Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 884
Filtrar
1.
J Comput Aided Mol Des ; 38(1): 28, 2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-39123063

RESUMEN

Lactate dehydrogenase A (LDHA) is highly expressed in many tumor cells and promotes the conversion of pyruvate to lactic acid in the glucose pathway, providing energy and synthetic precursors for rapid proliferation of tumor cells. Therefore, inhibition of LDHA has become a widely concerned tumor treatment strategy. However, the research and development of highly efficient and low toxic LDHA small molecule inhibitors still faces challenges. To discover potential inhibitors against LDHA, virtual screening based on molecular docking techniques was performed from Specs database of more than 260,000 compounds and Chemdiv-smart database of more than 1,000 compounds. Through molecular dynamics (MD) simulation studies, we identified 12 potential LDHA inhibitors, all of which can stably bind to human LDHA protein and form multiple interactions with its active central residues. In order to verify the inhibitory activities of these compounds, we established an enzyme activity assay system and measured their inhibitory effects on recombinant human LDHA. The results showed that Compound 6 could inhibit the catalytic effect of LDHA on pyruvate in a dose-dependent manner with an EC50 value of 14.54 ± 0.83 µM. Further in vitro experiments showed that Compound 6 could significantly inhibit the proliferation of various tumor cell lines such as pancreatic cancer cells and lung cancer cells, reduce intracellular lactic acid content and increase intracellular reactive oxygen species (ROS) level. In summary, through virtual screening and in vitro validation, we found that Compound 6 is a small molecule inhibitor for LDHA, providing a good lead compound for the research and development of LDHA related targeted anti-tumor drugs.


Asunto(s)
Antineoplásicos , Inhibidores Enzimáticos , Ensayos Analíticos de Alto Rendimiento , L-Lactato Deshidrogenasa , Humanos , Antineoplásicos/farmacología , Antineoplásicos/química , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/química , Ensayos Analíticos de Alto Rendimiento/métodos , L-Lactato Deshidrogenasa/antagonistas & inhibidores , L-Lactato Deshidrogenasa/metabolismo , L-Lactato Deshidrogenasa/química , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular
2.
Int J Pharm ; 661: 124374, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38909927

RESUMEN

The effect of three commonly used surfactants, poloxamer 188 (P188), polysorbate 20 and 80 (PS20 and PS80), on the stability of a model protein, lactate dehydrogenase (LDH), was compared in aqueous solutions. In the absence of a surfactant, protein solution revealed a gradual decrease in surface tension as a function of time. The addition of surfactant resulted in a rapid decrease in the surface tension. This suggested that the surface behavior was dictated by the surfactant. PS20 and PS80 were more effective than P188 in preventing LDH adsorption on the solution surface. The advantage of polysorbates over P188 was also evident from the higher LDH tetramer recovery after shaking (room temperature, 30 h), especially when the surfactants were used at concentrations ≤ 0.01% w/v. However, PS20 and PS80 accelerated protein unfolding during quiescent storage at 40 °C. Based on circular dichroism results, polysorbates perturbed the tertiary structure of LDH but not the secondary structure, while P188 did not impact the protein structure and stability. Polysorbates were more effective in stabilizing LDH against mechanical stress (shaking), but their adverse effects on protein conformational stability need to be carefully evaluated.


Asunto(s)
L-Lactato Deshidrogenasa , Poloxámero , Polisorbatos , Tensoactivos , Polisorbatos/química , Poloxámero/química , L-Lactato Deshidrogenasa/metabolismo , L-Lactato Deshidrogenasa/química , Tensoactivos/química , Tensión Superficial , Soluciones , Adsorción , Agua/química
3.
Bioorg Chem ; 149: 107503, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38823312

RESUMEN

Lactate dehydrogenase (LDH), a crucial enzyme in anaerobic glycolysis, plays a pivotal role in the energy metabolism of tumor cells, positioning it as a promising target for tumor treatment. Rutin, a plant-based flavonoid, offers benefits like antioxidant, antiapoptotic, and antineoplastic effects. This study employed diverse experiments to investigate the inhibitory mechanism of rutin on LDH through a binding perspective. The outcomes revealed that rutin underwent spontaneous binding within the coenzyme binding site of LDH, leading to the formation of a stable binary complex driven by hydrophobic forces, with hydrogen bonds also contributing significantly to sustaining the stability of the LDH-rutin complex. The binding constant (Ka) for the LDH-rutin system was 2.692 ± 0.015 × 104 M-1 at 298 K. Furthermore, rutin induced the alterations in the secondary structure conformation of LDH, characterized by a decrease in α-helix and an increase in antiparallel and parallel ß-sheet, and ß-turn. Rutin augmented the stability of coenzyme binding to LDH, which could potentially hinder the conversion process among coenzymes. Specifically, Arg98 in the active site loop of LDH provided essential binding energy contribution in the binding process. These outcomes might explain the dose-dependent inhibition of the catalytic activity of LDH by rutin. Interestingly, both the food additives ascorbic acid and tetrahydrocurcumin could reduce the binding stability of LDH and rutin. Meanwhile, these food additives did not produce positive synergism or antagonism on the rutin binding to LDH. Overall, this research could offer a unique insight into the therapeutic potential and medicinal worth of rutin.


Asunto(s)
L-Lactato Deshidrogenasa , Rutina , Rutina/química , Rutina/farmacología , Rutina/metabolismo , L-Lactato Deshidrogenasa/antagonistas & inhibidores , L-Lactato Deshidrogenasa/metabolismo , L-Lactato Deshidrogenasa/química , Humanos , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Estructura Molecular , Relación Estructura-Actividad , Relación Dosis-Respuesta a Droga , Simulación del Acoplamiento Molecular , Simulación por Computador , Antineoplásicos/química , Antineoplásicos/farmacología
4.
Cell Rep Methods ; 4(5): 100764, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38714198

RESUMEN

Co-assembling enzymes with nanoparticles (NPs) into nanoclusters allows them to access channeling, a highly efficient form of multienzyme catalysis. Using pyruvate kinase (PykA) and lactate dehydrogenase (LDH) to convert phosphoenolpyruvic acid to lactic acid with semiconductor quantum dots (QDs) confirms how enzyme cluster formation dictates the rate of coupled catalytic flux (kflux) across a series of differentially sized/shaped QDs and 2D nanoplatelets (NPLs). Enzyme kinetics and coupled flux were used to demonstrate that by mixing different NP systems into clusters, a >10× improvement in kflux is observed relative to free enzymes, which is also ≥2× greater than enhancement on individual NPs. Cluster formation was characterized with gel electrophoresis and transmission electron microscopy (TEM) imaging. The generalizability of this mixed-NP approach to improving flux is confirmed by application to a seven-enzyme system. This represents a powerful approach for accessing channeling with almost any choice of enzymes constituting a multienzyme cascade.


Asunto(s)
L-Lactato Deshidrogenasa , Ácido Láctico , Nanopartículas , Fosfoenolpiruvato , Piruvato Quinasa , L-Lactato Deshidrogenasa/metabolismo , L-Lactato Deshidrogenasa/química , Ácido Láctico/metabolismo , Ácido Láctico/química , Piruvato Quinasa/metabolismo , Piruvato Quinasa/química , Nanopartículas/química , Fosfoenolpiruvato/metabolismo , Puntos Cuánticos/química , Cinética
5.
Molecules ; 29(9)2024 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-38731521

RESUMEN

Lactate dehydrogenase A (LDHA) primarily catalyzes the conversion between lactic acid and pyruvate, serving as a key enzyme in the aerobic glycolysis pathway of sugar in tumor cells. LDHA plays a crucial role in the occurrence, development, progression, invasion, metastasis, angiogenesis, and immune escape of tumors. Consequently, LDHA not only serves as a biomarker for tumor diagnosis and prognosis but also represents an ideal target for tumor therapy. Although LDHA inhibitors show great therapeutic potential, their development has proven to be challenging. In the development of LDHA inhibitors, the key active sites of LDHA are emphasized. Nevertheless, there is a relative lack of research on the amino acid residues around the active center of LDHA. Therefore, in this study, we investigated the amino acid residues around the active center of LDHA. Through structure comparison analysis, five key amino acid residues (Ala30, Met41, Lys131, Gln233, and Ala259) were identified. Subsequently, the effects of these five residues on the enzymatic properties of LDHA were investigated using site-directed mutagenesis. The results revealed that the catalytic activities of the five mutants varied to different degrees in both the reaction from lactic acid to pyruvate and pyruvate to lactic acid. Notably, the catalytic activities of LDHAM41G and LDHAK131I were improved, particularly in the case of LDHAK131I. The results of the molecular dynamics analysis of LDHAK131I explained the reasons for this phenomenon. Additionally, the optimum temperature of LDHAM41G and LDHAQ233M increased from 35 °C to 40 °C, whereas in the reverse reaction, the optimum temperature of LDHAM41G and LDHAK131I decreased from 70 °C to 60 °C. These findings indicate that Ala30, Met41, Lys131, Gln233, and Ala259 exert diverse effects on the catalytic activity and optimum temperature of LHDA. Therefore, these amino acid residues, in addition to the key catalytic site of the active center, play a crucial role. Considering these residues in the design and screening of LDHA inhibitors may lead to the development of more effective inhibitors.


Asunto(s)
Dominio Catalítico , Inhibidores Enzimáticos , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Humanos , Aminoácidos/química , Aminoácidos/metabolismo , L-Lactato Deshidrogenasa/antagonistas & inhibidores , L-Lactato Deshidrogenasa/metabolismo , L-Lactato Deshidrogenasa/química , Lactato Deshidrogenasa 5/metabolismo , Lactato Deshidrogenasa 5/antagonistas & inhibidores , Lactato Deshidrogenasa 5/química , Ácido Pirúvico/metabolismo , Ácido Pirúvico/química , Mutagénesis Sitio-Dirigida , Simulación de Dinámica Molecular
6.
J Ethnopharmacol ; 332: 118356, 2024 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-38763372

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Parasitic infections impose a significant burden on public health worldwide. European pharmacopoeia records and ethnopharmacological studies indicate that Hagenia abyssinica (Bruce) J.F. Gmel. has traditionally been used to treat a variety of parasitic infections, while the potential antiparasitic compounds remain ambiguous. AIM OF THE STUDY: Acetylcholinesterase (AChE), lactate dehydrogenases (LDH), and glutathione reductase (GR) are the key target enzymes in the survival of parasites. The aim of our work was to screen antiparasitic compounds targeting AChE, LDH, and GR from H. abyssinica. MATERIALS AND METHODS: Ultrafiltration-liquid chromatography-mass spectrometry (UF-LC-MS) combined with molecular docking was used in this study. Therein, the alamarBlue® and Ellman's methods were employed to reveal the antitrypanosomal effect and AChE inhibitory activity. Meanwhile, the UF-LC-MS was carried out to screen the potential active compounds from H. abyssinica. Subsequently, molecular docking was performed to evaluate the binding mechanisms of these active compounds with AChE, LDH, and GR. Finally, the AChE inhibitory activity of potential inhibitors was detected in vitro. RESULTS: H. abyssinica exhibited significant antitrypanosomal and AChE inhibitory activity. Corilagin, brevifolin carboxylic acid, brevifolin, quercetin, and methyl ellagic acid were recognized as potential AChE inhibitors by UF-LC-MS, while methyl brevifolin carboxylate was identified as AChE, LDH, and GR multi-target inhibitor, with binding degree ranged from 20.96% to 49.81%. Molecular docking showed that these potential inhibitors had a strong affinity with AChE, LDH, and GR, with binding energies ranging from -6.98 to -9.67 kcal/mol. These findings were further supported by the observation that corilagin, quercetin, brevifolin carboxylic acid, and methyl brevifolin carboxylate displayed significant AChE inhibitory activity compared with the positive control (gossypol, 0.42 ± 0.04 mM), with IC50 values of 0.15 ± 0.05, 0.56 ± 0.03, 0.99 ± 0.01, and 1.02 ± 0.03 mM, respectively. CONCLUSIONS: This study confirms the antiparasitic potential of H. abyssinica, supporting the traditional use of H. abyssinica in local ethnopharmacology to treat parasites. At the same time, corilagin, brevifolin carboxylic acid, brevifolin, quercetin, methyl ellagic acid, and methyl brevifolin carboxylate exert their anti-parasitic effects by inhibiting AChE, LDH, and GR, and they are expected to be natural lead compounds for the treatment of parasitic diseases.


Asunto(s)
Acetilcolinesterasa , Inhibidores de la Colinesterasa , Glutatión Reductasa , Espectrometría de Masas , Simulación del Acoplamiento Molecular , Extractos Vegetales , Inhibidores de la Colinesterasa/farmacología , Inhibidores de la Colinesterasa/química , Cromatografía Liquida/métodos , Espectrometría de Masas/métodos , Extractos Vegetales/farmacología , Extractos Vegetales/química , Glutatión Reductasa/antagonistas & inhibidores , Glutatión Reductasa/metabolismo , Acetilcolinesterasa/metabolismo , L-Lactato Deshidrogenasa/antagonistas & inhibidores , L-Lactato Deshidrogenasa/metabolismo , L-Lactato Deshidrogenasa/química , Ultrafiltración , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/química , Antiparasitarios/farmacología , Antiparasitarios/química , Taninos Hidrolizables/farmacología , Taninos Hidrolizables/química , Cromatografía Líquida con Espectrometría de Masas
7.
Mol Pharm ; 21(5): 2555-2564, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38551918

RESUMEN

Poloxamer 188 (P188) was hypothesized to be a dual functional excipient, (i) a stabilizer in frozen solution to prevent ice-surface-induced protein destabilization and (ii) a bulking agent to provide elegant lyophiles. Based on X-ray diffractometry and differential scanning calorimetry, sucrose, in a concentration-dependent manner, inhibited P188 crystallization during freeze-drying, while trehalose had no such effect. The recovery of lactate dehydrogenase (LDH), the model protein, was evaluated after reconstitution. While low LDH recovery (∼60%) was observed in the lyophiles prepared with P188, the addition of sugar improved the activity recovery to >85%. The secondary structure of LDH in the freeze-dried samples was assessed using infrared spectroscopy, and only moderate structural changes were observed in the lyophiles formulated with P188 and sugar. Thus, P188 can be a promising dual functional excipient in freeze-dried protein formulations. However, P188 alone does not function as a lyoprotectant and needs to be used in combination with a sugar.


Asunto(s)
Rastreo Diferencial de Calorimetría , Excipientes , Liofilización , Poloxámero , Trehalosa , Liofilización/métodos , Poloxámero/química , Excipientes/química , Trehalosa/química , Rastreo Diferencial de Calorimetría/métodos , Sacarosa/química , Difracción de Rayos X , L-Lactato Deshidrogenasa/metabolismo , L-Lactato Deshidrogenasa/química , Cristalización/métodos , Química Farmacéutica/métodos , Proteínas/química , Composición de Medicamentos/métodos , Congelación
8.
Int J Pharm ; 654: 123938, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38408554

RESUMEN

The stability of lactate dehydrogenase (LDH) and ß-galactosidase (ß-gal), incorporated in arginine/pullulan (A/P) mixtures at various weight ratios by lyophilization, was determined. The physicochemical characteristics of various A/P mixtures were assessed. With decreasing A/P ratios, the glass transition temperature of the formulations increased. Furthermore, arginine crystallization due to high relative humidity (RH) exposure was prevented at an A/P weight ratio of 4/6 or less. When stored at 0 % RH / 60 °C for 4 weeks, arginine was superior to pullulan as stabilizer. During storage at 43 % RH / 30 ℃ for 4 weeks, the enzymatic activity of LDH was best retained at an A/P weight ratio of 2/8, while ß-gal activity was relatively well-retained at A/P weight ratios of both 8/2 and 2/8. LDH seemed to be more prone to degradation in the rubbery state. In the glassy state, ß-gal degraded faster than LDH. Solid-state nuclear magnetic resonance spectroscopy showed that (labeled) arginine experienced a different interaction in the two protein samples, reflecting a modulation of long-range correlations of the arginine side chain nitrogen atoms (Nε, Nη). In summary, LDH stabilization in the A/P matrix requires vitrification. Further stabilization difference between LDH and ß-gal may be dependent on the interaction with arginine.


Asunto(s)
Arginina , Proteínas , Arginina/química , Proteínas/química , Glucanos , L-Lactato Deshidrogenasa/química , Liofilización/métodos , Estabilidad de Medicamentos
9.
Arch Biochem Biophys ; 754: 109932, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38373542

RESUMEN

d-lactate dehydrogenases are known to be expressed by prokaryotes and by eukaryotic invertebrates, and over the years the functional and structural features of some bacterial representatives of this enzyme ensemble have been investigated quite in detail. Remarkably, a human gene coding for a putative d-lactate dehydrogenase (DLDH) was identified and characterized, disclosing the occurrence of alternative splicing of its primary transcript. This translates into the expression of two human DLDH (hDLDH) isoforms, the molecular mass of which is expected to differ by 2.7 kDa. However, no information on these two hDLDH isoforms is available at the protein level. Here we report on the catalytic action of these enzymes, along with a first analysis of their structural features. In particular, we show that hDLDH is strictly stereospecific, with the larger isoform (hDLDH-1) featuring higher activity at the expense of d-lactate when compared to its smaller counterpart (hDLDH-2). Furthermore, we found that hDLDH is strongly inhibited by oxalate, as indicated by a Ki equal to 1.2 µM for this dicarboxylic acid. Structurally speaking, hDLDH-1 and hDLDH-2 were determined, by means of gel filtration and dynamic light scattering experiments, to be a hexamer and a tetramer, respectively. Moreover, in agreement with previous studies performed with human mitochondria, we identified FAD as the cofactor of hDLDH, and we report here a model of FAD binding by the human d-lactate dehydrogenase. Interestingly, the mutations W323C and T412 M negatively affect the activity of hDLDH, most likely by impairing the enzyme electron-acceptor site.


Asunto(s)
L-Lactato Deshidrogenasa , Lactato Deshidrogenasas , Ácido Láctico , Humanos , L-Lactato Deshidrogenasa/genética , L-Lactato Deshidrogenasa/química , Ácido Láctico/metabolismo , Oxalatos , Isoformas de Proteínas , Mutación
10.
ACS Biomater Sci Eng ; 9(11): 6045-6057, 2023 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-37856794

RESUMEN

Cancer is the second leading cause of death worldwide, with a dramatic impact due to the acquired resistance of cancers to used chemotherapeutic drugs and treatments. The enzyme lactate dehydrogenase (LDH-A) is responsible for cancer cell proliferation. Recently the development of selective LDH-A inhibitors as drugs for cancer treatment has been reported to be an efficient strategy aiming to decrease cancer cell proliferation and increase the sensitivity to traditional chemotherapeutics. This study aims to obtain a stable and active biocatalyst that can be utilized for such drug screening purposes. It is conceived by adopting human LDH-A enzyme (hLDH-A) and investigating different immobilization techniques on porous supports to achieve a stable and reproducible biosensor for anticancer drugs. The hLDH-A enzyme is covalently immobilized on mesoporous silica (MCM-41) functionalized with amino and aldehyde groups following two different methods. The mesoporous support is characterized by complementary techniques to evaluate the surface chemistry and the porous structure. Fluorescence microscopy analysis confirms the presence of the enzyme on the support surface. The tested immobilizations achieve yields of ≥80%, and the best retained activity of the enzyme is as high as 24.2%. The optimal pH and temperature of the best immobilized hLDH-A are pH 5 and 45 °C for the reduction of pyruvate into lactate, while those for the free enzyme are pH 8 and 45 °C. The stability test carried out at 45 °C on the immobilized enzyme shows a residual activity close to 40% for an extended time. The inhibition caused by NHI-2 is similar for free and immobilized hLDH-A, 48% and 47%, respectively. These findings are significant for those interested in immobilizing enzymes through covalent attachment on inorganic porous supports and pave the way to develop stable and active biocatalyst-based sensors for drug screenings that are useful to propose drug-based cancer treatments.


Asunto(s)
Técnicas Biosensibles , L-Lactato Deshidrogenasa , Humanos , Estabilidad de Enzimas , L-Lactato Deshidrogenasa/química , L-Lactato Deshidrogenasa/metabolismo , Lactato Deshidrogenasa 5/metabolismo , Enzimas Inmovilizadas/química , Enzimas Inmovilizadas/metabolismo , Técnicas Biosensibles/métodos
11.
Anal Chim Acta ; 1279: 341834, 2023 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-37827649

RESUMEN

Chiral analysis is of pivotal importance in a variety of fields due to the different biological activities and functions of enantiomers. Here, we develop a simple paper-based chiral biosensor that can perform sample-to-answer simultaneous analysis of lactate enantiomers in human serum samples. By modification of alginate hydrogel with "egg-box" three-dimensional network structure on a glass microfiber paper, reagents of enantiomer-selective enzymatic reactions are efficiently encapsulated forming the sensing regions for chiral analysis. Dual enzyme catalytic system (lactate dehydrogenase and glutamic pyruvic transaminase) is utilized to enhance the response of the biosensor. A smartphone with color analysis software is used to collect and analyze the fluorescence signal from the product nicotinamide adenine dinucleotide. The results show that the sensor has excellent selectivity toward lactate enantiomers with low limit-of-detection of (30.0 ± 0.7) µM for L-lactate and (3.0 ± 0.2) µM for D-lactate, and wide linear detection range of 0.1-3.0mM and 0.01-0.5 mM for L-lactate and D-lactate respectively. The proposed method is successfully applied to the simultaneous detection of L-/D-lactate concentrations in human serum with satisfactory accuracy. Our study provides a robust approach for developing chiral biosensors, which would have promising application prospect in point-of-care testing (POCT) analysis of various biological and food samples.


Asunto(s)
Técnicas Biosensibles , Ácido Láctico , Humanos , Ácido Láctico/análisis , Hidrogeles , Sistemas de Atención de Punto , L-Lactato Deshidrogenasa/química , Técnicas Biosensibles/métodos
12.
Mol Biol Evol ; 40(10)2023 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-37797308

RESUMEN

Lactate dehydrogenase (LDH, EC.1.1.127) is an important enzyme engaged in the anaerobic metabolism of cells, catalyzing the conversion of pyruvate to lactate and NADH to NAD+. LDH is a relevant enzyme to investigate structure-function relationships. The present work provides the missing link in our understanding of the evolution of LDHs. This allows to explain (i) the various evolutionary origins of LDHs in eukaryotic cells and their further diversification and (ii) subtle phenotypic modifications with respect to their regulation capacity. We identified a group of cyanobacterial LDHs displaying eukaryotic-like LDH sequence features. The biochemical and structural characterization of Cyanobacterium aponinum LDH, taken as representative, unexpectedly revealed that it displays homotropic and heterotropic activation, typical of an allosteric enzyme, whereas it harbors a long N-terminal extension, a structural feature considered responsible for the lack of allosteric capacity in eukaryotic LDHs. Its crystallographic structure was solved in 2 different configurations typical of the R-active and T-inactive states encountered in allosteric LDHs. Structural comparisons coupled with our evolutionary analyses helped to identify 2 amino acid positions that could have had a major role in the attenuation and extinction of the allosteric activation in eukaryotic LDHs rather than the presence of the N-terminal extension. We tested this hypothesis by site-directed mutagenesis. The resulting C. aponinum LDH mutants displayed reduced allosteric capacity mimicking those encountered in plants and human LDHs. This study provides a new evolutionary scenario of LDHs that unifies descriptions of regulatory properties with structural and mutational patterns of these important enzymes.


Asunto(s)
L-Lactato Deshidrogenasa , Lactato Deshidrogenasas , Humanos , L-Lactato Deshidrogenasa/genética , L-Lactato Deshidrogenasa/química , L-Lactato Deshidrogenasa/metabolismo
13.
Structure ; 31(12): 1616-1628.e3, 2023 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-37729918

RESUMEN

NADH-dependent d-lactate dehydrogenases (d-LDH) are important for the industrial production of d-lactic acid. Here, we identify and characterize an improved d-lactate dehydrogenase mutant (d-LDH1) that contains the Pro101Gln mutation. The specific enzyme activities of d-LDH1 toward pyruvate and NADH are 21.8- and 11.0-fold greater compared to the wild-type enzyme. We determined the crystal structure of Apo-d-LDH1 at 2.65 Å resolution. Based on our structural analysis and docking studies, we explain the differences in activity with an altered binding conformation of NADH in d-LDH1. The role of the conserved residue Pro101 in d-LDH was further probed in site-directed mutagenesis experiments. We introduced d-LDH1 into Bacillus licheniformis yielding a d-lactic acid production of 145.9 g L-1 within 60 h at 50°C, which was three times higher than that of the wild-type enzyme. The discovery of d-LDH1 will pave the way for the efficient production of d-lactic acid by thermophilic bacteria.


Asunto(s)
L-Lactato Deshidrogenasa , NAD , L-Lactato Deshidrogenasa/genética , L-Lactato Deshidrogenasa/química , L-Lactato Deshidrogenasa/metabolismo , NAD/química , Mutación , Ácido Láctico/química , Ácido Láctico/metabolismo
14.
Mol Pharm ; 20(9): 4587-4596, 2023 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-37535010

RESUMEN

The phase behavior of poloxamer 188 (P188) in aqueous solutions, characterized by differential scanning calorimetry (DSC) and synchrotron X-ray diffractometry, revealed solute crystallization during both freezing and thawing. Sucrose and trehalose inhibited P188 crystallization during freeze-thawing (FT). While trehalose inhibited P188 crystallization only during cooling, sucrose completely suppressed P188 crystallization during both cooling and heating. Lactate dehydrogenase (LDH) served as a model protein to evaluate the stabilizing effect of P188. The ability of P188, over a concentration range of 0.003-0.800% w/v, to prevent LDH (10 µg/mL) destabilization was evaluated. After five FT cycles, the aggregation behavior (by dynamic light scattering) and activity recovery were evaluated. While LDH alone was sensitive to interfacial stress, P188 at concentrations of ≥0.100% w/v stabilized the protein. However, as the surfactant concentration decreased, protein aggregation after FT increased. The addition of sugar (1.0% w/v; sucrose or trehalose) improved the stabilizing function of P188 at lower concentrations (≤0.010% w/v), possibly due to the inhibition of surfactant crystallization. Based on a comparison with the stabilization effect of polysorbate (both 20 and 80), it was evident that P188 could be a promising alternative surfactant in frozen protein formulations. However, when the surfactant concentration is low, the potential for P188 crystallization and the consequent compromise in its functionality warrant careful consideration.


Asunto(s)
Hielo , Poloxámero , Congelación , Trehalosa/química , Proteínas , L-Lactato Deshidrogenasa/química , Tensoactivos , Sacarosa/química , Liofilización , Rastreo Diferencial de Calorimetría
15.
Sci Rep ; 13(1): 11878, 2023 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-37482543

RESUMEN

In date palm, the LEA2 genes are of abundance with sixty-two members that are nearly all ubiquitous. However, their functions and interactions with potential target molecules are largely unexplored. In this study, five date palm LEA2 genes, PdLEA2.2, PdLEA2.3, PdLEA2.4, PdLEA2.6, and PdLEA2.7 were cloned, sequenced, and three of them, PdLEA2.2, PdLEA2.3, and PdLEA2.4 were functionally characterized for their effects on the thermostability of two distinct enzymes, lactate dehydrogenase (LDH) and ß-glucosidase (bglG) in vitro. Overall, PdLEA2.3 and PdLEA2.4 were moderately hydrophilic, PdLEA2.7 was slightly hydrophobic, and PdLEA2.2 and PdLEA2.6 were neither. Sequence and structure prediction indicated the presence of a stretch of hydrophobic residues near the N-terminus that could potentially form a transmembrane helix in PdLEA2.2, PdLEA2.4, PdLEA2.6 and PdLEA2.7. In addition to the transmembrane helix, secondary and tertiary structures prediction showed the presence of a disordered region followed by a stacked ß-sheet region in all the PdLEA2 proteins. Moreover, three purified recombinant PdLEA2 proteins were produced in vitro, and their presence in the LDH enzymatic reaction enhanced the activity and reduced the aggregate formation of LDH under the heat stress. In the bglG enzymatic assays, PdLEA2 proteins further displayed their capacity to preserve and stabilize the bglG enzymatic activity.


Asunto(s)
Proteínas Intrínsecamente Desordenadas , Phoeniceae , Termotolerancia , Proteínas Intrínsecamente Desordenadas/química , L-Lactato Deshidrogenasa/genética , L-Lactato Deshidrogenasa/química
16.
Int J Mol Sci ; 24(13)2023 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-37446261

RESUMEN

Plasmodium vivax is the most widespread cause of malaria, especially in subtropical and temperate regions such as Asia-Pacific and America. P. vivax lactate dehydrogenase (PvLDH), an essential enzyme in the glycolytic pathway, is required for the development and reproduction of the parasite. Thus, LDH from these parasites has garnered attention as a diagnostic biomarker for malaria and as a potential molecular target for developing antimalarial drugs. In this study, we prepared a transformed Escherichia coli strain for the overexpression of PvLDH without codon optimization. We introduced this recombinant plasmid DNA prepared by insertion of the PvLDH gene in the pET-21a(+) expression vector, into the Rosetta(DE3), an E. coli strain suitable for eukaryotic protein expression. The time, temperature, and inducer concentration for PvLDH expression from this E. coli Rosetta(DE3), containing the original PvLDH gene, were optimized. We obtained PvLDH with a 31.0 mg/L yield and high purity (>95%) from this Rosetta(DE3) strain. The purified protein was characterized structurally and functionally. The PvLDH expressed and purified from transformed bacteria without codon optimization was successfully demonstrated to exhibit its potential tetramer structure and enzyme activity. These findings are expected to provide valuable insights for research on infectious diseases, metabolism, diagnostics, and therapeutics for malaria caused by P. vivax.


Asunto(s)
Malaria Vivax , Malaria , Humanos , Plasmodium vivax/genética , L-Lactato Deshidrogenasa/genética , L-Lactato Deshidrogenasa/química , Escherichia coli/genética , Malaria Vivax/parasitología , Malaria/genética , Codón/genética
17.
Bioelectrochemistry ; 152: 108406, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36931144

RESUMEN

Flavin-dependent L-lactate dehydrogenase (LDH) from baker's yeast (Saccharomyces cerevisiae) reversibly catalyzes the oxidation of L-lactate to L-pyruvate. In this study, four different enzymatic constructs were generated, and their catalytic and electrochemical properties were compared. Specifically, a truncated form of the native enzyme that includes only the catalytic domain, the native enzyme that includes an intrinsic electron-transferring cytochrome b2, a novel artificial enzyme containing a minimal cytochrome c and a version of the enzyme containing a fusion between two cytochromes were designed. All four variants were successfully expressed in Escherichia coli and presented properly matured heme domains. Assessing in vitro biocatalytic performance as reflected by lactate oxidation revealed the fusion-containing enzyme to be âˆ¼ 12 times more active than the native enzyme. Electrochemical studies of electrode drop-casted enzyme variants also showed the superior performance of the dual-cytochrome construct, which displayed a lower average redox-potential for lactate oxidation, oxygen insensitivity in the lactate oxidation potential range and a wider dynamic range for lactate sensing, relative to the native enzyme. Moreover, product inhibition of this variant occurred at much higher lactate concentrations than with the native enzyme. In addition, when lower potentials were scanned using cyclic voltammetry, lactate-dependent oxygen reduction was measured for the dual-cytochrome fusion enzyme.


Asunto(s)
L-Lactato Deshidrogenasa , Saccharomyces cerevisiae , L-Lactato Deshidrogenasa/genética , L-Lactato Deshidrogenasa/química , Cinética , Oxidación-Reducción , Ácido Pirúvico , Ácido Láctico , Citocromos c , Oxígeno
18.
Mol Biol Evol ; 39(9)2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-36056899

RESUMEN

We unveil the intimate relationship between protein dynamics and allostery by following the trajectories of model proteins in their conformational and sequence spaces. Starting from a nonallosteric hyperthermophilic malate dehydrogenase, we have tracked the role of protein dynamics in the evolution of the allosteric capacity. Based on a large phylogenetic analysis of the malate (MalDH) and lactate dehydrogenase (LDH) superfamily, we identified two amino acid positions that could have had a major role for the emergence of allostery in LDHs, which we targeted for investigation by site-directed mutagenesis. Wild-type MalDH and the single and double mutants were tested with respect to their substrate recognition profiles. The double mutant displayed a sigmoid-shaped profile typical of homotropic activation in LDH. By using molecular dynamics simulations, we showed that the mutations induce a drastic change in the protein sampling of its conformational landscape, making transiently T-like (inactive) conformers, typical of allosteric LDHs, accessible. Our data fit well with the seminal key concept linking protein dynamics and evolvability. We showed that the selection of a new phenotype can be achieved by a few key dynamics-enhancing mutations causing the enrichment of low-populated conformational substates.


Asunto(s)
Malato Deshidrogenasa , Malatos , Regulación Alostérica , Aminoácidos/genética , L-Lactato Deshidrogenasa/química , L-Lactato Deshidrogenasa/genética , L-Lactato Deshidrogenasa/metabolismo , Malato Deshidrogenasa/genética , Mutación , Filogenia
19.
Cent Nerv Syst Agents Med Chem ; 22(1): 39-56, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35232355

RESUMEN

BACKGROUND: Malaria parasite strains are resistant to the therapeutic effect of prophylactics medicines presently available. This resistance now poses a significant challenge to researchers to beat malaria parasitic infections. Strategies such as investigating newer hybrid chemical entities and specified drug targets may help us spot new efficient derivatives that bind to the parasites in a more specific manner and inhibit their growth. OBJECTIVE: To scientifically perform the experimental, pharmacological, and computational studies of pyrazole-based furanone hybrids as novel antimalarial agents. METHODS: A series of new furanone-based pyrazole derivatives were synthesized and investigated as potential antimalarial agents by performing in vitro antimalarial activity. To get further optimization, these synthesized derivatives were virtually screened based on ADME-T filters, and molecular docking studies were also accomplished on the crystal structures of Plasmodium falciparum lactate dehydrogenase (PfLDH). Furthermore, the in-silico prediction was supported by performing an LDH assay. RESULTS: The docking data suggested that the designed hybrid of furanone-pyrazole may act as PfLDH inhibitors. It was found that the results of experimental in vitro antimalarial activity and in silico analysis correlate well to each other to a good extent. The compounds (7d), (7g), and (8e) were found to be the most potent derivatives with IC50 values of 1.968, 1.983, and 2.069 µg/ml, respectively. CONCLUSION: From the results, it may be concluded that compounds that are active in low doses might be adopted as a lead compound for the development of more active antimalarial agents. The synthesized compounds (7d), (7g), and (8e) exhibited good antimalarial activity with PfLDH inhibition. The best compounds can be explored further in the future for designing the potent inhibitors of PfLDH as new potent antimalarial agents.


Asunto(s)
Antimaláricos , Malaria , Antimaláricos/farmacología , Antimaláricos/uso terapéutico , Humanos , L-Lactato Deshidrogenasa/química , L-Lactato Deshidrogenasa/farmacología , Malaria/tratamiento farmacológico , Simulación del Acoplamiento Molecular , Plasmodium falciparum/metabolismo , Pirazoles/química , Pirazoles/farmacología , Pirazoles/uso terapéutico
20.
Anal Bioanal Chem ; 414(4): 1641-1649, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35024916

RESUMEN

A photonic crystal fiber (PCF)-based fluorescence sensor is developed for rapid and sensitive detection of lactic acid (LA) enantiomers in serum samples. The sensor is fabricated by chemical binding dual enzymes on the inner surface of the PCF with numerous pore structures and a large specific surface area, which is suitable to be utilized as an enzymatic reaction carrier. To achieve simultaneous detection of L-LA and D-LA, the PCF with an aldehyde-activated surface is cut into two separate pieces, one of which is coated with L-LDH/GPT enzymes and the other with D-LDH/GPT enzymes. By being connected and carefully aligned to each other by a suitable sleeve tube connector, the responses of both L-LA and D-LA sensors are determined by laser-induced flourescence (LIF) detection. With the aid of enzyme-linked catalytic reactions, the proposed PCF sensor can greatly improve the sensitivity and analysis speed for the detection of LA enantiomers. The PCF sensor exhibits a low limit of detection of 9.5 µM and 0.8 µM, and a wide linear range of 25-2000 µM and 2-400 µM for L-LA and D-LA, respectively. The sensor has been successfully applied to accurate determination of LA enantiomers in human serum with satisfactory reproducibility and stability. It is indicated that the present PCF sensors would be used as an attractive analytical platform for quantitative detection of trace-amount LA enantiomers in real biological samples, and thus would play a role in disease diagnosis and clinical monitoring in point-of-care testing.


Asunto(s)
Ácido Láctico/análisis , Óptica y Fotónica/instrumentación , Óptica y Fotónica/métodos , Enzimas Inmovilizadas/química , Diseño de Equipo , Fluorescencia , Humanos , L-Lactato Deshidrogenasa/química , Ácido Láctico/sangre , Ácido Láctico/química , Rayos Láser , Límite de Detección , Microscopía Electrónica de Rastreo , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Espectroscopía Infrarroja por Transformada de Fourier , Estereoisomerismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...