A- and BMP4-mediated intracellular signaling events. Together, our data provide new information about biophysical phenotypes of anterior and posterior PS cells and reveal an important role of intracellular cytoskeletal contractility in regulating anterior and posterior PS differentiation of hPSCs. STATEMENT OF SIGNIFICANCE: Formation of the primitive streak (PS) marks one of the most important developmental milestones in embryonic development. However, molecular and cellular mechanism(s) underlying functional diversification of embryonic cells along the anterior-posterior axis of the PS remains incompletely understood. This work describes the first study to characterize the biophysical properties of anterior and posterior PS cells derived from human pluripotent stem cells (hPSCs). Importantly, our data showing the important role of cytoskeleton contraction in controlling anterior vs. posterior PS cell phenotypic switch (through its effect on intracellular Smad signaling activities downstream of Activin A and BMP4) should shed new light on biomechanical regulations of the development and anterior-posterior patterning of the PS. Our work will contribute significantly to uncovering new biophysical principles and cellular mechanisms driving cell lineage diversification and patterning during the PS formation.


Asunto(s)
Células Madre Pluripotentes/citología , Línea Primitiva/citología , Fenómenos Biofísicos , Diferenciación Celular , Linaje de la Célula , Movimiento Celular , Citoesqueleto/metabolismo , Humanos , Fenotipo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...