Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.293
Filtrar
1.
Int J Biol Sci ; 20(7): 2727-2747, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38725857

RESUMEN

Phenotypic switching (from contractile to synthetic) of vascular smooth muscle cells (VSMCs) is essential in the progression of atherosclerosis. The damaged endothelium in the atherosclerotic artery exposes VSMCs to increased interstitial fluid shear stress (IFSS). However, the precise mechanisms by which increased IFSS influences VSMCs phenotypic switching are unrevealed. Here, we employed advanced numerical simulations to calculate IFSS values accurately based on parameters acquired from patient samples. We then carefully investigated the phenotypic switching and extracellular vesicles (EVs) secretion of VSMCs under various IFSS conditions. By employing a comprehensive set of approaches, we found that VSMCs exhibited synthetic phenotype upon atherosclerotic IFSS. This synthetic phenotype is the upstream regulator for the enhanced secretion of pro-calcified EVs. Mechanistically, as a mechanotransducer, the epidermal growth factor receptor (EGFR) initiates the flow-based mechanical cues to MAPK signaling pathway, facilitating the nuclear accumulation of the transcription factor krüppel-like factor 5 (KLF5). Furthermore, pharmacological inhibiting either EGFR or MAPK signaling pathway blocks the nuclear accumulation of KLF5 and finally results in the maintenance of contractile VSMCs even under increased IFSS stimulation. Collectively, targeting this signaling pathway holds potential as a novel therapeutic strategy to inhibit VSMCs phenotypic switching and mitigate the progression of atherosclerosis.


Asunto(s)
Receptores ErbB , Vesículas Extracelulares , Factores de Transcripción de Tipo Kruppel , Músculo Liso Vascular , Miocitos del Músculo Liso , Estrés Mecánico , Vesículas Extracelulares/metabolismo , Receptores ErbB/metabolismo , Factores de Transcripción de Tipo Kruppel/metabolismo , Factores de Transcripción de Tipo Kruppel/genética , Humanos , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/metabolismo , Líquido Extracelular/metabolismo , Fenotipo , Animales , Aterosclerosis/metabolismo , Sistema de Señalización de MAP Quinasas , Transducción de Señal
2.
Biosens Bioelectron ; 256: 116280, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38603840

RESUMEN

Monitoring biomarkers in human interstitial fluids (ISF) using microneedle sensors has been extensively studied. However, most of the previous studies were limited to simple in vitro demonstrations and lacked system integration and analytical performance. Here we report a miniaturized, high-precision, fully integrated wearable electrochemical microneedle sensing device that works with a customized smartphone application to wirelessly and in real-time monitor glucose in human ISF. A microneedle array fabrication method is proposed which enables multiple individually addressable, regionally separated sensing electrodes on a single microneedle system. As a demonstration, a glucose sensor and a differential sensor are integrated in a single sensing patch. The differential sensing electrodes can eliminate common-mode interference signals, thus significantly improving the detection accuracy. The basic mechanism of microneedle penetration into the skin was analyzed using the finite element method (FEM). By optimizing the structure of the microneedle, the puncture efficiency was improved while the puncture force was reduced. The electrochemical properties, biocompatibility, and system stability of the microneedle sensing device were characterized before human application. The test results were closely correlated with the gold standard (blood). The platform can be used not only for glucose detection, but also for various ISF biomarkers, and it expands the potential of microneedle technology in wearable sensing.


Asunto(s)
Técnicas Biosensibles , Diseño de Equipo , Líquido Extracelular , Glucosa , Agujas , Dispositivos Electrónicos Vestibles , Humanos , Líquido Extracelular/química , Técnicas Biosensibles/instrumentación , Glucosa/análisis , Teléfono Inteligente , Automonitorización de la Glucosa Sanguínea/instrumentación , Monitoreo Continuo de Glucosa
3.
Methods Mol Biol ; 2794: 259-269, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38630235

RESUMEN

Many biological molecules in the brain interstitial fluid are involved in neuronal functions. Therefore, measuring the levels of these molecules in the extracellular fluid would provide deep insights into the physiological/pathological mechanisms underlying brain functions/disorders. In vivo microdialysis is a powerful technique used to examine the extracellular levels of various molecules in the brains of living animals. In neuroscience research, this technique has been widely used to investigate relatively small molecules including neurotransmitters and amino acids. However, recent advances in technology have made it possible to assess large molecules in the brain interstitial fluid, such as signaling peptides and proteins, using microdialysis probes with high-molecular-weight cutoff membranes. This chapter describes an in vivo microdialysis method to collect and measure the levels of large biological molecules in the extracellular fluid of the brains of freely moving mice.


Asunto(s)
Encefalopatías , Encéfalo , Animales , Ratones , Microdiálisis , Aminoácidos , Líquido Extracelular
4.
J Math Biol ; 88(6): 69, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38664246

RESUMEN

Flow in a porous medium can be driven by the deformations of the boundaries of the porous domain. Such boundary deformations locally change the volume fraction accessible by the fluid, creating non-uniform porosity and permeability throughout the medium. In this work, we construct a deformation-driven porous medium transport model with spatially and temporally varying porosity and permeability that are dependent on the boundary deformations imposed on the medium. We use this model to study the transport of interstitial fluid along the basement membranes in the arterial walls of the brain. The basement membrane is modeled as a deforming annular porous channel with the compressible pore space filled with an incompressible, Newtonian fluid. The role of a forward propagating peristaltic heart pulse wave and a reverse smooth muscle contraction wave on the flow within the basement membranes is investigated. Our results identify combinations of wave amplitudes that can induce either forward or reverse transport along these transport pathways in the brain. The magnitude and direction of fluid transport predicted by our model can help in understanding the clearance of fluids and solutes along the Intramural Periarterial Drainage route and the pathology of cerebral amyloid angiopathy.


Asunto(s)
Encéfalo , Líquido Extracelular , Líquido Extracelular/metabolismo , Líquido Extracelular/fisiología , Porosidad , Humanos , Encéfalo/metabolismo , Encéfalo/irrigación sanguínea , Encéfalo/fisiología , Membrana Basal/metabolismo , Membrana Basal/fisiología , Conceptos Matemáticos , Transporte Biológico/fisiología , Modelos Biológicos , Simulación por Computador , Modelos Neurológicos , Animales , Permeabilidad
5.
Biosci Rep ; 44(5)2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38573803

RESUMEN

Chloride is a key anion involved in cellular physiology by regulating its homeostasis and rheostatic processes. Changes in cellular Cl- concentration result in differential regulation of cellular functions such as transcription and translation, post-translation modifications, cell cycle and proliferation, cell volume, and pH levels. In intracellular compartments, Cl- modulates the function of lysosomes, mitochondria, endosomes, phagosomes, the nucleus, and the endoplasmic reticulum. In extracellular fluid (ECF), Cl- is present in blood/plasma and interstitial fluid compartments. A reduction in Cl- levels in ECF can result in cell volume contraction. Cl- is the key physiological anion and is a principal compensatory ion for the movement of the major cations such as Na+, K+, and Ca2+. Over the past 25 years, we have increased our understanding of cellular signaling mediated by Cl-, which has helped in understanding the molecular and metabolic changes observed in pathologies with altered Cl- levels. Here, we review the concentration of Cl- in various organs and cellular compartments, ion channels responsible for its transportation, and recent information on its physiological roles.


Asunto(s)
Cloruros , Humanos , Cloruros/metabolismo , Animales , Homeostasis , Canales de Cloruro/metabolismo , Canales de Cloruro/genética , Transducción de Señal , Líquido Extracelular/metabolismo , Transporte Iónico
6.
Methods Mol Biol ; 2754: 343-349, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38512675

RESUMEN

Despite being a cytoplasmic protein abundant in neurons, tau is detectable in various extracellular fluids. In addition to being passively released from dying/degenerating neurons, tau is also actively released from living neurons in a neuronal activity-dependent mechanism. In vivo, tau released from neurons first appears in brain interstitial fluid (ISF) and subsequently drains into cerebrospinal fluid (CSF) by glymphatic system. Changes in CSF tau levels alter during the course of AD pathogenesis and are considered to predict the disease-progression of AD. A method to collect CSF from various mouse models of AD will serve as a valuable tool to investigate the dynamics of physiological/pathological tau released from neurons. In this chapter, we describe and characterize a method that reliably collects a relatively large volume of CSF from anesthetized mice.


Asunto(s)
Enfermedad de Alzheimer , Sistema Glinfático , Ratones , Animales , Proteínas tau/metabolismo , Cisterna Magna/metabolismo , Encéfalo/metabolismo , Líquido Extracelular/metabolismo , Enfermedad de Alzheimer/metabolismo , Biomarcadores/metabolismo , Péptidos beta-Amiloides/metabolismo
7.
Methods Mol Biol ; 2754: 351-359, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38512676

RESUMEN

Glymphatic system denotes a brain-wide pathway that eliminates extracellular solutes from brain. It is driven by the flow of brain interstitial fluid (ISF) and cerebrospinal fluid (CSF) via perivascular spaces. Glymphatic convective flow is driven by cerebral arterial pulsation, which is facilitated by a water channel, aquaporin-4 (AQP4) expressed in astrocytic end-foot processes. Since its discovery, the glymphatic system receives a considerable scientific attention due to its pivotal role in clearing metabolic waste as well as neurotoxic substances such as amyloid b peptide. Tau is a microtubule binding protein, however it is also physiologically released into extracellular fluids. The presence of tau in the blood stream indicates that it is eventually cleared from the brain to the periphery, however, the detailed mechanisms that eliminate extracellular tau from the central nervous system remained to be elucidated. Recently, we and others have reported that extracellular tau is eliminated from the brain to CSF by an AQP4 dependent mechanism, suggesting the involvement of the glymphatic system. In this chapter, we describe the detailed protocol of how we can assess glymphatic outflow of tau protein from brain to CSF in mice.


Asunto(s)
Sistema Glinfático , Proteínas tau , Ratones , Animales , Proteínas tau/metabolismo , Encéfalo/metabolismo , Líquido Extracelular/metabolismo , Acuaporina 4/metabolismo , Líquido Cefalorraquídeo/metabolismo
8.
Sensors (Basel) ; 24(6)2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38544153

RESUMEN

Repeated single-point measurements of thoracic bioimpedance at a single (low) frequency are strongly related to fluid changes during hemodialysis. Extension to semi-continuous measurements may provide longitudinal details in the time pattern of the bioimpedance signal, and multi-frequency measurements may add in-depth information on the distribution between intra- and extracellular fluid. This study aimed to investigate the feasibility of semi-continuous multi-frequency thoracic bioimpedance measurements by a wearable device in hemodialysis patients. Therefore, thoracic bioimpedance was recorded semi-continuously (i.e., every ten minutes) at nine frequencies (8-160 kHz) in 68 patients during two consecutive hemodialysis sessions, complemented by a single-point measurement at home in-between both sessions. On average, the resistance signals increased during both hemodialysis sessions and decreased during the interdialytic interval. The increase during dialysis was larger at 8 kHz (∆ 32.6 Ω during session 1 and ∆ 10 Ω during session 2), compared to 160 kHz (∆ 29.5 Ω during session 1 and ∆ 5.1 Ω during session 2). Whereas the resistance at 8 kHz showed a linear time pattern, the evolution of the resistance at 160 kHz was significantly different (p < 0.0001). Measuring bioimpedance semi-continuously and with a multi-frequency current is a major step forward in the understanding of fluid dynamics in hemodialysis patients. This study paves the road towards remote fluid monitoring.


Asunto(s)
Diálisis Renal , Dispositivos Electrónicos Vestibles , Humanos , Estudios de Factibilidad , Impedancia Eléctrica , Líquido Extracelular
9.
J Mech Behav Biomed Mater ; 153: 106486, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38428205

RESUMEN

In this study, we conduct a multiscale, multiphysics modeling of the brain gray matter as a poroelastic composite. We develop a customized representative volume element based on cytoarchitectural features that encompass important microscopic components of the tissue, namely the extracellular space, the capillaries, the pericapillary space, the interstitial fluid, cell-cell and cell-capillary junctions, and neuronal and glial cell bodies. Using asymptotic homogenization and direct numerical simulation, the effective properties at the tissue level are identified based on microscopic properties. To analyze the influence of various microscopic elements on the effective/macroscopic properties and tissue response, we perform sensitivity analyses on cell junction (cluster) stiffness, cell junction diameter (dimensions), and pericapillary space width. The results of this study suggest that changes in cell adhesion can greatly affect both mechanical and hydraulic (interstitial fluid flow and porosity) features of brain tissue, consistent with the effects of neurodegenerative diseases.


Asunto(s)
Líquido Extracelular , Espacio Extracelular , Adhesión Celular , Simulación por Computador , Porosidad
10.
J Vis Exp ; (204)2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38436411

RESUMEN

Women's health, and particularly diseases of the female reproductive tract (FRT), have not received the attention they deserve, even though an unhealthy reproductive system may lead to life-threatening diseases, infertility, or adverse outcomes during pregnancy. One barrier in the field is that there has been a dearth of preclinical, experimental models that faithfully mimic the physiology and pathophysiology of the FRT. Current in vitro and animal models do not fully recapitulate the hormonal changes, microaerobic conditions, and interactions with the vaginal microbiome. The advent of Organ-on-a-Chip (Organ Chip) microfluidic culture technology that can mimic tissue-tissue interfaces, vascular perfusion, interstitial fluid flows, and the physical microenvironment of a major subunit of human organs can potentially serve as a solution to this problem. Recently, a human Vagina Chip that supports co-culture of human vaginal microbial consortia with primary human vaginal epithelium that is also interfaced with vaginal stroma and experiences dynamic fluid flow has been developed. This chip replicates the physiological responses of the human vagina to healthy and dysbiotic microbiomes. A detailed protocol for creating human Vagina Chips has been described in this article.


Asunto(s)
Líquido Extracelular , Vagina , Animales , Embarazo , Humanos , Femenino , Técnicas de Cocultivo , Epitelio , Dispositivos Laboratorio en un Chip
11.
ACS Sens ; 9(3): 1149-1161, 2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38478049

RESUMEN

Interstitial fluid (ISF) has attracted extensive attention in an extremely wide range of areas due to its unique advantages, such as portability, high precision, comfortable operation, and superior stability. In recent years, the microneedle (MN) technique has been considered to be an excellent tool for extracting ISF because it is painless and noninvasive. Recent reports have shown that MN has good application prospects in ISF extraction. In this review, we provide comprehensive and in-depth insight into integrated MN devices for ISF detection, covering the basic structure as well as the fabrication of integrated MN devices and various applications in ISF extraction. Challenges and prospects are highlighted, with a discussion on how to transition such MN-integrated devices toward personalized healthcare monitoring systems.


Asunto(s)
Líquido Extracelular , Agujas , Líquido Extracelular/química
12.
Adv Biol (Weinh) ; 8(4): e2400031, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38400704

RESUMEN

Despite the crucial role of lymphangiogenesis during development and in several diseases with implications for tissue regeneration, immunity, and cancer, there are significantly fewer tools to understand this process relative to angiogenesis. While there has been a major surge in modeling angiogenesis with microphysiological systems, they have not been rigorously optimized or standardized to enable the recreation of the dynamics of lymphangiogenesis. Here, a Lymphangiogenesis-Chip (L-Chip) is engineered, within which new sprouts form and mature depending upon the imposition of interstitial flow, growth factor gradients, and pre-conditioning of endothelial cells with growth factors. The L-Chip reveals the independent and combinatorial effects of these mechanical and biochemical determinants of lymphangiogenesis, thus ultimately resulting in sprouts emerging from a parent vessel and maturing into tubular structures up to 1 mm in length within 4 days, exceeding prior art. Further, when the constitution of the pre-conditioning cocktail and the growth factor cocktail used to initiate and promote lymphangiogenesis are dissected, it is found that endocan (ESM-1) results in more dominant lymphangiogenesis relative to angiogenesis. Therefore, The L-Chip provides a foundation for standardizing the microfluidics assays specific to lymphangiogenesis and for accelerating its basic and translational science at par with angiogenesis.


Asunto(s)
Linfangiogénesis , Neoplasias , Humanos , Linfangiogénesis/fisiología , Líquido Extracelular , Células Endoteliales/metabolismo , Neoplasias/terapia , Neoplasias/metabolismo , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Péptidos y Proteínas de Señalización Intercelular/farmacología
13.
Spectrochim Acta A Mol Biomol Spectrosc ; 312: 124048, 2024 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-38387412

RESUMEN

Due to the acidic tumor microenvironment caused by metabolic changes in tumor cells, the accurate pH detection of extracellular fluid is helpful for doctors in precise tumor resection. The combination of Raman spectroscopy and deep learning provides a solution for pH detection. However, most existing studies use one-dimensional convolutional neural networks (1D-CNNs) for spectral analysis, which limits the performance due to insufficient feature extraction. In this work, we propose a 2D triple-branch feature fusion network (TriFNet) for accurate pH determination using surface-enhanced Raman spectra (SERS). Specifically, we design a triple-branch network structure by converting Raman spectra into three types of images to extensively extract complex patterns in spectra. In addition, an attention fusion module, which leverages the complementarity among features in both space and channel, is designed to obtain the valuable information, achieving further accurate pH determination. On our Raman spectral dataset containing 14,137 samples, we achieved mean absolute error (MAE) of 0.059, standard deviation of the absolute error (SD) of 0.07, root mean squared error (RMSE) of 0.092, and coefficient of determination (R2) of 0.991 on the test set. Compared with other published methods, the four metrics showed an average improvement of 47%, 39%, 43%, and 6%, respectively. In addition, visualization validates the diagnostic capability of our model to correlate with biomolecular signatures. Meanwhile, our model has robustness to different SERS chips. These results prove the potential of our method to develop an effective technology based on Raman spectroscopy for accurate pH determination to guide surgery.


Asunto(s)
Benchmarking , Espectrometría Raman , Líquido Extracelular , Redes Neurales de la Computación , Concentración de Iones de Hidrógeno
14.
Phys Med Biol ; 69(7)2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38412537

RESUMEN

Objective. An elevated interstitial fluid pressure (IFP) can lead to strain-induced stiffening of poroelastic biological tissues. As shear wave elastography (SWE) measures functional tissue stiffness based on the propagation speed of acoustically induced shear waves, the shear wave velocity (SWV) can be used as an indirect measurement of the IFP. The underlying biomechanical principle for this stiffening behavior with pressurization is however not well understood, and we therefore studied how IFP affects SWV through SWE experiments and numerical modeling.Approach. For model set-up and verification, SWE experiments were performed while dynamically modulating IFP in a chicken breast. To identify the confounding factors of the SWV-IFP relationship, we manipulated the material model (linear poroelastic versus porohyperelastic), deformation assumptions (geometric linearity versus nonlinearity), and boundary conditions (constrained versus unconstrained) in a finite element model mimicking the SWE experiments.Main results. The experiments demonstrated a statistically significant positive correlation between the SWV and IFP. The model was able to reproduce a similar SWV-IFP relationship by considering an unconstrained porohyperelastic tissue. Material nonlinearity was identified as the primary factor contributing to this relationship, whereas geometric nonlinearity played a smaller role. The experiments also highlighted the importance of the dynamic nature of the pressurization procedure, as indicated by a different observed SWV-IFP for pressure buildup and relaxation, but its clinical relevance needs to be further investigated.Significance. The developed model provides an adaptable framework for SWE of poroelastic tissues and paves the way towards non-invasive measurements of IFP.


Asunto(s)
Diagnóstico por Imagen de Elasticidad , Diagnóstico por Imagen de Elasticidad/métodos , Líquido Extracelular/diagnóstico por imagen
15.
Nature ; 627(8002): 149-156, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38418876

RESUMEN

The glymphatic movement of fluid through the brain removes metabolic waste1-4. Noninvasive 40 Hz stimulation promotes 40 Hz neural activity in multiple brain regions and attenuates pathology in mouse models of Alzheimer's disease5-8. Here we show that multisensory gamma stimulation promotes the influx of cerebrospinal fluid and the efflux of interstitial fluid in the cortex of the 5XFAD mouse model of Alzheimer's disease. Influx of cerebrospinal fluid was associated with increased aquaporin-4 polarization along astrocytic endfeet and dilated meningeal lymphatic vessels. Inhibiting glymphatic clearance abolished the removal of amyloid by multisensory 40 Hz stimulation. Using chemogenetic manipulation and a genetically encoded sensor for neuropeptide signalling, we found that vasoactive intestinal peptide interneurons facilitate glymphatic clearance by regulating arterial pulsatility. Our findings establish novel mechanisms that recruit the glymphatic system to remove brain amyloid.


Asunto(s)
Enfermedad de Alzheimer , Amiloide , Encéfalo , Líquido Cefalorraquídeo , Líquido Extracelular , Ritmo Gamma , Sistema Glinfático , Animales , Ratones , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/prevención & control , Amiloide/metabolismo , Acuaporina 4/metabolismo , Astrocitos/metabolismo , Encéfalo/citología , Encéfalo/metabolismo , Encéfalo/patología , Líquido Cefalorraquídeo/metabolismo , Modelos Animales de Enfermedad , Líquido Extracelular/metabolismo , Sistema Glinfático/fisiología , Interneuronas/metabolismo , Péptido Intestinal Vasoactivo/metabolismo , Corteza Cerebral/citología , Corteza Cerebral/metabolismo , Corteza Cerebral/patología , Estimulación Eléctrica
16.
Nature ; 627(8002): 157-164, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38418877

RESUMEN

The accumulation of metabolic waste is a leading cause of numerous neurological disorders, yet we still have only limited knowledge of how the brain performs self-cleansing. Here we demonstrate that neural networks synchronize individual action potentials to create large-amplitude, rhythmic and self-perpetuating ionic waves in the interstitial fluid of the brain. These waves are a plausible mechanism to explain the correlated potentiation of the glymphatic flow1,2 through the brain parenchyma. Chemogenetic flattening of these high-energy ionic waves largely impeded cerebrospinal fluid infiltration into and clearance of molecules from the brain parenchyma. Notably, synthesized waves generated through transcranial optogenetic stimulation substantially potentiated cerebrospinal fluid-to-interstitial fluid perfusion. Our study demonstrates that neurons serve as master organizers for brain clearance. This fundamental principle introduces a new theoretical framework for the functioning of macroscopic brain waves.


Asunto(s)
Encéfalo , Líquido Cefalorraquídeo , Líquido Extracelular , Neuronas , Potenciales de Acción , Encéfalo/citología , Encéfalo/metabolismo , Ondas Encefálicas/fisiología , Líquido Cefalorraquídeo/metabolismo , Líquido Extracelular/metabolismo , Sistema Glinfático/metabolismo , Cinética , Red Nerviosa/fisiología , Neuronas/metabolismo , Optogenética , Tejido Parenquimatoso/metabolismo , Iones/metabolismo
17.
Adv Sci (Weinh) ; 11(16): e2306188, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38417122

RESUMEN

Malignant melanoma (MM) is the most aggressive form of skin cancer. The delay in treatment will induce metastasis, resulting in a poor prognosis and even death. Here, a two-step strategy for on-site diagnosis of MM is developed based on the extraction and direct visual quantification of S100A1, a biomarker for melanoma. First, a swellable microneedle is utilized to extract S100A1 in skin interstitial fluid (ISF) with minimal invasion. After elution, antibody-conjugated magnetic microparticles (MMPs) and polystyrene microparticles (PMPs) are introduced. A high expression level of S100A1 gives rise to a robust binding between MMPs and PMPs and reduces the number of free PMPs. By loading the reacted solution into the device with a microfluidic particle dam, the quantity of free PMPs after magnetic separation is displayed with their accumulation length inversely proportional to S100A1 levels. A limit of detection of 18.7 ng mL-1 for S100A1 is achieved. The animal experiment indicates that ISF-based S100A1 quantification using the proposed strategy exhibits a significantly higher sensitivity compared with conventional serum-based detection. In addition, the result is highly comparable with the gold standard enzyme-linked immunosorbent assay based on Lin's concordance correlation coefficient, suggesting the high practicality for routine monitoring of melanoma.


Asunto(s)
Líquido Extracelular , Melanoma , Agujas , Proteínas S100 , Neoplasias Cutáneas , Melanoma/diagnóstico , Melanoma/metabolismo , Melanoma/patología , Animales , Proteínas S100/metabolismo , Líquido Extracelular/metabolismo , Ratones , Neoplasias Cutáneas/diagnóstico , Neoplasias Cutáneas/patología , Neoplasias Cutáneas/metabolismo , Biomarcadores de Tumor/metabolismo , Biomarcadores de Tumor/genética , Modelos Animales de Enfermedad , Humanos , Microfluídica/métodos , Piel/metabolismo , Piel/patología
18.
J Extracell Vesicles ; 13(1): e12398, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38191961

RESUMEN

Brain-derived extracellular vesicles (EVs) play an active role in Alzheimer's disease (AD), relaying important physiological information about their host tissues. The internal cargo of EVs is protected from degradation, making EVs attractive AD biomarkers. However, it is unclear how circulating EVs relate to EVs isolated from disease-vulnerable brain regions. We developed a novel method for collecting EVs from the hippocampal interstitial fluid (ISF) of live mice. EVs (EVISF ) were isolated via ultracentrifugation and characterized by nanoparticle tracking analysis, immunogold labelling, and flow cytometry. Mass spectrometry and proteomic analyses were performed on EVISF cargo. EVISF were 40-150 nm in size and expressed CD63, CD9, and CD81. Using a model of cerebral amyloidosis (e.g., APPswe, PSEN1dE9 mice), we found protein concentration increased but protein diversity decreased with Aß deposition. Genotype, age, and Aß deposition modulated proteostasis- and immunometabolic-related pathways. Changes in the microglial EVISF proteome were sexually dimorphic and associated with a differential response of plaque associated microglia. We found that female APP/PS1 mice have more amyloid plaques, less plaque associated microglia, and a less robust- and diverse- EVISF microglial proteome. Thus, in vivo microdialysis is a novel technique for collecting EVISF and offers a unique opportunity to explore the role of EVs in AD.


Asunto(s)
Enfermedad de Alzheimer , Vesículas Extracelulares , Placa Aterosclerótica , Femenino , Animales , Ratones , Proteoma , Líquido Extracelular , Microglía , Proteómica , Hipocampo
19.
Lab Chip ; 24(5): 1244-1265, 2024 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-38197332

RESUMEN

Microfluidic devices began to be used to facilitate sweat and interstitial fluid (ISF) sensing in the mid-2010s. Since then, numerous prototypes involving microfluidics have been developed in different form factors for sensing biomarkers found in these fluids under in vitro, ex vivo, and in vivo (on-body) settings. These devices transport and manipulate biofluids using microfluidic channels composed of silicone, polymer, paper, or fiber. Fluid flow transport and sample management can be achieved by controlling the flow rate, surface morphology of the channel, and rate of fluid evaporation. Although many devices have been developed for estimating sweat rate, electrolyte, and metabolite levels, only a handful have been able to proceed beyond laboratory testing and reach the stage of clinical trials and commercialization. To further this technology, this review reports on the utilization of microfluidics towards sweat and ISF management and transport. The review is distinguished from other recent reviews by focusing on microfluidic principles of sweat and ISF generation, transport, extraction, and management. Challenges and prospects are highlighted, with a discussion on how to transition such prototypes towards personalized healthcare monitoring systems.


Asunto(s)
Técnicas Biosensibles , Dispositivos Electrónicos Vestibles , Sudor , Líquido Extracelular , Microfluídica , Dispositivos Laboratorio en un Chip
20.
ACS Sens ; 9(2): 932-941, 2024 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-38252743

RESUMEN

Microneedle-based wearable electrochemical biosensors are the new frontier in personalized health monitoring and disease diagnostic devices that provide an alternative tool to traditional blood-based invasive techniques. Advancements in micro- and nanofabrication technologies enabled the fabrication of microneedles using different biomaterials and morphological features with the aim of overcoming existing challenges and enhancing sensing performance. In this work, we report a microneedle array featuring conductive recessed microcavities for monitoring urea levels in the interstitial fluid of the skin. Microcavities are small pockets on the tip of each microneedle that can accommodate the sensing layer, provide protection from delamination during skin insertion or removal, and position the sensing layer in a deep layer of the skin to reach the interstitial fluid. The wearable urea patch has shown to be highly sensitive and selective in monitoring urea, with a sensitivity of 2.5 mV mM-1 and a linear range of 3 to 18 mM making it suitable for monitoring urea levels in healthy individuals and patients. Our ex vivo experiments have shown that recessed microcavities can protect the sensing layer from delamination during skin insertion and monitor changing urea levels in interstitial fluid. This biocompatible platform provides alternative solutions to the critical issue of maintaining the performance of the biosensor upon skin insertion and holds great potential for advancing transdermal sensor technology.


Asunto(s)
Líquido Extracelular , Dispositivos Electrónicos Vestibles , Humanos , Piel , Materiales Biocompatibles , Urea
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA