Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 760
Filtrar
1.
Nature ; 634(8034): 626-634, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39385026

RESUMEN

Olfaction is a fundamental sensory modality that guides animal and human behaviour1,2. However, the underlying neural processes of human olfaction are still poorly understood at the fundamental-that is, the single-neuron-level. Here we report recordings of single-neuron activity in the piriform cortex and medial temporal lobe in awake humans performing an odour rating and identification task. We identified odour-modulated neurons within the piriform cortex, amygdala, entorhinal cortex and hippocampus. In each of these regions, neuronal firing accurately encodes odour identity. Notably, repeated odour presentations reduce response firing rates, demonstrating central repetition suppression and habituation. Different medial temporal lobe regions have distinct roles in odour processing, with amygdala neurons encoding subjective odour valence, and hippocampal neurons predicting behavioural odour identification performance. Whereas piriform neurons preferably encode chemical odour identity, hippocampal activity reflects subjective odour perception. Critically, we identify that piriform cortex neurons reliably encode odour-related images, supporting a multimodal role of the human piriform cortex. We also observe marked cross-modal coding of both odours and images, especially in the amygdala and piriform cortex. Moreover, we identify neurons that respond to semantically coherent odour and image information, demonstrating conceptual coding schemes in olfaction. Our results bridge the long-standing gap between animal models and non-invasive human studies and advance our understanding of odour processing in the human brain by identifying neuronal odour-coding principles, regional functional differences and cross-modal integration.


Asunto(s)
Encéfalo , Neuronas , Odorantes , Percepción Olfatoria , Análisis de la Célula Individual , Adulto , Femenino , Humanos , Masculino , Persona de Mediana Edad , Adulto Joven , Amígdala del Cerebelo/fisiología , Amígdala del Cerebelo/citología , Encéfalo/anatomía & histología , Encéfalo/citología , Encéfalo/fisiología , Corteza Entorrinal/citología , Corteza Entorrinal/fisiología , Hipocampo/fisiología , Hipocampo/citología , Neuronas/citología , Neuronas/fisiología , Odorantes/análisis , Percepción Olfatoria/fisiología , Corteza Piriforme/fisiología , Corteza Piriforme/citología , Lóbulo Temporal/fisiología , Lóbulo Temporal/citología , Vigilia/fisiología
2.
Cell Rep ; 43(9): 114718, 2024 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-39277859

RESUMEN

Large-scale analysis of single-cell gene expression has revealed transcriptomically defined cell subclasses present throughout the primate neocortex with gene expression profiles that differ depending upon neocortical region. Here, we test whether the interareal differences in gene expression translate to regional specializations in the physiology and morphology of infragranular glutamatergic neurons by performing Patch-seq experiments in brain slices from the temporal cortex (TCx) and motor cortex (MCx) of the macaque. We confirm that transcriptomically defined extratelencephalically projecting neurons of layer 5 (L5 ET neurons) include retrogradely labeled corticospinal neurons in the MCx and find multiple physiological properties and ion channel genes that distinguish L5 ET from non-ET neurons in both areas. Additionally, while infragranular ET and non-ET neurons retain distinct neuronal properties across multiple regions, there are regional morpho-electric and gene expression specializations in the L5 ET subclass, providing mechanistic insights into the specialized functional architecture of the primate neocortex.


Asunto(s)
Neuronas , Transcriptoma , Animales , Neuronas/metabolismo , Neuronas/citología , Transcriptoma/genética , Neocórtex/citología , Neocórtex/metabolismo , Corteza Motora/citología , Corteza Motora/metabolismo , Masculino , Lóbulo Temporal/citología , Lóbulo Temporal/metabolismo , Macaca mulatta
3.
Nat Commun ; 15(1): 7926, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39256373

RESUMEN

Our brains create new memories by capturing the 'who/what', 'where' and 'when' of everyday experiences. On a neuronal level, mechanisms facilitating a successful transfer into episodic memory are still unclear. We investigated this by measuring single neuron activity in the human medial temporal lobe during encoding of item-location associations. While previous research has found predictive effects in population activity in human MTL structures, we could attribute such effects to two specialized sub-groups of neurons: concept cells in the hippocampus, amygdala and entorhinal cortex (EC), and a second group of parahippocampal location-selective neurons. In both item- and location-selective populations, firing rates were significantly higher during successfully encoded trials. These findings are in line with theories of hippocampal indexing, since selective index neurons may act as pointers to neocortical representations. Overall, activation of distinct populations of neurons could directly support the connection of the 'what' and 'where' of episodic memory.


Asunto(s)
Amígdala del Cerebelo , Corteza Entorrinal , Memoria Episódica , Neuronas , Humanos , Neuronas/fisiología , Masculino , Femenino , Adulto , Corteza Entorrinal/fisiología , Corteza Entorrinal/citología , Amígdala del Cerebelo/fisiología , Amígdala del Cerebelo/citología , Hipocampo/fisiología , Hipocampo/citología , Lóbulo Temporal/fisiología , Lóbulo Temporal/citología , Adulto Joven , Encéfalo/fisiología , Memoria/fisiología
4.
Nature ; 632(8026): 841-849, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39143207

RESUMEN

Humans have the remarkable cognitive capacity to rapidly adapt to changing environments. Central to this capacity is the ability to form high-level, abstract representations that take advantage of regularities in the world to support generalization1. However, little is known about how these representations are encoded in populations of neurons, how they emerge through learning and how they relate to behaviour2,3. Here we characterized the representational geometry of populations of neurons (single units) recorded in the hippocampus, amygdala, medial frontal cortex and ventral temporal cortex of neurosurgical patients performing an inferential reasoning task. We found that only the neural representations formed in the hippocampus simultaneously encode several task variables in an abstract, or disentangled, format. This representational geometry is uniquely observed after patients learn to perform inference, and consists of disentangled directly observable and discovered latent task variables. Learning to perform inference by trial and error or through verbal instructions led to the formation of hippocampal representations with similar geometric properties. The observed relation between representational format and inference behaviour suggests that abstract and disentangled representational geometries are important for complex cognition.


Asunto(s)
Cognición , Hipocampo , Adulto , Femenino , Humanos , Masculino , Persona de Mediana Edad , Amígdala del Cerebelo/fisiología , Amígdala del Cerebelo/citología , Cognición/fisiología , Lóbulo Frontal/citología , Lóbulo Frontal/fisiología , Hipocampo/fisiología , Hipocampo/citología , Aprendizaje/fisiología , Modelos Neurológicos , Neuronas/fisiología , Neurocirugia , Lóbulo Temporal/fisiología , Lóbulo Temporal/citología , Adulto Joven
5.
Nature ; 629(8013): 861-868, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38750353

RESUMEN

A central assumption of neuroscience is that long-term memories are represented by the same brain areas that encode sensory stimuli1. Neurons in inferotemporal (IT) cortex represent the sensory percept of visual objects using a distributed axis code2-4. Whether and how the same IT neural population represents the long-term memory of visual objects remains unclear. Here we examined how familiar faces are encoded in the IT anterior medial face patch (AM), perirhinal face patch (PR) and temporal pole face patch (TP). In AM and PR we observed that the encoding axis for familiar faces is rotated relative to that for unfamiliar faces at long latency; in TP this memory-related rotation was much weaker. Contrary to previous claims, the relative response magnitude to familiar versus unfamiliar faces was not a stable indicator of familiarity in any patch5-11. The mechanism underlying the memory-related axis change is likely intrinsic to IT cortex, because inactivation of PR did not affect axis change dynamics in AM. Overall, our results suggest that memories of familiar faces are represented in AM and perirhinal cortex by a distinct long-latency code, explaining how the same cell population can encode both the percept and memory of faces.


Asunto(s)
Reconocimiento Facial , Memoria a Largo Plazo , Reconocimiento en Psicología , Lóbulo Temporal , Animales , Cara , Reconocimiento Facial/fisiología , Macaca mulatta/fisiología , Memoria a Largo Plazo/fisiología , Neuronas/fisiología , Corteza Perirrinal/fisiología , Corteza Perirrinal/citología , Estimulación Luminosa , Reconocimiento en Psicología/fisiología , Lóbulo Temporal/anatomía & histología , Lóbulo Temporal/citología , Lóbulo Temporal/fisiología , Rotación
6.
Cereb Cortex ; 34(5)2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38745556

RESUMEN

The basic building block of the cerebral cortex, the pyramidal cell, has been shown to be characterized by a markedly different dendritic structure among layers, cortical areas, and species. Functionally, differences in the structure of their dendrites and axons are critical in determining how neurons integrate information. However, within the human cortex, these neurons have not been quantified in detail. In the present work, we performed intracellular injections of Lucifer Yellow and 3D reconstructed over 200 pyramidal neurons, including apical and basal dendritic and local axonal arbors and dendritic spines, from human occipital primary visual area and associative temporal cortex. We found that human pyramidal neurons from temporal cortex were larger, displayed more complex apical and basal structural organization, and had more spines compared to those in primary sensory cortex. Moreover, these human neocortical neurons displayed specific shared and distinct characteristics in comparison to previously published human hippocampal pyramidal neurons. Additionally, we identified distinct morphological features in human neurons that set them apart from mouse neurons. Lastly, we observed certain consistent organizational patterns shared across species. This study emphasizes the existing diversity within pyramidal cell structures across different cortical areas and species, suggesting substantial species-specific variations in their computational properties.


Asunto(s)
Células Piramidales , Humanos , Células Piramidales/fisiología , Animales , Masculino , Femenino , Ratones , Adulto , Espinas Dendríticas/fisiología , Espinas Dendríticas/ultraestructura , Lóbulo Temporal/citología , Dendritas/fisiología , Persona de Mediana Edad , Axones/fisiología , Especificidad de la Especie
7.
Nature ; 629(8011): 393-401, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38632400

RESUMEN

Retaining information in working memory is a demanding process that relies on cognitive control to protect memoranda-specific persistent activity from interference1,2. However, how cognitive control regulates working memory storage is unclear. Here we show that interactions of frontal control and hippocampal persistent activity are coordinated by theta-gamma phase-amplitude coupling (TG-PAC). We recorded single neurons in the human medial temporal and frontal lobe while patients maintained multiple items in their working memory. In the hippocampus, TG-PAC was indicative of working memory load and quality. We identified cells that selectively spiked during nonlinear interactions of theta phase and gamma amplitude. The spike timing of these PAC neurons was coordinated with frontal theta activity when cognitive control demand was high. By introducing noise correlations with persistently active neurons in the hippocampus, PAC neurons shaped the geometry of the population code. This led to higher-fidelity representations of working memory content that were associated with improved behaviour. Our results support a multicomponent architecture of working memory1,2, with frontal control managing maintenance of working memory content in storage-related areas3-5. Within this framework, hippocampal TG-PAC integrates cognitive control and working memory storage across brain areas, thereby suggesting a potential mechanism for top-down control over sensory-driven processes.


Asunto(s)
Hipocampo , Memoria a Corto Plazo , Neuronas , Adulto , Femenino , Humanos , Masculino , Potenciales de Acción , Cognición/fisiología , Lóbulo Frontal/fisiología , Lóbulo Frontal/citología , Ritmo Gamma/fisiología , Hipocampo/fisiología , Hipocampo/citología , Memoria a Corto Plazo/fisiología , Neuronas/fisiología , Lóbulo Temporal/fisiología , Lóbulo Temporal/citología , Ritmo Teta/fisiología , Persona de Mediana Edad
8.
Nature ; 628(8007): 381-390, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38480888

RESUMEN

Our understanding of the neurobiology of primate behaviour largely derives from artificial tasks in highly controlled laboratory settings, overlooking most natural behaviours that primate brains evolved to produce1-3. How primates navigate the multidimensional social relationships that structure daily life4 and shape survival and reproductive success5 remains largely unclear at the single-neuron level. Here we combine ethological analysis, computer vision and wireless recording technologies to identify neural signatures of natural behaviour in unrestrained, socially interacting pairs of rhesus macaques. Single-neuron and population activity in the prefrontal and temporal cortex robustly encoded 24 species-typical behaviours, as well as social context. Male-female partners demonstrated near-perfect reciprocity in grooming, a key behavioural mechanism supporting friendships and alliances6, and neural activity maintained a running account of these social investments. Confronted with an aggressive intruder, behavioural and neural population responses reflected empathy and were buffered by the presence of a partner. Our findings reveal a highly distributed neurophysiological ledger of social dynamics, a potential computational foundation supporting communal life in primate societies, including our own.


Asunto(s)
Encéfalo , Macaca mulatta , Neuronas , Conducta Social , Animales , Femenino , Masculino , Agresión/fisiología , Encéfalo/citología , Encéfalo/fisiología , Empatía , Aseo Animal , Procesos de Grupo , Macaca mulatta/clasificación , Macaca mulatta/fisiología , Macaca mulatta/psicología , Corteza Prefrontal/citología , Corteza Prefrontal/fisiología , Lóbulo Temporal/citología , Lóbulo Temporal/fisiología , Neuronas/fisiología
9.
Nature ; 626(7999): 593-602, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38093008

RESUMEN

Understanding the neural basis of speech perception requires that we study the human brain both at the scale of the fundamental computational unit of neurons and in their organization across the depth of cortex. Here we used high-density Neuropixels arrays1-3 to record from 685 neurons across cortical layers at nine sites in a high-level auditory region that is critical for speech, the superior temporal gyrus4,5, while participants listened to spoken sentences. Single neurons encoded a wide range of speech sound cues, including features of consonants and vowels, relative vocal pitch, onsets, amplitude envelope and sequence statistics. Neurons at each cross-laminar recording exhibited dominant tuning to a primary speech feature while also containing a substantial proportion of neurons that encoded other features contributing to heterogeneous selectivity. Spatially, neurons at similar cortical depths tended to encode similar speech features. Activity across all cortical layers was predictive of high-frequency field potentials (electrocorticography), providing a neuronal origin for macroelectrode recordings from the cortical surface. Together, these results establish single-neuron tuning across the cortical laminae as an important dimension of speech encoding in human superior temporal gyrus.


Asunto(s)
Corteza Auditiva , Neuronas , Percepción del Habla , Lóbulo Temporal , Humanos , Estimulación Acústica , Corteza Auditiva/citología , Corteza Auditiva/fisiología , Neuronas/fisiología , Fonética , Habla , Percepción del Habla/fisiología , Lóbulo Temporal/citología , Lóbulo Temporal/fisiología , Señales (Psicología) , Electrodos
10.
Nature ; 626(8001): 1056-1065, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38122823

RESUMEN

The temporal lobe of the human brain contains the entorhinal cortex (EC). This region of the brain is a highly interconnected integrative hub for sensory and spatial information; it also has a key role in episodic memory formation and is the main source of cortical hippocampal inputs1-4. The human EC continues to develop during childhood5, but neurogenesis and neuronal migration to the EC are widely considered to be complete by birth. Here we show that the human temporal lobe contains many young neurons migrating into the postnatal EC and adjacent regions, with a large tangential stream persisting until the age of around one year and radial dispersal continuing until around two to three years of age. By contrast, we found no equivalent postnatal migration in rhesus macaques (Macaca mulatta). Immunostaining and single-nucleus RNA sequencing of ganglionic eminence germinal zones, the EC stream and the postnatal EC revealed that most migrating cells in the EC stream are derived from the caudal ganglionic eminence and become LAMP5+RELN+ inhibitory interneurons. These late-arriving interneurons could continue to shape the processing of sensory and spatial information well into postnatal life, when children are actively interacting with their environment. The EC is one of the first regions of the brain to be affected in Alzheimer's disease, and previous work has linked cognitive decline to the loss of LAMP5+RELN+ cells6,7. Our investigation reveals that many of these cells arrive in the EC through a major postnatal migratory stream in early childhood.


Asunto(s)
Movimiento Celular , Neuronas , Lóbulo Temporal , Animales , Preescolar , Humanos , Lactante , Corteza Entorrinal/citología , Corteza Entorrinal/fisiología , Eminencia Ganglionar/citología , Interneuronas/citología , Interneuronas/fisiología , Macaca mulatta , Neuronas/citología , Neuronas/fisiología , Análisis de Expresión Génica de una Sola Célula , Lóbulo Temporal/citología , Lóbulo Temporal/crecimiento & desarrollo
11.
Science ; 382(6667): eadf2359, 2023 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-37824649

RESUMEN

Single-cell transcriptomic studies have identified a conserved set of neocortical cell types from small postmortem cohorts. We extended these efforts by assessing cell type variation across 75 adult individuals undergoing epilepsy and tumor surgeries. Nearly all nuclei map to one of 125 robust cell types identified in the middle temporal gyrus. However, we found interindividual variance in abundances and gene expression signatures, particularly in deep-layer glutamatergic neurons and microglia. A minority of donor variance is explainable by age, sex, ancestry, disease state, and cell state. Genomic variation was associated with expression of 150 to 250 genes for most cell types. This characterization of cellular variation provides a baseline for cell typing in health and disease.


Asunto(s)
Lóbulo Temporal , Transcriptoma , Adulto , Humanos , Epilepsia/metabolismo , Perfilación de la Expresión Génica , Neuronas/metabolismo , Lóbulo Temporal/citología , Lóbulo Temporal/metabolismo , Enfermedades del Sistema Nervioso/genética , Trastornos Mentales/genética
12.
Science ; 375(6585): eabj5861, 2022 03 11.
Artículo en Inglés | MEDLINE | ID: mdl-35271334

RESUMEN

We present a unique, extensive, and open synaptic physiology analysis platform and dataset. Through its application, we reveal principles that relate cell type to synaptic properties and intralaminar circuit organization in the mouse and human cortex. The dynamics of excitatory synapses align with the postsynaptic cell subclass, whereas inhibitory synapse dynamics partly align with presynaptic cell subclass but with considerable overlap. Synaptic properties are heterogeneous in most subclass-to-subclass connections. The two main axes of heterogeneity are strength and variability. Cell subclasses divide along the variability axis, whereas the strength axis accounts for substantial heterogeneity within the subclass. In the human cortex, excitatory-to-excitatory synaptic dynamics are distinct from those in the mouse cortex and vary with depth across layers 2 and 3.


Asunto(s)
Neocórtex/fisiología , Vías Nerviosas , Neuronas/fisiología , Sinapsis/fisiología , Transmisión Sináptica , Adulto , Animales , Conjuntos de Datos como Asunto , Potenciales Postsinápticos Excitadores , Femenino , Humanos , Potenciales Postsinápticos Inhibidores , Masculino , Ratones , Ratones Transgénicos , Modelos Neurológicos , Neocórtex/citología , Lóbulo Temporal/citología , Lóbulo Temporal/fisiología , Corteza Visual/citología , Corteza Visual/fisiología
13.
PLoS Comput Biol ; 17(12): e1009691, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34968383

RESUMEN

Assemblies of neurons, called concepts cells, encode acquired concepts in human Medial Temporal Lobe. Those concept cells that are shared between two assemblies have been hypothesized to encode associations between concepts. Here we test this hypothesis in a computational model of attractor neural networks. We find that for concepts encoded in sparse neural assemblies there is a minimal fraction cmin of neurons shared between assemblies below which associations cannot be reliably implemented; and a maximal fraction cmax of shared neurons above which single concepts can no longer be retrieved. In the presence of a periodically modulated background signal, such as hippocampal oscillations, recall takes the form of association chains reminiscent of those postulated by theories of free recall of words. Predictions of an iterative overlap-generating model match experimental data on the number of concepts to which a neuron responds.


Asunto(s)
Memoria/fisiología , Modelos Neurológicos , Neuronas/citología , Biología Computacional , Hipocampo/citología , Hipocampo/fisiología , Humanos , Red Nerviosa/citología , Red Nerviosa/fisiología , Lóbulo Temporal/citología , Lóbulo Temporal/fisiología
14.
Nat Commun ; 12(1): 6164, 2021 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-34697305

RESUMEN

Concept neurons in the medial temporal lobe respond to semantic features of presented stimuli. Analyzing 61 concept neurons recorded from twelve patients who underwent surgery to treat epilepsy, we show that firing patterns of concept neurons encode relations between concepts during a picture comparison task. Thirty-three of these responded to non-preferred stimuli with a delayed but well-defined onset whenever the task required a comparison to a response-eliciting concept, but not otherwise. Supporting recent theories of working memory, concept neurons increased firing whenever attention was directed towards this concept and could be reactivated after complete activity silence. Population cross-correlations of pairs of concept neurons exhibited order-dependent asymmetric peaks specifically when their response-eliciting concepts were to be compared. Our data are consistent with synaptic mechanisms that support reinstatement of concepts and their relations after activity silence, flexibly induced through task-specific sequential activation. This way arbitrary contents of experience could become interconnected in both working and long-term memory.


Asunto(s)
Formación de Concepto/fisiología , Neuronas/fisiología , Lóbulo Temporal/fisiología , Adulto , Anciano , Atención/fisiología , Toma de Decisiones/fisiología , Epilepsia del Lóbulo Temporal/fisiopatología , Epilepsia del Lóbulo Temporal/cirugía , Femenino , Humanos , Masculino , Memoria a Corto Plazo/fisiología , Persona de Mediana Edad , Sinapsis/fisiología , Lóbulo Temporal/citología , Adulto Joven
15.
Nat Commun ; 12(1): 4839, 2021 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-34376673

RESUMEN

The ability to maintain a sequence of items in memory is a fundamental cognitive function. In the rodent hippocampus, the representation of sequentially organized spatial locations is reflected by the phase of action potentials relative to the theta oscillation (phase precession). We investigated whether the timing of neuronal activity relative to the theta brain oscillation also reflects sequence order in the medial temporal lobe of humans. We used a task in which human participants learned a fixed sequence of pictures and recorded single neuron and local field potential activity with implanted electrodes. We report that spikes for three consecutive items in the sequence (the preferred stimulus for each cell, as well as the stimuli immediately preceding and following it) were phase-locked at distinct phases of the theta oscillation. Consistent with phase precession, spikes were fired at progressively earlier phases as the sequence advanced. These findings generalize previous findings in the rodent hippocampus to the human temporal lobe and suggest that encoding stimulus information at distinct oscillatory phases may play a role in maintaining sequential order in memory.


Asunto(s)
Potenciales de Acción/fisiología , Epilepsia/fisiopatología , Aprendizaje/fisiología , Neuronas/fisiología , Ritmo Teta/fisiología , Adolescente , Adulto , Epilepsia/diagnóstico , Femenino , Hipocampo/citología , Hipocampo/fisiología , Humanos , Masculino , Modelos Neurológicos , Neuronas/citología , Estimulación Luminosa/métodos , Lóbulo Temporal/citología , Lóbulo Temporal/fisiología , Adulto Joven
16.
Science ; 373(6554): 581-585, 2021 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-34210891

RESUMEN

The question of how the brain recognizes the faces of familiar individuals has been important throughout the history of neuroscience. Cells linking visual processing to person memory have been proposed but not found. Here, we report the discovery of such cells through recordings from an area in the macaque temporal pole identified with functional magnetic resonance imaging. These cells responded to faces that were personally familiar. They responded nonlinearly to stepwise changes in face visibility and detail and holistically to face parts, reflecting key signatures of familiar face recognition. They discriminated between familiar identities, as fast as a general face identity area. The discovery of these cells establishes a new pathway for the fast recognition of familiar individuals.


Asunto(s)
Reconocimiento Facial , Memoria , Neuronas/fisiología , Lóbulo Temporal/fisiología , Animales , Mapeo Encefálico , Cara , Macaca mulatta , Imagen por Resonancia Magnética , Masculino , Lóbulo Temporal/citología , Percepción Visual
17.
Int J Mol Sci ; 22(13)2021 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-34206571

RESUMEN

In recent years, a large population of immature neurons has been documented in the paralaminar nucleus of the primate amygdala. A substantial fraction of these immature neurons differentiate into mature neurons during postnatal development or following selective lesion of the hippocampus. Notwithstanding a growing number of studies on the origin and fate of these immature neurons, fundamental questions about the life and death of these neurons remain. Here, we briefly summarize what is currently known about the immature neurons present in the primate ventral amygdala during development and in adulthood, as well as following selective hippocampal lesions. We provide evidence confirming that the distribution of immature neurons extends to the anterior portions of the entorhinal cortex and layer II of the perirhinal cortex. We also provide novel arguments derived from stereological estimates of the number of mature and immature neurons, which support the view that the migration of immature neurons from the lateral ventricle accompanies neuronal maturation in the primate amygdala at all ages. Finally, we propose and discuss the hypothesis that increased migration and maturation of neurons in the amygdala following hippocampal dysfunction may be linked to behavioral alterations associated with certain neurodevelopmental disorders.


Asunto(s)
Amígdala del Cerebelo/citología , Diferenciación Celular , Neuronas/citología , Neuronas/metabolismo , Factores de Edad , Amígdala del Cerebelo/metabolismo , Animales , Biomarcadores , Recuento de Células , Muerte Celular , Supervivencia Celular , Expresión Génica , Hipocampo/citología , Hipocampo/metabolismo , Inmunohistoquímica , Primates , Lóbulo Temporal/citología , Lóbulo Temporal/metabolismo
18.
Neuron ; 109(17): 2781-2796.e10, 2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-34265253

RESUMEN

Spatial navigation and memory rely on neural systems that encode places, distances, and directions in relation to the external world or relative to the navigating organism. Place, grid, and head-direction cells form key units of world-referenced, allocentric cognitive maps, but the neural basis of self-centered, egocentric representations remains poorly understood. Here, we used human single-neuron recordings during virtual spatial navigation tasks to identify neurons providing a neural code for egocentric spatial maps in the human brain. Consistent with previous observations in rodents, these neurons represented egocentric bearings toward reference points positioned throughout the environment. Egocentric bearing cells were abundant in the parahippocampal cortex and supported vectorial representations of egocentric space by also encoding distances toward reference points. Beyond navigation, the observed neurons showed activity increases during spatial and episodic memory recall, suggesting that egocentric bearing cells are not only relevant for navigation but also play a role in human memory.


Asunto(s)
Memoria Episódica , Neuronas/fisiología , Memoria Espacial , Lóbulo Temporal/fisiología , Adulto , Electroencefalografía , Femenino , Humanos , Masculino , Persona de Mediana Edad , Navegación Espacial , Lóbulo Temporal/citología
19.
Cereb Cortex ; 31(10): 4742-4764, 2021 08 26.
Artículo en Inglés | MEDLINE | ID: mdl-33999122

RESUMEN

In the present study, we have used focused ion beam/scanning electron microscopy (FIB/SEM) to perform a study of the synaptic organization of layer III of Brodmann's area 21 in human tissue samples obtained from autopsies and biopsies. We analyzed the synaptic density, 3D spatial distribution, and type (asymmetric/symmetric), as well as the size and shape of each synaptic junction of 4945 synapses that were fully reconstructed in 3D. Significant differences in the mean synaptic density between autopsy and biopsy samples were found (0.49 and 0.66 synapses/µm3, respectively). However, in both types of samples (autopsy and biopsy), the asymmetric:symmetric ratio was similar (93:7) and most asymmetric synapses were established on dendritic spines (75%), while most symmetric synapses were established on dendritic shafts (85%). We also compared several electron microscopy methods and analysis tools to estimate the synaptic density in the same brain tissue. We have shown that FIB/SEM is much more reliable and robust than the majority of the other commonly used EM techniques. The present work constitutes a detailed description of the synaptic organization of cortical layer III. Further studies on the rest of the cortical layers are necessary to better understand the functional organization of this temporal cortical region.


Asunto(s)
Neocórtex/citología , Sinapsis/ultraestructura , Lóbulo Temporal/citología , Adulto , Autopsia , Biopsia , Recuento de Células , Espinas Dendríticas/fisiología , Espinas Dendríticas/ultraestructura , Femenino , Humanos , Imagenología Tridimensional , Masculino , Microscopía Electrónica de Rastreo , Persona de Mediana Edad , Neocórtex/ultraestructura , Neuroimagen , Lóbulo Temporal/ultraestructura , Adulto Joven
20.
Cereb Cortex ; 31(8): 3592-3609, 2021 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-33723567

RESUMEN

Pyramidal neurons are the most abundant and characteristic neuronal type in the cerebral cortex and their dendritic spines are the main postsynaptic elements of cortical excitatory synapses. Previous studies have shown that pyramidal cell structure differs across layers, cortical areas, and species. However, within the human cortex, the pyramidal dendritic morphology has been quantified in detail in relatively few cortical areas. In the present work, we performed intracellular injections of Lucifer Yellow at several distances from the temporal pole. We found regional differences in pyramidal cell morphology, which showed large inter-individual variability in most of the morphological variables measured. However, some values remained similar in all cases. The smallest and least complex cells in the most posterior temporal region showed the greatest dendritic spine density. Neurons in the temporal pole showed the greatest sizes with the highest number of spines. Layer V cells were larger, more complex, and had a greater number of dendritic spines than those in layer III. The present results suggest that, while some aspects of pyramidal structure are conserved, there are specific variations across cortical regions, and species.


Asunto(s)
Células Piramidales/ultraestructura , Lóbulo Temporal/ultraestructura , Adulto , Dendritas , Espinas Dendríticas/ultraestructura , Epilepsia/patología , Epilepsia/cirugía , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador , Imagenología Tridimensional , Individualidad , Masculino , Persona de Mediana Edad , Neuroimagen , Neuronas/ultraestructura , Lóbulo Temporal/citología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...