Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 269
Filtrar
1.
Development ; 151(10)2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38738602

RESUMEN

Visual circuit development is characterized by subdivision of neuropils into layers that house distinct sets of synaptic connections. We find that, in the Drosophila medulla, this layered organization depends on the axon guidance regulator Plexin A. In Plexin A null mutants, synaptic layers of the medulla neuropil and arborizations of individual neurons are wider and less distinct than in controls. Analysis of semaphorin function indicates that Semaphorin 1a, acting in a subset of medulla neurons, is the primary partner for Plexin A in medulla lamination. Removal of the cytoplasmic domain of endogenous Plexin A has little effect on the formation of medulla layers; however, both null and cytoplasmic domain deletion mutations of Plexin A result in an altered overall shape of the medulla neuropil. These data suggest that Plexin A acts as a receptor to mediate morphogenesis of the medulla neuropil, and as a ligand for Semaphorin 1a to subdivide it into layers. Its two independent functions illustrate how a few guidance molecules can organize complex brain structures by each playing multiple roles.


Asunto(s)
Proteínas de Drosophila , Morfogénesis , Proteínas del Tejido Nervioso , Neurópilo , Lóbulo Óptico de Animales no Mamíferos , Receptores de Superficie Celular , Semaforinas , Animales , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Semaforinas/metabolismo , Semaforinas/genética , Proteínas del Tejido Nervioso/metabolismo , Proteínas del Tejido Nervioso/genética , Morfogénesis/genética , Neurópilo/metabolismo , Lóbulo Óptico de Animales no Mamíferos/metabolismo , Lóbulo Óptico de Animales no Mamíferos/embriología , Receptores de Superficie Celular/metabolismo , Receptores de Superficie Celular/genética , Drosophila melanogaster/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/embriología , Neuronas/metabolismo , Drosophila/metabolismo , Drosophila/embriología , Mutación/genética
2.
Dev Cell ; 59(9): 1132-1145.e6, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38531357

RESUMEN

Neurons must be made in the correct proportions to communicate with the appropriate synaptic partners and form functional circuits. In the Drosophila visual system, multiple subtypes of distal medulla (Dm) inhibitory interneurons are made in distinct, reproducible numbers-from 5 to 800 per optic lobe. These neurons are born from a crescent-shaped neuroepithelium called the outer proliferation center (OPC), which can be subdivided into specific domains based on transcription factor and growth factor expression. We fate mapped Dm neurons and found that more abundant neural types are born from larger neuroepithelial subdomains, while less abundant subtypes are born from smaller ones. Additionally, morphogenetic Dpp/BMP signaling provides a second layer of patterning that subdivides the neuroepithelium into smaller domains to provide more granular control of cell proportions. Apoptosis appears to play a minor role in regulating Dm neuron abundance. This work describes an underappreciated mechanism for the regulation of neuronal stoichiometry.


Asunto(s)
Proteínas de Drosophila , Drosophila melanogaster , Neuronas , Animales , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Neuronas/metabolismo , Neuronas/citología , Drosophila melanogaster/metabolismo , Lóbulo Óptico de Animales no Mamíferos/metabolismo , Lóbulo Óptico de Animales no Mamíferos/citología , Transducción de Señal , Vías Visuales/metabolismo , Apoptosis , Proteínas Morfogenéticas Óseas/metabolismo , Tipificación del Cuerpo , Interneuronas/metabolismo , Interneuronas/citología , Regulación del Desarrollo de la Expresión Génica , Recuento de Células , Proliferación Celular , Neurogénesis/fisiología
3.
Artículo en Inglés | MEDLINE | ID: mdl-38252321

RESUMEN

Crickets serve as a well-established model organism in biological research spanning various fields, such as behavior, physiology, neurobiology, and ecology. Cricket circadian behavior was first reported over a century ago and prompted a wealth of studies delving into their chronobiology. Circadian rhythms have been described in relation to fundamental cricket behaviors, encompassing stridulation and locomotion, but also in hormonal secretion and gene expression. Here we review how changes in illumination patterns and light intensity differentially impact the different cricket behaviors as well as circadian gene expression. We further describe the cricket's circadian pacemaker. Ample anatomical manipulations support the location of a major circadian pacemaker in the cricket optic lobes and another in the central brain, possibly interconnected via signaling of the neuropeptide PDF. The cricket circadian machinery comprises a molecular cascade based on two major transcriptional/translational negative feedback loops, deviating somewhat from the canonical model of Drosophila and emphasizing the significance of exploring alternative models. Finally, the nocturnal nature of crickets has provided a unique avenue for investigating the repercussions of artificial light at night on cricket behavior and ecology, underscoring the critical role played by natural light cycles in synchronizing cricket behaviors and populations, further supporting the use of the cricket model in the study of the effects of light on insects. Some gaps in our knowledge and challenges for future studies are discussed.


Asunto(s)
Críquet , Gryllidae , Neuropéptidos , Animales , Ritmo Circadiano/fisiología , Locomoción , Neuropéptidos/metabolismo , Lóbulo Óptico de Animales no Mamíferos/metabolismo
4.
Science ; 378(6626): eadd1884, 2022 12 23.
Artículo en Inglés | MEDLINE | ID: mdl-36480601

RESUMEN

The large diversity of cell types in nervous systems presents a challenge in identifying the genetic mechanisms that encode it. Here, we report that nearly 200 distinct neurons in the Drosophila visual system can each be defined by unique combinations of on average 10 continuously expressed transcription factors. We show that targeted modifications of this terminal selector code induce predictable conversions of neuronal fates that appear morphologically and transcriptionally complete. Cis-regulatory analysis of open chromatin links one of these genes to an upstream patterning factor that specifies neuronal fates in stem cells. Experimentally validated network models describe the synergistic regulation of downstream effectors by terminal selectors and ecdysone signaling during brain wiring. Our results provide a generalizable framework of how specific fates are implemented in postmitotic neurons.


Asunto(s)
Proteínas de Drosophila , Drosophila melanogaster , Células-Madre Neurales , Neurogénesis , Neuronas , Lóbulo Óptico de Animales no Mamíferos , Factores de Transcripción , Animales , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Regulación del Desarrollo de la Expresión Génica , Neuronas/fisiología , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/crecimiento & desarrollo , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Lóbulo Óptico de Animales no Mamíferos/citología , Lóbulo Óptico de Animales no Mamíferos/crecimiento & desarrollo , Lóbulo Óptico de Animales no Mamíferos/metabolismo
5.
Cells ; 10(5)2021 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-34068524

RESUMEN

Drosophila melanogaster sbr (small bristles) is an orthologue of the Nxf1 (nuclear export factor 1) genes in different Opisthokonta. The known function of Nxf1 genes is the export of various mRNAs from the nucleus to the cytoplasm. The cytoplasmic localization of the SBR protein indicates that the nuclear export function is not the only function of this gene in Drosophila. RNA-binding protein SBR enriches the nucleus and cytoplasm of specific neurons and glial cells. In sbr12 mutant males, the disturbance of medulla boundaries correlates with the defects of photoreceptor axons pathfinding, axon bundle individualization, and developmental neurodegeneration. RNA-binding protein SBR participates in processes allowing axons to reach and identify their targets.


Asunto(s)
Proteínas de Drosophila/metabolismo , Lóbulo Óptico de Animales no Mamíferos/metabolismo , Proteínas de Unión al ARN/metabolismo , Alelos , Animales , Axones/metabolismo , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Drosophila melanogaster , Femenino , Masculino , Mutación , Enfermedades Neurodegenerativas/metabolismo , Neuronas/metabolismo , Fenotipo
6.
Elife ; 92020 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-33079061

RESUMEN

Neurotransmitter receptors and ion channels shape the biophysical properties of neurons, from the sign of the response mediated by neurotransmitter receptors to the dynamics shaped by voltage-gated ion channels. Therefore, knowing the localizations and types of receptors and channels present in neurons is fundamental to our understanding of neural computation. Here, we developed two approaches to visualize the subcellular localization of specific proteins in Drosophila: The flippase-dependent expression of GFP-tagged receptor subunits in single neurons and 'FlpTag', a versatile new tool for the conditional labelling of endogenous proteins. Using these methods, we investigated the subcellular distribution of the receptors GluClα, Rdl, and Dα7 and the ion channels para and Ih in motion-sensing T4/T5 neurons of the Drosophila visual system. We discovered a strictly segregated subcellular distribution of these proteins and a sequential spatial arrangement of glutamate, acetylcholine, and GABA receptors along the dendrite that matched the previously reported EM-reconstructed synapse distributions.


Asunto(s)
Canales Iónicos/metabolismo , Percepción de Movimiento/fisiología , Animales , Drosophila melanogaster/anatomía & histología , Drosophila melanogaster/fisiología , Lóbulo Óptico de Animales no Mamíferos/anatomía & histología , Lóbulo Óptico de Animales no Mamíferos/metabolismo , Receptores Colinérgicos/metabolismo , Receptores de GABA/metabolismo , Receptores de Glutamato/metabolismo , Células Receptoras Sensoriales/metabolismo
7.
J Cell Biol ; 219(11)2020 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-32946560

RESUMEN

Many tissues are produced by specialized progenitor cells emanating from epithelia via epithelial-to-mesenchymal transition (EMT). Most studies have so far focused on EMT involving single or isolated groups of cells. Here we describe an EMT-like process that requires tissue-level coordination. This EMT-like process occurs along a continuous front in the Drosophila optic lobe neuroepithelium to produce neural stem cells (NSCs). We find that emerging NSCs remain epithelial and apically constrict before dividing asymmetrically to produce neurons. Apical constriction is associated with contractile myosin pulses and involves RhoGEF3 and down-regulation of the Crumbs complex by the E3 ubiquitin ligase Neuralized. Anisotropy in Crumbs complex levels also results in accumulation of junctional myosin. Disrupting the regulation of Crumbs by Neuralized lowered junctional myosin and led to imprecision in the integration of emerging NSCs into the front. Thus, Neuralized promotes smooth progression of the differentiation front by coupling epithelium remodeling at the tissue level with NSC fate acquisition.


Asunto(s)
Polaridad Celular , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/crecimiento & desarrollo , Epitelio/fisiología , Células-Madre Neurales/citología , Neuronas/citología , Lóbulo Óptico de Animales no Mamíferos/citología , Animales , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Morfogénesis , Células-Madre Neurales/metabolismo , Neuronas/metabolismo , Lóbulo Óptico de Animales no Mamíferos/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo
8.
Invert Neurosci ; 20(3): 14, 2020 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-32840710

RESUMEN

In previous works, we identified a RNA-binding protein in presynaptic terminal of squid neurons, which is likely involved in local mRNA processing. Evidences indicate this strongly basic protein, called p65, is an SDS-stable dimer protein composed of ~ 37 kDa hnRNPA/B-like subunits. The function of p65 in presynaptic regions is not well understood. In this work, we showed p65 and its subunit p37 are concentrated in RNA-enriched regions in synaptosomes. We performed in vitro binding studies with a recombinant protein and showed its propensity to selectively bind actin mRNA at the squid presynaptic terminal. Biochemical analysis using lysed synaptosomes suggested RNA integrity may affect p65 and p37 functions. Mass spectrometry analysis of oligo(dT) pull down indicated squid hnRNPA1, hnRNPA1-like 2, hnRNPA3 and ELAV-like proteins as candidates to interact with p65 and p37 forming a ribonucleoprotein complex, suggesting a role of squid hnRNPA/B-like proteins in site-specific RNA processing.


Asunto(s)
Ribonucleoproteínas Nucleares Heterogéneas/metabolismo , Neuronas/metabolismo , Lóbulo Óptico de Animales no Mamíferos/metabolismo , Terminales Presinápticos/metabolismo , Animales , Decapodiformes , Ribonucleoproteínas Nucleares Heterogéneas/genética , Sinaptosomas/metabolismo
9.
J Morphol ; 281(7): 790-801, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32384206

RESUMEN

Neuropeptide Y (NPY) is an evolutionarily conserved neurosecretory molecule implicated in a diverse complement of functions across taxa and in regulating feeding behavior and reproductive maturation in Octopus. However, little is known about the precise molecular circuitry of NPY-mediated behaviors and physiological processes, which likely involve a complex interaction of multiple signal molecules in specific brain regions. Here, we examined the expression of NPY throughout the Octopus central nervous system. The sequence analysis of Octopus NPY precursor confirmed the presence of both, signal peptide and putative active peptides, which are highly conserved across bilaterians. In situ hybridization revealed distinct expression of NPY in specialized compartments, including potential "integration centers," where visual, tactile, and other behavioral circuitries converge. These centers integrating separate circuits may maintain and modulate learning and memory or other behaviors not yet attributed to NPY-dependent modulation in Octopus. Extrasomatic localization of NPY mRNA in the neurites of specific neuron populations in the brain suggests a potential demand for immediate translation at synapses and a crucial temporal role for NPY in these cell populations. We also documented the presence of NPY mRNA in a small cell population in the olfactory lobe, which is a component of the Octopus feeding and reproductive control centers. However, the molecular mapping of NPY expression only partially overlapped with that produced by immunohistochemistry in previous studies. Our study provides a precise molecular map of NPY mRNA expression that can be used to design and test future hypotheses about molecular signaling in various Octopus behaviors.


Asunto(s)
Encéfalo/metabolismo , Neuropéptido Y/genética , Octopodiformes/genética , Secuencia de Aminoácidos , Animales , Forma de la Célula , Secuencia Conservada , Evolución Molecular , Regulación de la Expresión Génica , Neuropéptido Y/química , Neuropéptido Y/metabolismo , Lóbulo Óptico de Animales no Mamíferos/metabolismo , Especificidad de Órganos , ARN Mensajero/genética , ARN Mensajero/metabolismo
10.
Curr Top Dev Biol ; 139: 89-125, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32450970

RESUMEN

The Drosophila visual system integrates input from 800 ommatidia and extracts different features in stereotypically connected optic ganglia. The development of the Drosophila visual system is controlled by gene regulatory networks that control the number of precursor cells, generate neuronal diversity by integrating spatial and temporal information, coordinate the timing of retinal and optic lobe cell differentiation, and determine distinct synaptic targets of each cell type. In this chapter, we describe the known gene regulatory networks involved in the development of the different parts of the visual system and explore general components in these gene networks. Finally, we discuss the advantages of the fly visual system as a model for gene regulatory network discovery in the era of single-cell transcriptomics.


Asunto(s)
Diferenciación Celular/genética , Drosophila/genética , Regulación del Desarrollo de la Expresión Génica , Redes Reguladoras de Genes , Lóbulo Óptico de Animales no Mamíferos/metabolismo , Animales , Drosophila/clasificación , Drosophila/embriología , Drosophila melanogaster/embriología , Drosophila melanogaster/genética , Embrión no Mamífero/citología , Embrión no Mamífero/embriología , Embrión no Mamífero/metabolismo , Ojo/embriología , Ojo/metabolismo , Lóbulo Óptico de Animales no Mamíferos/citología , Lóbulo Óptico de Animales no Mamíferos/embriología , Retina/citología , Retina/embriología , Retina/metabolismo
11.
Horm Behav ; 120: 104707, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32001211

RESUMEN

Animals in the wild must balance food intake with vigilance for predators in order to survive. The optic tectum plays an important role in the integration of external (predators) and internal (energy status) cues related to predator defense and prey capture. However, the role of neuromodulators involved in tectal sensorimotor processing is poorly studied. Recently we showed that tectal CRFR1 receptor activation decreases food intake in the South African clawed frog, Xenopus laevis, suggesting that CRF may modulate food intake/predator avoidance tradeoffs. Here we use a behavioral assay modeling food intake and predator avoidance to test the role of CRFR1 receptors and energy status in this tradeoff. We tested the predictions that 1) administering the CRFR1 antagonist NBI-27914 via the optic tecta will increase food intake and feeding-related behaviors in the presence of a predator, and 2) that prior food deprivation, which lowers tectal CRF content, will increase food intake and feeding-related behaviors in the presence of a predator. Pre-treatment with NBI-27914 did not prevent predator-induced reductions in food intake. Predator exposure altered feeding-related behaviors in a predictable manner. Pretreatment with NBI-27914 reduced the response of certain behaviors to a predator but also altered behaviors irrelevant of predator presence. Although 1-wk of food deprivation altered some non-feeding behaviors related to energy conservation strategy, food intake in the presence of a predator was not altered by prior food deprivation. Collectively, our data support a role for tectal CRFR1 in modulating discrete behavioral responses during predator avoidance/foraging tradeoffs.


Asunto(s)
Reacción de Prevención/fisiología , Conducta de Elección/fisiología , Lóbulo Óptico de Animales no Mamíferos/metabolismo , Receptores de Hormona Liberadora de Corticotropina/fisiología , Xenopus laevis/fisiología , Compuestos de Anilina/farmacología , Animales , Reacción de Prevención/efectos de los fármacos , Conducta Animal/efectos de los fármacos , Conducta Animal/fisiología , Conducta de Elección/efectos de los fármacos , Ingestión de Alimentos/efectos de los fármacos , Ingestión de Alimentos/genética , Conducta Alimentaria/efectos de los fármacos , Conducta Alimentaria/fisiología , Femenino , Privación de Alimentos/fisiología , Larva , Masculino , Lóbulo Óptico de Animales no Mamíferos/efectos de los fármacos , Conducta Predatoria/efectos de los fármacos , Conducta Predatoria/fisiología , Pirimidinas/farmacología , Receptores de Hormona Liberadora de Corticotropina/antagonistas & inhibidores , Receptores de Hormona Liberadora de Corticotropina/genética
12.
Artículo en Inglés | MEDLINE | ID: mdl-31823004

RESUMEN

The computational organization of sensory systems depends on the diversification of individual cell types with distinct signal-processing capabilities. The Drosophila visual system, for instance, splits information into channels with different temporal properties directly downstream of photoreceptors in the first-order interneurons of the OFF pathway, L2 and L3. However, the biophysical mechanisms that determine this specialization are largely unknown. Here, we show that the voltage-gated Ka channels Shaker and Shal contribute to the response properties of the major OFF pathway input L2. L3 calcium response kinetics postsynaptic to photoreceptors resemble the sustained calcium signals of photoreceptors, whereas L2 neurons decay transiently. Based on a cell-type-specific RNA-seq data set and endogenous protein tagging, we identified Shaker and Shal as the primary candidates to shape L2 responses. Using in vivo two-photon imaging of L2 calcium signals in combination with pharmacological and genetic perturbations of these Ka channels, we show that the wild-type Shaker and Shal function is to enhance L2 responses and cell-autonomously sharpen L2 kinetics. Our results reveal a role for Ka channels in determining the signal-processing characteristics of a specific cell type in the visual system.


Asunto(s)
Encéfalo/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Interneuronas/metabolismo , Lóbulo Óptico de Animales no Mamíferos/metabolismo , Células Fotorreceptoras de Invertebrados/metabolismo , Canales de Potasio de la Superfamilia Shaker/metabolismo , Canales de Potasio Shal/metabolismo , Visión Ocular , Animales , Animales Modificados Genéticamente , Encéfalo/citología , Canales de Calcio Tipo L/metabolismo , Señalización del Calcio , Proteínas de Drosophila/genética , Drosophila melanogaster/citología , Drosophila melanogaster/genética , Potenciales Evocados Visuales , Cinética , Lóbulo Óptico de Animales no Mamíferos/citología , Estimulación Luminosa , Canales de Potasio de la Superfamilia Shaker/genética , Canales de Potasio Shal/genética , Vías Visuales/metabolismo , Percepción Visual
13.
Brain Behav Evol ; 94(1-4): 18-26, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31770768

RESUMEN

While reducing the investment in the visual system of nocturnal/cave-dwelling species appears to be an evolutionarily stable strategy in response to the difficulty of locating food in the dark, relying on visual information for diurnal species is crucial for their survival and reproduction. However, the manner in which species evolve and adapt to the energetic demands placed upon them by environmental changes is not perfectly understood. In particular, if life in the dark is associated with a reduction in energetic demand, would relocation to a well-lit environment increase energetic demand? This question has a bearing upon our understanding of factors that influence the ability of species to adapt to new habitats. After observing that a sub-population of "Dark-flies" (i.e., fruit flies bred in the dark for more than 60 years) has been selected with a larger visual system (optic lobes) and brain over the course of being maintained in normal lighting conditions for 3 years (DFLight), we used the CAFÉ assay method to investigate the differences in the two strains' energetic demands in the present study. We therefore measured brain size, body size, and food consumption in Dark-flies, DFLight, and Oregon flies (i.e., the fly species most genetically similar to Dark-flies). We found that the DFLight consumed more food solution than the Dark-flies, which correlates with that strain's larger brain size and improved visual capability compared to the Dark-flies. In addition, and although the -Oregon flies initially consumed less food solution than the DFLight, the amount consumed by these two strains by the end of the CAFÉ assay was approximately the same. This suggests that the Dark-flies have adapted their metabolism or feeding strategies in response to a dark environment. Our investigation therefore provides empirical evidence elucidating the manner in which energetic demands change in response to environmental changes and the cross-generational effect upon sensory-system investment.


Asunto(s)
Adaptación a la Oscuridad/genética , Conducta Alimentaria/fisiología , Adaptación Fisiológica/genética , Animales , Tamaño Corporal/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Femenino , Luz , Masculino , Lóbulo Óptico de Animales no Mamíferos/metabolismo , Tamaño de los Órganos/genética
14.
Commun Biol ; 2: 309, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31428697

RESUMEN

Drosophila species communicate the threat of parasitoid wasps to naïve individuals. Communication of the threat between closely related species is efficient, while more distantly related species exhibit a dampened, partial communication. Partial communication between D. melanogaster and D. ananassae about wasp presence is enhanced following a period of cohabitation, suggesting that species-specific natural variations in communication 'dialects' can be learned through socialization. In this study, we identify six regions of the Drosophila brain essential for dialect training. We pinpoint subgroups of neurons in these regions, including motion detecting neurons in the optic lobe, layer 5 of the fan-shaped body, the D glomerulus in the antennal lobe, and the odorant receptor Or69a, where activation of each component is necessary for dialect learning. These results reveal functional neural circuits that underlie complex Drosophila social behaviors, and these circuits are required for integration several cue inputs involving multiple regions of the Drosophila brain.


Asunto(s)
Drosophila melanogaster/fisiología , Vías Nerviosas/fisiología , Aprendizaje Social , Animales , Encéfalo/fisiología , Proteínas de Drosophila/metabolismo , Modelos Biológicos , Movimiento (Física) , Lóbulo Óptico de Animales no Mamíferos/metabolismo , Receptores Odorantes/metabolismo , Especificidad de la Especie
15.
Neuron ; 103(5): 865-877.e7, 2019 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-31300277

RESUMEN

The ability of neurons to identify correct synaptic partners is fundamental to the proper assembly and function of neural circuits. Relative to other steps in circuit formation such as axon guidance, our knowledge of how synaptic partner selection is regulated is severely limited. Drosophila Dpr and DIP immunoglobulin superfamily (IgSF) cell-surface proteins bind heterophilically and are expressed in a complementary manner between synaptic partners in the visual system. Here, we show that in the lamina, DIP mis-expression is sufficient to promote synapse formation with Dpr-expressing neurons and that disrupting DIP function results in ectopic synapse formation. These findings indicate that DIP proteins promote synapses to form between specific cell types and that in their absence, neurons synapse with alternative partners. We propose that neurons have the capacity to synapse with a broad range of cell types and that synaptic specificity is achieved by establishing a preference for specific partners.


Asunto(s)
Proteínas de Drosophila/metabolismo , Inmunoglobulinas/metabolismo , Proteínas de la Membrana/metabolismo , Neuronas/metabolismo , Lóbulo Óptico de Animales no Mamíferos/metabolismo , Sinapsis/metabolismo , Animales , Animales Modificados Genéticamente , Proteínas de Drosophila/genética , Drosophila melanogaster , Inmunoglobulinas/genética , Proteínas de la Membrana/genética , Neuronas/citología , Lóbulo Óptico de Animales no Mamíferos/citología , Mapas de Interacción de Proteínas
16.
BMC Mol Cell Biol ; 20(1): 19, 2019 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-31242864

RESUMEN

BACKGROUND: CG4552/tbc1 was identified as a downstream target of Fork head (Fkh), the single Drosophila member of the FoxA family of transcription factors and a major player in salivary gland formation and homeostasis. Tbc1 and its orthologues have been implicated in phagocytosis, the innate immune response, border cell migration, cancer and an autosomal recessive form of non-degenerative Pontocerebellar hypoplasia. Recently, the mammalian Tbc1 orthologue, Tbc1d23, has been shown to bind both the conserved N-terminal domains of two Golgins (Golgin-97 and Golgin-245) and the WASH complex on endosome vesicles. Through this activity, Tbc1d23 has been proposed to link endosomally-derived vesicles to their appropriate target membrane in the trans Golgi (TGN). RESULTS: In this paper, we provide an initial characterization of Drosophila orthologue, we call tbc1. We show that, like its mammalian orthologue, Tbc1 localizes to the trans Golgi. We show that it also colocalizes with a subset of Rabs associated with both early and recycling endosomes. Animals completely missing tbc1 survive, but females have fertility defects. Consistent with the human disease, loss of tbc1 reduces optic lobe size and increases response time to mechanical perturbation. Loss and overexpression of tbc1 in the embryonic salivary glands leads to secretion defects and apical membrane irregularities. CONCLUSIONS: These findings support a role for tbc1 in endocytic/membrane trafficking, consistent with its activities in other systems.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/embriología , Proteínas Activadoras de GTPasa/genética , Proteínas Activadoras de GTPasa/metabolismo , Glándulas Salivales/embriología , Alelos , Animales , Drosophila melanogaster/metabolismo , Endosomas/metabolismo , Factores de Transcripción Forkhead/metabolismo , GTP Fosfohidrolasas/metabolismo , Expresión Génica , Proteínas de Transporte de Membrana/metabolismo , Proteínas de Unión al GTP Monoméricas/metabolismo , Sistemas de Lectura Abierta/genética , Lóbulo Óptico de Animales no Mamíferos/metabolismo , Glándulas Salivales/metabolismo , Proteínas de Unión al GTP rab/metabolismo , Red trans-Golgi/metabolismo
17.
Dev Biol ; 453(1): 68-85, 2019 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-31063730

RESUMEN

The molecular and cellular mechanism for clearance of dead neurons was explored in the developing Drosophila optic lobe. During development of the optic lobe, many neural cells die through apoptosis, and corpses are immediately removed in the early pupal stage. Most of the cells that die in the optic lobe are young neurons that have not extended neurites. In this study, we showed that clearance was carried out by cortex glia via a phagocytosis receptor, Draper (Drpr). drpr expression in cortex glia from the second instar larval to early pupal stages was required and sufficient for clearance. Drpr that was expressed in other subtypes of glia did not mediate clearance. Shark and Ced-6 mediated clearance of Drpr. The Crk/Mbc/dCed-12 pathway was partially involved in clearance, but the role was minor. Suppression of the function of Pretaporter, CaBP1 and phosphatidylserine delayed clearance, suggesting a possibility for these molecules to function as Drpr ligands in the developing optic lobe.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/embriología , Drosophila melanogaster/metabolismo , Neuroglía/metabolismo , Neuronas/metabolismo , Lóbulo Óptico de Animales no Mamíferos/metabolismo , Transducción de Señal , Animales , Cuerpo Celular/metabolismo , Muerte Celular , Larva/citología , Fosfatidilserinas/metabolismo , Pupa/citología
18.
Nat Commun ; 10(1): 252, 2019 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-30651542

RESUMEN

In Drosophila, the clock that controls rest-activity rhythms synchronizes with light-dark cycles through either the blue-light sensitive cryptochrome (Cry) located in most clock neurons, or rhodopsin-expressing histaminergic photoreceptors. Here we show that, in the absence of Cry, each of the two histamine receptors Ort and HisCl1 contribute to entrain the clock whereas no entrainment occurs in the absence of the two receptors. In contrast to Ort, HisCl1 does not restore entrainment when expressed in the optic lobe interneurons. Indeed, HisCl1 is expressed in wild-type photoreceptors and entrainment is strongly impaired in flies with photoreceptors mutant for HisCl1. Rescuing HisCl1 expression in the Rh6-expressing photoreceptors restores entrainment but it does not in other photoreceptors, which send histaminergic inputs to Rh6-expressing photoreceptors. Our results thus show that Rh6-expressing neurons contribute to circadian entrainment as both photoreceptors and interneurons, recalling the dual function of melanopsin-expressing ganglion cells in the mammalian retina.


Asunto(s)
Canales de Cloruro/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila/fisiología , Células Fotorreceptoras de Invertebrados/metabolismo , Rodopsina/metabolismo , Animales , Animales Modificados Genéticamente , Técnicas de Observación Conductual/instrumentación , Técnicas de Observación Conductual/métodos , Conducta Animal/fisiología , Canales de Cloruro/genética , Ojo Compuesto de los Artrópodos/citología , Ojo Compuesto de los Artrópodos/fisiología , Criptocromos/metabolismo , Proteínas de Drosophila/genética , Interneuronas/metabolismo , Masculino , Mutación , Lóbulo Óptico de Animales no Mamíferos/citología , Lóbulo Óptico de Animales no Mamíferos/metabolismo , Fotoperiodo
19.
Development ; 146(2)2019 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-30642835

RESUMEN

In the Drosophila visual system, T4/T5 neurons represent the first stage of computation of the direction of visual motion. T4 and T5 neurons exist in four subtypes, each responding to motion in one of the four cardinal directions and projecting axons into one of the four lobula plate layers. However, all T4/T5 neurons share properties essential for sensing motion. How T4/T5 neurons acquire their properties during development is poorly understood. We reveal that the transcription factors SoxN and Sox102F control the acquisition of properties common to all T4/T5 neuron subtypes, i.e. the layer specificity of dendrites and axons. Accordingly, adult flies are motion blind after disruption of SoxN or Sox102F in maturing T4/T5 neurons. We further find that the transcription factors Ato and Dac are redundantly required in T4/T5 neuron progenitors for SoxN and Sox102F expression in T4/T5 neurons, linking the transcriptional programmes specifying progenitor identity to those regulating the acquisition of morphological properties in neurons. Our work will help to link structure, function and development in a neuronal type performing a computation that is conserved across vertebrate and invertebrate visual systems.


Asunto(s)
Movimiento Celular , Drosophila melanogaster/citología , Drosophila melanogaster/genética , Neuronas/citología , Neuronas/metabolismo , Transcripción Genética , Animales , Axones/metabolismo , Movimiento Celular/genética , Dendritas/metabolismo , Proteínas de Drosophila/metabolismo , Silenciador del Gen , Actividad Motora , Neurópilo/metabolismo , Lóbulo Óptico de Animales no Mamíferos/embriología , Lóbulo Óptico de Animales no Mamíferos/metabolismo , Activación Transcripcional/genética
20.
Cell Rep ; 25(6): 1561-1576.e7, 2018 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-30404010

RESUMEN

The ability of cells to stably maintain their fate is governed by specific transcription regulators. Here, we show that the Scalloped (Sd) and Nervous fingers-1 (Nerfin-1) transcription factors physically and functionally interact to maintain medulla neuron fate in the Drosophila melanogaster CNS. Using Targeted DamID, we find that Sd and Nerfin-1 occupy a highly overlapping set of target genes, including regulators of neural stem cell and neuron fate, and signaling pathways that regulate CNS development such as Notch and Hippo. Modulation of either Sd or Nerfin-1 activity causes medulla neurons to dedifferentiate to a stem cell-like state, and this is mediated at least in part by Notch pathway deregulation. Intriguingly, orthologs of Sd and Nerfin-1 have also been implicated in control of neuronal cell fate decisions in both worms and mammals. Our data indicate that this transcription factor pair exhibits remarkable biochemical and functional conservation across metazoans.


Asunto(s)
Linaje de la Célula , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citología , Neuronas/citología , Neuronas/metabolismo , Factores de Transcripción/metabolismo , Animales , Secuencia de Bases , Desdiferenciación Celular , Línea Celular , Cromatina/metabolismo , Drosophila melanogaster/genética , Regulación del Desarrollo de la Expresión Génica , Humanos , Lóbulo Óptico de Animales no Mamíferos/citología , Lóbulo Óptico de Animales no Mamíferos/metabolismo , Receptores Notch/metabolismo , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...