Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.825
Filtrar
1.
CNS Neurosci Ther ; 30(5): e14741, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38702940

RESUMEN

AIMS: Despite the success of single-cell RNA sequencing in identifying cellular heterogeneity in ischemic stroke, clarifying the mechanisms underlying these associations of differently expressed genes remains challenging. Several studies that integrate gene expression and gene expression quantitative trait loci (eQTLs) with genome wide-association study (GWAS) data to determine their causal role have been proposed. METHODS: Here, we combined Mendelian randomization (MR) framework and single cell (sc) RNA sequencing to study how differently expressed genes (DEGs) mediating the effect of gene expression on ischemic stroke. The hub gene was further validated in the in vitro model. RESULTS: We identified 2339 DEGs in 10 cell clusters. Among these DEGs, 58 genes were associated with the risk of ischemic stroke. After external validation with eQTL dataset, lactate dehydrogenase B (LDHB) is identified to be positively associated with ischemic stroke. The expression of LDHB has also been validated in sc RNA-seq with dominant expression in microglia and astrocytes, and melatonin is able to reduce the LDHB expression and activity in vitro ischemic models. CONCLUSION: Our study identifies LDHB as a novel biomarker for ischemic stroke via combining the sc RNA-seq and MR analysis.


Asunto(s)
Accidente Cerebrovascular Isquémico , L-Lactato Deshidrogenasa , Melatonina , Análisis de la Aleatorización Mendeliana , Análisis de Secuencia de ARN , Animales , Humanos , Estudio de Asociación del Genoma Completo/métodos , Accidente Cerebrovascular Isquémico/genética , Accidente Cerebrovascular Isquémico/metabolismo , Isoenzimas/genética , Isoenzimas/metabolismo , L-Lactato Deshidrogenasa/metabolismo , L-Lactato Deshidrogenasa/genética , Análisis de la Aleatorización Mendeliana/métodos , Sitios de Carácter Cuantitativo , Análisis de Secuencia de ARN/métodos , Análisis de la Célula Individual/métodos , Ratones
2.
BMC Cancer ; 24(1): 615, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38773429

RESUMEN

BACKGROUND: Breast cancer (BC) is the most commonly diagnosed cancer in women. Treatment approaches that differ between estrogen-positive (ER+) and triple-negative BC cells (TNBCs) and may subsequently affect cancer biomarkers, such as H19 and telomerase, are an emanating delight in BC research. For instance, all-trans-Retinoic acid (ATRA) could represent a potent regulator of these oncogenes, regulating microRNAs, mostly let-7a microRNA (miR-let-7a), which targets the glycolysis pathway, mainly pyruvate kinase M2 (PKM2) and lactate dehydrogenase A (LDHA) enzymes. Here, we investigated the potential role of ATRA in H19, telomerase, miR-let-7a, and glycolytic enzymes modulation in ER + and TNBC cells. METHODS: MCF-7 and MDA-MB-231 cells were treated with 5 µM ATRA and/or 100 nM fulvestrant. Then, ATRA-treated or control MCF-7 cells were transfected with either H19 or hTERT siRNA. Afterward, ATRA-treated or untreated MDA-MB-231 cells were transfected with estrogen receptor alpha ER(α) or beta ER(ß) expression plasmids. RNA expression was evaluated by RT‒qPCR, and proteins were assessed by Western blot. PKM2 activity was measured using an NADH/LDH coupled enzymatic assay, and telomerase activity was evaluated with a quantitative telomeric repeat amplification protocol assay. Student's t-test or one-way ANOVA was used to analyze data from replicates. RESULTS: Our results showed that MCF-7 cells were more responsive to ATRA than MDA-MB-231 cells. In MCF-7 cells, ATRA and/or fulvestrant decreased ER(α), H19, telomerase, PKM2, and LDHA, whereas ER(ß) and miR-let-7a increased. H19 or hTERT knockdown with or without ATRA treatment showed similar results to those obtained after ATRA treatment, and a potential interconnection between H19 and hTERT was found. However, in MDA-MB-231 cells, RNA expression of the aforementioned genes was modulated after ATRA and/or fulvestrant, with no significant effect on protein and activity levels. Overexpression of ER(α) or ER(ß) in MDA-MB-231 cells induced telomerase activity, PKM2 and LDHA expression, in which ATRA treatment combined with plasmid transfection decreased glycolytic enzyme expression. CONCLUSIONS: To the best of our knowledge, our study is the first to elucidate a new potential interaction between the estrogen receptor and glycolytic enzymes in ER + BC cells through miR-let-7a.


Asunto(s)
Neoplasias de la Mama , Glucólisis , MicroARNs , ARN Largo no Codificante , Telomerasa , Tretinoina , Humanos , Tretinoina/farmacología , Glucólisis/efectos de los fármacos , Telomerasa/metabolismo , Telomerasa/genética , MicroARNs/genética , MicroARNs/metabolismo , Femenino , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Células MCF-7 , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Receptores de Estrógenos/metabolismo , L-Lactato Deshidrogenasa/metabolismo , L-Lactato Deshidrogenasa/genética
3.
Microb Cell Fact ; 23(1): 143, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38773442

RESUMEN

BACKGROUND: Zymomonas mobilis is well known for its outstanding ability to produce ethanol with both high specific productivity and with high yield close to the theoretical maximum. The key enzyme in the ethanol production pathway is the pyruvate decarboxylase (PDC) which is converting pyruvate to acetaldehyde. Since it is widely considered that its gene pdc is essential, metabolic engineering strategies aiming to produce other compounds derived from pyruvate need to find ways to reduce PDC activity. RESULTS: Here, we present a new platform strain (sGB027) of Z. mobilis in which the native promoter of pdc was replaced with the IPTG-inducible PT7A1, allowing for a controllable expression of pdc. Expression of lactate dehydrogenase from E. coli in sGB027 allowed the production of D-lactate with, to the best of our knowledge, the highest reported specific productivity of any microbial lactate producer as well as with the highest reported lactate yield for Z. mobilis so far. Additionally, by expressing the L-alanine dehydrogenase of Geobacillus stearothermophilus in sGB027 we produced L-alanine, further demonstrating the potential of sGB027 as a base for the production of compounds other than ethanol. CONCLUSION: We demonstrated that our new platform strain can be an excellent starting point for the efficient production of various compounds derived from pyruvate with Z. mobilis and can thus enhance the establishment of this organism as a workhorse for biotechnological production processes.


Asunto(s)
Escherichia coli , Etanol , Ácido Láctico , Ingeniería Metabólica , Piruvato Descarboxilasa , Zymomonas , Zymomonas/metabolismo , Zymomonas/genética , Piruvato Descarboxilasa/metabolismo , Piruvato Descarboxilasa/genética , Ingeniería Metabólica/métodos , Etanol/metabolismo , Ácido Láctico/metabolismo , Ácido Láctico/biosíntesis , Escherichia coli/metabolismo , Escherichia coli/genética , L-Lactato Deshidrogenasa/metabolismo , L-Lactato Deshidrogenasa/genética , Alanina/metabolismo , Ácido Pirúvico/metabolismo , Fermentación
4.
Aging (Albany NY) ; 16(9): 8000-8018, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38709280

RESUMEN

Lactate dehydrogenase A (LDHA), a critical enzyme involved in glycolysis, is broadly involved multiple biological functions in human cancers. It is reported that LDHA can impact tumor immune surveillance and induce the transformation of tumor-associated macrophages, highlighting its unnoticed function of LDHA in immune system. However, in human cancers, the role of LDHA in prognosis and immunotherapy hasn't been investigated. In this study, we analyzed the expression pattern and prognostic value of LDHA in pan-cancer and explored its association between tumor microenvironment (TME), immune infiltration subtype, stemness scores, tumor mutation burden (TMB), and immunotherapy resistance. We found that LDHA expression is tumor heterogeneous and that its high expression is associated with poor prognosis in multiple human cancers. In addition, LDHA expression was positively correlated with the presence of mononuclear/macrophage cells, and also promoted the infiltration of a range of immune cells. Genomic alteration of LDHA was common in different types of cancer, while with prognostic value in pan-cancers. Pan-cancer analysis revealed that the significant correlations existed between LDHA expression and tumor microenvironment (including stromal cells and immune cells) as well as stemness scores (DNAss and RNAss) across cancer types. Drug sensitivity analysis also revealed that LDHA was able to predict response to chemotherapy and immunotherapy. Furthermore, it was confirmed that knockdown of LDHA reduced proliferation and migration ability of lung cancer cells. Taken together, LDHA could serve as a prognostic biomarker and a potential immunotherapy marker.


Asunto(s)
Resistencia a Antineoplásicos , Inmunoterapia , Neoplasias , Microambiente Tumoral , Humanos , Microambiente Tumoral/inmunología , Pronóstico , Neoplasias/inmunología , Neoplasias/genética , Neoplasias/terapia , Resistencia a Antineoplásicos/genética , Biomarcadores de Tumor/metabolismo , Biomarcadores de Tumor/genética , Regulación Neoplásica de la Expresión Génica , L-Lactato Deshidrogenasa/metabolismo , L-Lactato Deshidrogenasa/genética , Línea Celular Tumoral
5.
Cancer Immunol Immunother ; 73(7): 127, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38739169

RESUMEN

Lactate dehydrogenase B (LDHB) reversibly catalyzes the conversion of pyruvate to lactate or lactate to pyruvate and expressed in various malignancies. However, the role of LDHB in modulating immune responses against hepatocellular carcinoma (HCC) remains largely unknown. Here, we found that down-regulation of lactate dehydrogenase B (LDHB) was coupled with the promoter hypermethylation and knocking down the DNA methyltransferase 3A (DNMT 3A) restored LDHB expression levels in HCC cell lines. Bioinformatics analysis of the HCC cohort from The Cancer Genome Atlas revealed a significant positive correlation between LDHB expression and immune regulatory signaling pathways and immune cell infiltrations. Moreover, immune checkpoint inhibitors (ICIs) have shown considerable promise for HCC treatment and patients with higher LDHB expression responded better to ICIs. Finally, we found that overexpression of LDHB suppressed HCC growth in immunocompetent but not in immunodeficient mice, suggesting that the host immune system was involved in the LDHB-medicated tumor suppression. Our findings indicate that DNMT3A-mediated epigenetic silencing of LDHB may contribute to HCC progression through remodeling the tumor immune microenvironment, and LDHB may become a potential prognostic biomarker and therapeutic target for HCC immunotherapy.


Asunto(s)
Carcinoma Hepatocelular , ADN Metiltransferasa 3A , Epigénesis Genética , L-Lactato Deshidrogenasa , Neoplasias Hepáticas , Microambiente Tumoral , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patología , Carcinoma Hepatocelular/inmunología , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/inmunología , Neoplasias Hepáticas/metabolismo , Microambiente Tumoral/inmunología , Humanos , Animales , Ratones , L-Lactato Deshidrogenasa/metabolismo , L-Lactato Deshidrogenasa/genética , ADN Metiltransferasa 3A/metabolismo , Regulación Neoplásica de la Expresión Génica , Metilación de ADN , Isoenzimas/genética , Isoenzimas/metabolismo , Línea Celular Tumoral , Silenciador del Gen , Pronóstico
6.
Cancer Lett ; 590: 216869, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38593918

RESUMEN

Lysine acetyltransferase 7 (KAT7), a histone acetyltransferase, has recently been identified as an oncoprotein and has been implicated in the development of various malignancies. However, its specific role in head and neck squamous carcinoma (HNSCC) has not been fully elucidated. Our study revealed that high expression of KAT7 in HNSCC patients is associated with poor survival prognosis and silencing KAT7 inhibits the Warburg effect, leading to reduced proliferation, invasion, and metastatic potential of HNSCC. Further investigation uncovered a link between the high expression of KAT7 in HNSCC and tumor-specific glycolytic metabolism. Notably, KAT7 positively regulates Lactate dehydrogenase A (LDHA), a key enzyme in metabolism, to promote lactate production and create a conducive environment for tumor proliferation and metastasis. Additionally, KAT7 enhances LDHA activity and upregulates LDHA protein expression by acetylating the lysine 118 site of LDHA. Treatment with WM3835, a KAT7 inhibitor, effectively suppressed the growth of subcutaneously implanted HNSCC cells in mice. In conclusion, our findings suggest that KAT7 exerts pro-cancer effects in HNSCC by acetylating LDHA and may serve as a potential therapeutic target. Inhibiting KAT7 or LDHA expression holds promise as a therapeutic strategy to suppress the growth and progression of HNSCC.


Asunto(s)
Proliferación Celular , Neoplasias de Cabeza y Cuello , Histona Acetiltransferasas , Carcinoma de Células Escamosas de Cabeza y Cuello , Humanos , Animales , Neoplasias de Cabeza y Cuello/patología , Neoplasias de Cabeza y Cuello/genética , Neoplasias de Cabeza y Cuello/metabolismo , Carcinoma de Células Escamosas de Cabeza y Cuello/patología , Carcinoma de Células Escamosas de Cabeza y Cuello/genética , Carcinoma de Células Escamosas de Cabeza y Cuello/metabolismo , Acetilación , Línea Celular Tumoral , Histona Acetiltransferasas/metabolismo , Histona Acetiltransferasas/genética , Ratones , L-Lactato Deshidrogenasa/metabolismo , L-Lactato Deshidrogenasa/genética , Lisina Acetiltransferasas/metabolismo , Lisina Acetiltransferasas/genética , Regulación Neoplásica de la Expresión Génica , Ratones Desnudos , Efecto Warburg en Oncología , Masculino , Femenino , Movimiento Celular , Ensayos Antitumor por Modelo de Xenoinjerto , Invasividad Neoplásica , Isoenzimas/metabolismo , Isoenzimas/genética
7.
Gene ; 916: 148419, 2024 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-38556116

RESUMEN

MSX1 (Muscle Segment Homeobox 1) has pleiotropic effects in various tissues, including cardiomyocytes, while the effect of MSX1 on cardiomyocyte cellular function was not well known. In this study, we used AC16 cell culture, real-time fluorescence quantitative PCR (qPCR), protein blotting (Western blot), flow cytometry apoptosis assay and lactate dehydrogenase (LDH) ELISA (Enzyme-Linked Immunosorbnent Assay) to investigate the effect of the MSX1 gene on cardiomyocyte function. The results showed that MSX1 plays a protective role against hypoxia of cardiomyocytes. However, further studies are required to fully understand the role of MSX1 in the regulation of LDH expression in different cell types and under different conditions.


Asunto(s)
Apoptosis , Factor de Transcripción MSX1 , Miocitos Cardíacos , Miocitos Cardíacos/metabolismo , Factor de Transcripción MSX1/genética , Factor de Transcripción MSX1/metabolismo , Apoptosis/genética , Hipoxia de la Célula/genética , L-Lactato Deshidrogenasa/metabolismo , L-Lactato Deshidrogenasa/genética , Animales , Línea Celular , Humanos
8.
Nat Commun ; 15(1): 1987, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38443336

RESUMEN

Abundant macrophage infiltration and altered tumor metabolism are two key hallmarks of glioblastoma. By screening a cluster of metabolic small-molecule compounds, we show that inhibiting glioblastoma cell glycolysis impairs macrophage migration and lactate dehydrogenase inhibitor stiripentol emerges as the top hit. Combined profiling and functional studies demonstrate that lactate dehydrogenase A (LDHA)-directed extracellular signal-regulated kinase (ERK) pathway activates yes-associated protein 1 (YAP1)/ signal transducer and activator of transcription 3 (STAT3) transcriptional co-activators in glioblastoma cells to upregulate C-C motif chemokine ligand 2 (CCL2) and CCL7, which recruit macrophages into the tumor microenvironment. Reciprocally, infiltrating macrophages produce LDHA-containing extracellular vesicles to promote glioblastoma cell glycolysis, proliferation, and survival. Genetic and pharmacological inhibition of LDHA-mediated tumor-macrophage symbiosis markedly suppresses tumor progression and macrophage infiltration in glioblastoma mouse models. Analysis of tumor and plasma samples of glioblastoma patients confirms that LDHA and its downstream signals are potential biomarkers correlating positively with macrophage density. Thus, LDHA-mediated tumor-macrophage symbiosis provides therapeutic targets for glioblastoma.


Asunto(s)
Glioblastoma , Animales , Humanos , Ratones , Glioblastoma/genética , L-Lactato Deshidrogenasa/genética , Lactato Deshidrogenasa 5 , Ácido Láctico , Simbiosis , Microambiente Tumoral
9.
Clin Transl Med ; 14(2): e1583, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38372449

RESUMEN

BACKGROUND: Targeted therapy for triple-negative breast cancer (TNBC) remains a challenge. N6-methyladenosine (m6 A) is the most abundant internal mRNA modification in eukaryotes, and it regulates the homeostasis and function of modified RNA transcripts in cancer. However, the role of leucine-rich pentatricopeptide repeat containing protein (LRPPRC) as an m6 A reader in TNBC remains poorly understood. METHODS: Western blotting, reverse transcription-polymerase chain reaction (RT-qPCR) and immunohistochemistry were used to investigate LRPPRC expression levels. Dot blotting and colorimetric enzyme linked immunosorbent assay (ELISA) were employed to detect m6 A levels. In vitro functional assays and in vivo xenograft mouse model were utilised to examine the role of LRPPRC in TNBC progression. Liquid chromatography-mass spectrometry/mass spectrometry and Seahorse assays were conducted to verify the effect of LRPPRC on glycolysis. MeRIP-sequencing, RNA-sequencing, MeRIP assays, RNA immunoprecipitation assays, RNA pull-down assays and RNA stability assays were used to identify the target genes of LRPPRC. Patient-derived xenografts and organoids were employed to substantiate the synthetic lethality induced by LRPPRC knockdown plus glutaminase inhibition. RESULTS: The expressions of LRPPRC and m6 A RNA were elevated in TNBC, and the m6 A modification site could be recognised by LRPPRC. LRPPRC promoted the proliferation, metastasis and glycolysis of TNBC cells both in vivo and in vitro. We identified lactate dehydrogenase A (LDHA) as a novel direct target of LRPPRC, which recognised the m6 A site of LDHA mRNA and enhanced the stability of LDHA mRNA to promote glycolysis. Furthermore, while LRPPRC knockdown reduced glycolysis, glutaminolysis was enhanced. Moreover, the effect of LRPPRC on WD40 repeat domain-containing protein 76 (WDR76) mRNA stability was impaired in an m6 A-dependent manner. Then, LRPPRC knockdown plus a glutaminase inhibition led to synthetic lethality. CONCLUSIONS: Our study demonstrated that LRPPRC promoted TNBC progression by regulating metabolic reprogramming via m6 A modification. These characteristics shed light on the novel combination targeted therapy strategies to combat TNBC.


Asunto(s)
Glutamina , L-Lactato Deshidrogenasa , Proteínas de Neoplasias , Neoplasias de la Mama Triple Negativas , Animales , Humanos , Ratones , Proteínas de Ciclo Celular/metabolismo , Línea Celular Tumoral , Proteínas de Unión al ADN/genética , Glutaminasa/genética , Glutaminasa/metabolismo , Glutamina/metabolismo , Glucólisis/genética , Proteínas Repetidas Ricas en Leucina , Proteínas de Neoplasias/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Mutaciones Letales Sintéticas , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/metabolismo , L-Lactato Deshidrogenasa/genética
10.
Arch Biochem Biophys ; 754: 109932, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38373542

RESUMEN

d-lactate dehydrogenases are known to be expressed by prokaryotes and by eukaryotic invertebrates, and over the years the functional and structural features of some bacterial representatives of this enzyme ensemble have been investigated quite in detail. Remarkably, a human gene coding for a putative d-lactate dehydrogenase (DLDH) was identified and characterized, disclosing the occurrence of alternative splicing of its primary transcript. This translates into the expression of two human DLDH (hDLDH) isoforms, the molecular mass of which is expected to differ by 2.7 kDa. However, no information on these two hDLDH isoforms is available at the protein level. Here we report on the catalytic action of these enzymes, along with a first analysis of their structural features. In particular, we show that hDLDH is strictly stereospecific, with the larger isoform (hDLDH-1) featuring higher activity at the expense of d-lactate when compared to its smaller counterpart (hDLDH-2). Furthermore, we found that hDLDH is strongly inhibited by oxalate, as indicated by a Ki equal to 1.2 µM for this dicarboxylic acid. Structurally speaking, hDLDH-1 and hDLDH-2 were determined, by means of gel filtration and dynamic light scattering experiments, to be a hexamer and a tetramer, respectively. Moreover, in agreement with previous studies performed with human mitochondria, we identified FAD as the cofactor of hDLDH, and we report here a model of FAD binding by the human d-lactate dehydrogenase. Interestingly, the mutations W323C and T412 M negatively affect the activity of hDLDH, most likely by impairing the enzyme electron-acceptor site.


Asunto(s)
L-Lactato Deshidrogenasa , Lactato Deshidrogenasas , Ácido Láctico , Humanos , L-Lactato Deshidrogenasa/genética , L-Lactato Deshidrogenasa/química , Ácido Láctico/metabolismo , Oxalatos , Isoformas de Proteínas , Mutación
11.
Brain Behav ; 14(1): e3352, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38376049

RESUMEN

BACKGROUND AND OBJECTIVE: Ischemic stroke (IS) is one of the major global health problems. It is not clear whether there is a causal relationship between lactate dehydrogenase (LDH) and the risk of IS attacks. The purpose of this study was to investigate whether LDH has a causal relationship with the development of IS. METHODS: The genome-wide association data of LDH and IS were obtained through a Mendelian randomization-based platform. Single nucleotide polymorphisms (SNP) that were significantly associated with LDH were identified and used as instrumental variables, and a two-sample Mendelian randomization study was used to examine the causal relationship between LDH and IS. The statistical methods included Inverse-variance weighted approach, MR-Egger regression, and weighted median estimator. RESULTS: We selected 15 SNPs of genome-wide significance from Genome-wide association study database with LDH as instrumental variables. A consistent causal association between LDH and IS was observed by different assessment methods. The results of the inverse-variance weighted method suggested an inverse association between LDH and higher genetic predictability of IS risk (OR, 0.997; 95%CI 0.995-0.999). The weighted median estimate showed consistent results with the MR-Egger method (weighted median estimate: OR, 0.995; 95%CI 0.992-0.999; MR-Egger method: OR, 0.996; 95%CI 0.992-0.999). The inverse-variance weighted method indicates a causal association between LDH and IS (ß = -0.002563, SE = 0.00128, p = .0453). MR-Egger analysis (ß = -0.004498, SE = 0.001877, p = .03) and the weighted median method suggested that LDH and IS also existed causal relationship (ß = -0.004861, SE = 0.001801, p = .00695). CONCLUSIONS: Our Mendelian randomization results suggest that LDH is inversely associated with the risk of developing IS, and are contrary to the results of previous observational studies.


Asunto(s)
Accidente Cerebrovascular Isquémico , Humanos , Accidente Cerebrovascular Isquémico/epidemiología , Accidente Cerebrovascular Isquémico/genética , Estudio de Asociación del Genoma Completo , L-Lactato Deshidrogenasa/genética , Análisis de la Aleatorización Mendeliana/métodos , Polimorfismo de Nucleótido Simple
12.
Plant Physiol Biochem ; 207: 108391, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38309183

RESUMEN

Methylglyoxal is a common cytotoxic metabolite produced in plants during multiple biotic and abiotic stress. To mitigate the toxicity of MG, plants utilize the glyoxalase pathway comprising glyoxalase I (GLYI), glyoxalase II (GLYII), or glyoxalase III (GLYIII). GLYI and GLYII are the key enzymes of glyoxalase pathways that play an important role in abiotic stress tolerance. Earlier research showed that MG level is lower when both GLYI and GLYII are overexpressed together, compared to GLYI or GLYII single gene overexpressed transgenic plants. D-lactate dehydrogenase (D-LDH) is an integral part of MG detoxification which metabolizes the end product (D-lactate) of the glyoxalase pathway. In this study, two Arabidopsis transgenic lines were constructed using gene pyramiding technique: GLYI and GLYII overexpressed (G-I + II), and GLYI, GLYII, and D-LDH overexpressed (G-I + II + D) plants. G-I + II + D exhibits lower MG and D-lactate levels and enhanced abiotic stress tolerance than the G-I + II and wild-type plants. Further study explores the stress tolerance mechanism of G-I + II + D plants through the interplay of different regulators and plant hormones. This, in turn, modulates the expression of ABA-dependent stress-responsive genes like RAB18, RD22, and RD29B to generate adaptive responses during stress. Therefore, there might be a potential correlation between ABA and MG detoxification pathways. Furthermore, higher STY46, GPX3, and CAMTA1 transcripts were observed in G-I + II + D plants during abiotic stress. Thus, our findings suggest that G-I + II + D has significantly improved MG detoxification, reduced oxidative stress-induced damage, and provided a better protective mechanism against abiotic stresses than G-I + II or wild-type plants.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Lactato Deshidrogenasas , Lactoilglutatión Liasa , Lactoilglutatión Liasa/genética , Lactoilglutatión Liasa/metabolismo , L-Lactato Deshidrogenasa/genética , L-Lactato Deshidrogenasa/metabolismo , Estrés Fisiológico , Plantas Modificadas Genéticamente/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Lactatos , Regulación de la Expresión Génica de las Plantas , Piruvaldehído/metabolismo , Glutatión Peroxidasa/metabolismo , Proteínas de Arabidopsis/genética
13.
Cancer Lett ; 587: 216696, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38331089

RESUMEN

Lactate dehydrogenase A (LDHA) serves as a key regulator of the Warburg Effect by catalyzing the conversion of pyruvate to lactate in the final step of glycolysis. Both the expression level and enzyme activity of LDHA are upregulated in cancers, however, the underlying mechanism remains incompletely understood. Here, we show that LDHA is post-translationally palmitoylated by ZDHHC9 at cysteine 163, which promotes its enzyme activity, lactate production, and reduces reactive oxygen species (ROS) generation. Replacement of endogenous LDHA with a palmitoylation-deficient mutant leads to reduced pancreatic cancer cell proliferation, increased T-cell infiltration, and limited tumor growth; it also affects pancreatic cancer cell response to chemotherapy. Moreover, LDHA palmitoylation is upregulated in gemcitabine resistant pancreatic cancer cells. Clinically, ZDHHC9 is upregulated in pancreatic cancer and correlated with poor prognoses for patients. Overall, our findings identify ZDHHC9-mediated palmitoylation as a positive regulator of LDHA, with potentially significant implications for cancer etiology and targeted therapy for pancreatic cancer.


Asunto(s)
L-Lactato Deshidrogenasa , Neoplasias Pancreáticas , Humanos , L-Lactato Deshidrogenasa/genética , Lipoilación , Línea Celular Tumoral , Lactato Deshidrogenasa 5/metabolismo , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Glucólisis , Proliferación Celular , Lactatos
14.
ACS Chem Biol ; 19(2): 471-482, 2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38270591

RESUMEN

Altered metabolism is a hallmark of cancer; however, it has been difficult to specifically target metabolism in cancer for therapeutic benefit. Cancers with genetically defined defects in metabolic enzymes constitute a subset of cancers where targeting metabolism is potentially accessible. Hürthle cell carcinoma of the thyroid (HTC) tumors frequently harbor deleterious mitochondrial DNA (mtDNA) mutations in subunits of complex I of the mitochondrial electron transport chain (ETC). Previous work has shown that HTC models with deleterious mtDNA mutations exhibit mitochondrial ETC defects that expose lactate dehydrogenase (LDH) as a therapeutic vulnerability. Here, we performed forward genetic screens to identify mechanisms of resistance to small-molecule LDH inhibitors. We identified two distinct mechanisms of resistance: upregulation of an LDH isoform and a compound-specific resistance mutation. Using these tools, we demonstrate that the anticancer activity of LDH inhibitors in cell line and xenograft models of complex I mutant HTC is through on-target LDH inhibition.


Asunto(s)
Adenoma Oxifílico , L-Lactato Deshidrogenasa , Neoplasias de la Tiroides , Humanos , L-Lactato Deshidrogenasa/genética , L-Lactato Deshidrogenasa/metabolismo , Mutación , Mitocondrias/metabolismo , Neoplasias de la Tiroides/genética , Neoplasias de la Tiroides/metabolismo , Neoplasias de la Tiroides/patología , ADN Mitocondrial/genética
15.
J Biotechnol ; 382: 1-7, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38185431

RESUMEN

Serving as a vital medical intermediate and an environmentally-friendly preservative, D-PLA exhibits substantial potential across various industries. In this report, the urgent need for efficient production motivated us to achieve the rational design of lactate dehydrogenase and enhance catalytic efficiency. Surprisingly, the enzymatic properties revealed that a mutant enzyme, LrLDHT247I/D249A/F306W/A214Y (LrLDH-M1), had a viable catalytic advantage. It demonstrated a 3.3-fold increase in specific enzyme activity and approximately a 2.08-fold improvement of Kcat. Correspondingly, molecular docking analysis provided a supporting explanation for the lower Km and higher Kcat/Km of the mutant enzyme. Thermostability analysis exhibited increased half-lives and the deactivation rate constants decreased at different temperatures (1.47-2.26-fold). In addition, the mutant showed excellent resistance abilities in harsh environments, particularly under acidic conditions. Then, a two-bacterium (E. coli/pET28a-lrldh-M1 and E. coli/pET28a-ladd) coupled catalytic system was developed and realized a significant conversion rate (77.7%) of D-phenyllactic acid, using 10 g/L L-phenylalanine as the substrate in a two-step cascade reaction.


Asunto(s)
Escherichia coli , L-Lactato Deshidrogenasa , L-Lactato Deshidrogenasa/genética , Escherichia coli/genética , Simulación del Acoplamiento Molecular , Catálisis , Poliésteres
16.
Malar J ; 23(1): 3, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38167003

RESUMEN

BACKGROUND: Rapid diagnostic tests (RDTs) that detect Plasmodium falciparum histidine-rich protein-2 (PfHRP2) are exclusively deployed in Uganda, but deletion of the pfhrp2/3 target gene threatens their usefulness as malaria diagnosis and surveillance tools. METHODS: A cross-sectional survey was conducted at 40 sites across four regions of Uganda in Acholi, Lango, W. Nile and Karamoja from March 2021 to June 2023. Symptomatic malaria suspected patients were recruited and screened with both HRP2 and pan lactate dehydrogenase (pLDH) detecting RDTs. Dried blood spots (DBS) were collected from all patients and a random subset were used for genomic analysis to confirm parasite species and pfhrp2 and pfhrp3 gene status. Plasmodium species was determined using a conventional multiplex PCR while pfhrp2 and pfhrp3 gene deletions were determined using a real-time multiplex qPCR. Expression of the HRP2 protein antigen in a subset of samples was further assessed using a ELISA. RESULTS: Out of 2435 symptomatic patients tested for malaria, 1504 (61.8%) were positive on pLDH RDT. Overall, qPCR confirmed single pfhrp2 gene deletion in 1 out of 416 (0.2%) randomly selected samples that were confirmed of P. falciparum mono-infections. CONCLUSION: These findings show limited threat of pfhrp2/3 gene deletions in the survey areas suggesting that HRP2 RDTs are still useful diagnostic tools for surveillance and diagnosis of P. falciparum malaria infections in symptomatic patients in this setting. Periodic genomic surveillance is warranted to monitor the frequency and trend of gene deletions and its effect on RDTs.


Asunto(s)
Malaria Falciparum , Malaria , Humanos , Antígenos de Protozoos/genética , Estudios Transversales , Pruebas Diagnósticas de Rutina , Eliminación de Gen , L-Lactato Deshidrogenasa/genética , Malaria/diagnóstico , Malaria/genética , Malaria Falciparum/diagnóstico , Malaria Falciparum/genética , Plasmodium falciparum/genética , Proteínas Protozoarias/genética , Prueba de Diagnóstico Rápido , Uganda
17.
PLoS One ; 19(1): e0287865, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38170735

RESUMEN

Drosophila melanogaster larval development relies on a specialized metabolic state that utilizes carbohydrates and other dietary nutrients to promote rapid growth. One unique feature of the larval metabolic program is that Lactate Dehydrogenase (Ldh) activity is highly elevated during this growth phase when compared to other stages of the fly life cycle, indicating that Ldh serves a key role in promoting juvenile development. Previous studies of larval Ldh activity have largely focused on the function of this enzyme at the whole animal level, however, Ldh expression varies significantly among larval tissues, raising the question of how this enzyme promotes tissue-specific growth programs. Here we characterize two transgene reporters and an antibody that can be used to study Ldh expression in vivo. We find that all three tools produce similar Ldh expression patterns. Moreover, these reagents demonstrate that the larval Ldh expression pattern is complex, suggesting the purpose of this enzyme varies across cell types. Overall, our studies validate a series of genetic and molecular reagents that can be used to study glycolytic metabolism in the fly.


Asunto(s)
Drosophila melanogaster , L-Lactato Deshidrogenasa , Animales , L-Lactato Deshidrogenasa/genética , L-Lactato Deshidrogenasa/metabolismo , Glucólisis/genética
18.
Histol Histopathol ; 39(1): 67-77, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37014018

RESUMEN

Colorectal cancer is one of the most common cancers with high morbidity and mortality. Effective treatments to improve the prognosis are still lacking. The results of online analysis tools showed that OCT1 and LDHA were highly expressed in colorectal cancer, and the high expression of OCT1 was associated with poor prognosis. Immunofluorescence demonstrated that OCT1 and LDHA co-localized in colorectal cancer cells. In colorectal cancer cells, OCT1 and LDHA were upregulated by OCT1 overexpression, but downregulated by OCT1 knockdown. OCT1 overexpression promoted cell migration. OCT1 or LDHA knockdown inhibited the migration, and the downregulation of LDHA restored the promoting effect of OCT1 overexpression. OCT1 upregulation increased the levels of HK2, GLUT1 and LDHA proteins in colorectal cancer cells. Consequently, OCT1 promoted the migration of colorectal cancer cells by upregulating LDHA.


Asunto(s)
Neoplasias Colorrectales , Humanos , Línea Celular Tumoral , Pronóstico , Movimiento Celular , Neoplasias Colorrectales/genética , Proliferación Celular , L-Lactato Deshidrogenasa/genética , L-Lactato Deshidrogenasa/metabolismo , Regulación Neoplásica de la Expresión Génica
19.
J Biotechnol ; 379: 65-77, 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38036002

RESUMEN

A broad application spectrum ranging from clinical diagnostics to biosensors in a variety of sectors, makes the enzyme Lactate dehydrogenase (LDH) highly interesting for recombinant protein production. Expression of recombinant LDH is currently mainly carried out in uncontrolled shake-flask cultivations leading to protein that is mostly produced in its soluble form, however in rather low yields. Inclusion body (IB) processes have gathered a lot of attention due to several benefits like increased space-time yields and high purity of the target product. Thus, to investigate the suitability of this processing strategy for ldhL1 production, a fed-batch fermentation steering the production of IBs rather than soluble product formation was developed. It was shown that the space-time-yield of the fermentation could be increased almost 3-fold by increasing qs to 0.25 g g-1 h-1 which corresponds to 21% of qs,max, and keeping the temperature at 37°C after induction. Solubilization and refolding unit operations were developed to regain full bioactivity of the ldhL1. The systematic approach in screening for solubilization and refolding conditions revealed buffer compositions and processing strategies that ultimately resulted in 50% product recovery in the refolding step, revealing major optimization potential in the downstream processing chain. The recovered ldhL1 showed an optimal activity at pH 5.5 and 30∘C with a high catalytic activity and KM values of 0.46 mM and 0.18 mM for pyruvate and NADH, respectively. These features, show that the here produced LDH is a valuable source for various commercial applications, especially considering low pH-environments.


Asunto(s)
Cuerpos de Inclusión , L-Lactato Deshidrogenasa , L-Lactato Deshidrogenasa/genética , L-Lactato Deshidrogenasa/metabolismo , Proteínas Recombinantes/química , Cuerpos de Inclusión/metabolismo , Fermentación
20.
Diagn Microbiol Infect Dis ; 108(1): 116103, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37944271

RESUMEN

Malaria rapid diagnostic tests (mRDT) play a vital role in malaria control in endemic areas. In this study, histidine-rich protein (hrp) and lactate dehydrogenase (ldh) genes were genotyped in Plasmodium falciparum (Pf) and Plasmodium ovale (Po) spp. isolates. Deletions in P. falciparum hrp2/3 (pfhrp2/3) proteins and single nucleotide polymorphisms (SNPs) were analyzed. Twenty-four samples were analyzed for pfhrp2/3 gene deletions and 25 for SNPs in ldh gene (18 Pf and 7 Po spp.). Deletions in pfhrp2/3 genes were observed in 1.9% malaria positive isolates. The pfldh gene sequences showed one SNP at codon 272 (D272N) in 22.2% of samples while in Po spp., sequences were 100% similar to P. ovale curtisi but when compared to P. ovale wallikeri reference sequence, SNPs at positions 143 (P143S), 168 (K168N), 204 (V204I) were found. Findings suggest low prevalence in pfhrp2/3 genes and highlight the circulation of P. ovale curtisi in the studies areas.


Asunto(s)
Malaria Falciparum , Malaria , Humanos , Proteínas Protozoarias/genética , Antígenos de Protozoos/genética , Histidina/genética , L-Lactato Deshidrogenasa/genética , Camerún , Prueba de Diagnóstico Rápido , Malaria/diagnóstico , Malaria Falciparum/diagnóstico , Plasmodium falciparum/genética , Polimorfismo de Nucleótido Simple , Pruebas Diagnósticas de Rutina , Eliminación de Gen
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA