Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.260
Filtrar
1.
Front Immunol ; 15: 1433590, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39139557

RESUMEN

Salvianolic acid A (SalA), a bioactive compound extracted from Salvia miltiorrhiza, has garnered considerable interest for its potential in ameliorating the post-stroke neuroinflammation. This review delineates the possible molecular underpinnings of anti-inflammatory and neuroprotective roles of SalA, offering a comprehensive analysis of its therapeutic efficacy in preclinical studies of ischemic stroke. We explore the intricate interplay between post-stroke neuroinflammation and the modulatory effects of SalA on pro-inflammatory cytokines, inflammatory signaling pathways, the peripheral immune cell infiltration through blood-brain barrier disruption, and endothelial cell function. The pharmacokinetic profiles of SalA in the context of stroke, characterized by enhanced cerebral penetration post-ischemia, makes it particularly suitable as a therapeutic agent. Preliminary clinical findings have demonstrated that salvianolic acids (SA) has a positive impact on cerebral perfusion and neurological deficits in stroke patients, warranting further investigation. This review emphasizes SalA as a potential anti-inflammatory agent for the advancement of innovative therapeutic approaches in the treatment of ischemic stroke.


Asunto(s)
Antiinflamatorios , Ácidos Cafeicos , Enfermedades Neuroinflamatorias , Accidente Cerebrovascular , Humanos , Animales , Ácidos Cafeicos/uso terapéutico , Ácidos Cafeicos/farmacología , Accidente Cerebrovascular/tratamiento farmacológico , Accidente Cerebrovascular/metabolismo , Enfermedades Neuroinflamatorias/tratamiento farmacológico , Enfermedades Neuroinflamatorias/etiología , Antiinflamatorios/uso terapéutico , Antiinflamatorios/farmacología , Fármacos Neuroprotectores/uso terapéutico , Fármacos Neuroprotectores/farmacología , Lactatos/uso terapéutico , Lactatos/farmacología , Barrera Hematoencefálica/metabolismo , Barrera Hematoencefálica/efectos de los fármacos
2.
Chem Biol Interact ; 400: 111162, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39047806

RESUMEN

Non-alcoholic fatty liver disease (NAFLD) affects approximately a quarter of the population and, to date, there is no approved drug therapy for this condition. Individuals with type 2 diabetes mellitus (T2DM) are at a significantly elevated risk of developing NAFLD, underscoring the urgency of identifying effective NAFLD treatments for T2DM patients. Salvianolic acid A (SAA) is a naturally occurring phenolic acid that is an important component of the water-soluble constituents isolated from the roots of Salvia miltiorrhiza Bunge. SAA has been demonstrated to possess anti-inflammatory and antioxidant stress properties. Nevertheless, its potential in ameliorating diabetes-associated NAFLD has not yet been fully elucidated. In this study, diabetic ApoE-/- mice were employed to establish a NAFLD model via a Western diet. Following this, they were treated with different doses of SAA (10 mg/kg, 20 mg/kg) via gavage. The study demonstrated a marked improvement in liver injury, lipid accumulation, inflammation, and the pro-fibrotic phenotype after the administration of SAA. Additionally, RNA-seq analysis indicated that the primary pathway by which SAA alleviates diabetes-induced NAFLD involves the cascade pathways of lipid metabolism. Furthermore, SAA was found to be effective in the inhibition of lipid accumulation, mitochondrial dysfunction and ferroptosis. A functional enrichment analysis of RNA-seq data revealed that SAA treatment modulates the AMPK pathway and IGFBP-1. Further experimental results demonstrated that SAA is capable of inhibiting lipid accumulation through the activation of the AMPK pathway and IGFBP-1.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Ácidos Cafeicos , Proteína 1 de Unión a Factor de Crecimiento Similar a la Insulina , Lactatos , Enfermedad del Hígado Graso no Alcohólico , Transducción de Señal , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/patología , Animales , Ratones , Lactatos/farmacología , Lactatos/uso terapéutico , Lactatos/química , Proteínas Quinasas Activadas por AMP/metabolismo , Ácidos Cafeicos/farmacología , Ácidos Cafeicos/química , Ácidos Cafeicos/uso terapéutico , Proteína 1 de Unión a Factor de Crecimiento Similar a la Insulina/metabolismo , Proteína 1 de Unión a Factor de Crecimiento Similar a la Insulina/genética , Masculino , Transducción de Señal/efectos de los fármacos , Ratones Endogámicos C57BL , Hígado/efectos de los fármacos , Hígado/metabolismo , Hígado/patología , Humanos , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Metabolismo de los Lípidos/efectos de los fármacos , Ratones Noqueados
3.
Clin Exp Dent Res ; 10(4): e874, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39023214

RESUMEN

OBJECTIVES: Reflecting the need for an effective support for the daily oral hygiene routine of patients experiencing (symptoms of) gum inflammation, a new mouthwash has been developed containing an amine + zinc lactate + fluoride system. The in vitro efficacy of this product was assessed using traditional laboratory methods, as well as novel experimentation. MATERIALS AND METHODS: This mouthwash has been evaluated in a series of laboratory tests including two short interval kill tests (SIKTs), a 12-h (longer term) biofilm regrowth assay, a plaque glycolysis assay, and an aerobic, repeated exposure biofilm model, as well as tests for soft tissue uptake and LPS neutralization. RESULTS: Several laboratory studies demonstrate that a mouthwash containing an amine + zinc lactate + fluoride system provides short-term and long-term antibacterial activity. While the immediate efficacy of this formula has been shown to be driven by the presence of the amine, zinc lactate provides a long-term antibacterial effect, as well as is able to inhibit bacterial metabolism. CONCLUSIONS: This research provides the basis for understanding the mode of action of this new mouthwash formulation and explains the previously observed clinical efficacy of this formula against plaque and gingivitis.


Asunto(s)
Antibacterianos , Biopelículas , Placa Dental , Fluoruros , Antisépticos Bucales , Antisépticos Bucales/farmacología , Biopelículas/efectos de los fármacos , Antibacterianos/farmacología , Antibacterianos/administración & dosificación , Humanos , Fluoruros/farmacología , Placa Dental/microbiología , Placa Dental/tratamiento farmacológico , Lactatos/farmacología , Aminas/farmacología , Aminas/química , Gingivitis/tratamiento farmacológico , Gingivitis/microbiología , Gingivitis/prevención & control , Compuestos de Zinc/farmacología
4.
Front Biosci (Landmark Ed) ; 29(6): 213, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38940031

RESUMEN

BACKGROUND: This study investigated the impact of salvianolic acids, derived from Danshen, on melanoma cell growth. Specifically, we assessed the ability of salvianolic acid A (Sal A) to modulate melanoma cell proliferation. METHODS: We used human melanoma A2058 and A375 cell lines to investigate the effects of Sal A on cell proliferation and death by measuring bromodeoxyuridine incorporation and lactate dehydrogenase release. We assessed cell viability and cycle progression using water soluble tetrazolium salt-1 (WST-1) mitochondrial staining and propidium iodide. Additionally, we used a phospho-kinase array to investigate intracellular kinase phosphorylation, specifically measuring the influence of Sal A on checkpoint kinase-2 (Chk-2) via western blot analysis. RESULTS: Sal A inhibited the growth of A2058 and A375 cells dose-responsively and induced cell cycle arrest at the G2/M phase. Notably, Sal A selectively induces Chk-2 phosphorylation without affecting Chk-1, thereby degrading Chk-2-regulated genes Cdc25A and Cdc2. However, Sal A does not affect the Chk1-Cdc25C pathway. CONCLUSIONS: Salvianolic acids, especially Sal A, effectively hinder melanoma cell growth by inducing Chk-2 phosphorylation and disrupting G2/M checkpoint regulation.


Asunto(s)
Ácidos Cafeicos , Proliferación Celular , Quinasa de Punto de Control 2 , Lactatos , Melanoma , Fosfatasas cdc25 , Humanos , Quinasa de Punto de Control 2/metabolismo , Quinasa de Punto de Control 2/genética , Fosfatasas cdc25/metabolismo , Fosfatasas cdc25/genética , Melanoma/tratamiento farmacológico , Melanoma/metabolismo , Melanoma/genética , Melanoma/patología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Lactatos/farmacología , Lactatos/metabolismo , Ácidos Cafeicos/farmacología , Transducción de Señal/efectos de los fármacos , Fosforilación/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos
5.
Sci Rep ; 14(1): 11931, 2024 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-38789509

RESUMEN

Oxidative stress induced endothelial dysfunction plays a particularly important role in promoting the development of cardiovascular diseases (CVDs). Salvianolic acid A (SalA) is a water-soluble component of traditional Chinese medicine Salvia miltiorrhiza Bunge with anti-oxidant potency. This study aims to explore the regulatory effect of SalA on oxidative injury using an in vitro model of H2O2-induced injury in human umbilical vein endothelial cells (HUVECs). In the study, we determined cell viability, the activities of Lactate dehydrogenase (LDH) and Superoxide dismutase (SOD), cell proliferation rate and intracellular reactive oxygen species (ROS). Flow cytometry was used to detect cell apoptosis. Western-blotting was used to evaluate the expression of cell senescence, apoptosis, autophagy and pyroptosis protein factors. The expression level of miRNA was determined by qRT-PCR. Compared with H2O2-induced HUVECs, SalA promoted cell viability and cell proliferation rate; decreased LDH and ROS levels; and increased SOD activity. SalA also significantly attenuated endothelial senescence, inhibited cell apoptosis, reversed the increase of LC3 II/I ratio and NLRP3 accumulation. Furthermore, miR-204-5p was regulated by SalA. Importantly, miR-204-5p inhibitor had similar effect to that of SalA on H2O2-induced HUVECs. Our results indicated that SalA could alleviate H2O2-induced oxidative injury by downregulating miR-204-5p in HUVECs.


Asunto(s)
Apoptosis , Supervivencia Celular , Células Endoteliales de la Vena Umbilical Humana , Peróxido de Hidrógeno , Lactatos , MicroARNs , Estrés Oxidativo , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Peróxido de Hidrógeno/toxicidad , Peróxido de Hidrógeno/farmacología , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Estrés Oxidativo/efectos de los fármacos , Lactatos/farmacología , Lactatos/metabolismo , Apoptosis/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Ácidos Cafeicos/farmacología , Proliferación Celular/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Autofagia/efectos de los fármacos , Senescencia Celular/efectos de los fármacos , Antioxidantes/farmacología , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/genética
6.
Food Chem ; 452: 139525, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-38718453

RESUMEN

The primary inhibitory targets of phenyllactic acid (PLA, including D-PLA and L-PLA) on Mucor were investigated using Mucor racemosus LD3.0026 isolated from naturally spoiled cherry, as an indicator fungi. The results demonstrated that the minimum inhibitory concentration (MIC) of PLA against Mucor was 12.5 mmol·L-1. Results showed that the growing cells at the tip of the Mucor were not visibly deformed, and there was no damage to the cell wall following PLA treatment; however, PLA damaged the cell membrane and internal structure. The results of isobaric tags for relative and absolute quantification (iTRAQ) indicated that the Mucor mitochondrial respiratory chain may be the target of PLA, potentially inhibiting the energy supply of Mucor. These results indicate that the antifungal mechanism of PLA against mold is independent of its molecular configuration. The growth of Mucor is suppressed by PLA, which destroys the organelle structure in the mycelium and inhibits energy metabolism.


Asunto(s)
Antifúngicos , Mucor , Proteómica , Mucor/metabolismo , Mucor/crecimiento & desarrollo , Mucor/química , Mucor/efectos de los fármacos , Antifúngicos/farmacología , Antifúngicos/química , Pruebas de Sensibilidad Microbiana , Lactatos/farmacología , Lactatos/metabolismo , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/química
7.
Food Chem ; 453: 139601, 2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-38754350

RESUMEN

Phenyllactic acid (PLA) as a natural phenolic acid exhibits antibacterial activity against non-spore-forming bacteria, while the inhibitory effect against bacterial spore remained unknown. Herein, this study investigated the inactivation effect of PLA against Bacillus cereus spores. The results revealed that the minimum inhibitory concentration of PLA was 1.25 mg/mL. PLA inhibited the outgrowth of germinated spores into vegetative cells rather than germination of spores. PLA disrupted the spore coat, and damaged the permeability and integrity of inner membrane. Moreover, PLA disturbed the establishment of membrane potential due to the inhibition of oxidative metabolism. SEM observations further visualized the morphological changes and structural disruption caused by PLA. Besides, PLA caused the degradation of DNA of germinated spores. Finally, PLA was applied in milk beverage, and showed promising inhibitory effect against B. cereus spores. This finding could provide scientific basis for the application of PLA against spore-forming bacteria in food industry.


Asunto(s)
Antibacterianos , Bacillus cereus , Leche , Esporas Bacterianas , Bacillus cereus/crecimiento & desarrollo , Bacillus cereus/efectos de los fármacos , Bacillus cereus/metabolismo , Esporas Bacterianas/efectos de los fármacos , Esporas Bacterianas/crecimiento & desarrollo , Esporas Bacterianas/metabolismo , Leche/química , Leche/microbiología , Antibacterianos/farmacología , Antibacterianos/química , Animales , Bebidas/análisis , Bebidas/microbiología , Pruebas de Sensibilidad Microbiana , Lactatos/farmacología , Lactatos/química , Lactatos/metabolismo
8.
Sci Rep ; 14(1): 12427, 2024 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-38816543

RESUMEN

Intracerebral hemorrhage (ICH) is a common cerebral vascular disease with high incidence, disability, and mortality. Ferroptosis is a regulated type of iron-dependent, non-apoptotic programmed cell death. There is increasing evidence that ferroptosis may lead to neuronal damage mediated by hemorrhagic stroke mediated neuronal damage. Salvianolic acid A (SAA) is a natural bioactive polyphenol compound extracted from salvia miltiorrhiza, which has anti-inflammatory, antioxidant, and antifibrosis activities. SAA is reported to be an iron chelator that inhibits lipid peroxidation and provides neuroprotective effects. However, whether SAA improves neuronal ferroptosis mediated by hemorrhagic stroke remains unclear. The study aims to evaluate the therapeutic effect of SAA on Ferroptosis mediated by Intracerebral hemorrhage and explore its potential mechanisms. We constructed in vivo and in vitro models of intracerebral hemorrhage in rats. Multiple methods were used to analyze the inhibitory effect of SAA on ferroptosis in both in vivo and in vitro models of intracerebral hemorrhage in rats. Then, network pharmacology is used to identify potential targets and mechanisms for SAA treatment of ICH. The SAA target ICH network combines SAA and ICH targets with protein-protein interactions (PPIs). Find the specific mechanism of SAA acting on ferroptosis through molecular docking and functional enrichment analysis. In rats, SAA (10 mg/kg in vivo and 50 µM in vitro, p < 0.05) alleviated dyskinesia and brain injury in the ICH model by inhibiting ferroptosis (p < 0.05). The molecular docking results and functional enrichment analyses suggested that AKT (V-akt murine thymoma viral oncogene homolog) could mediate the effect of SAA. NRF2 (Nuclear factor erythroid 2-related factor 2) was a potential target of SAA. Our further experiments showed that salvianolic acid A enhanced the Akt /GSK-3ß/Nrf2 signaling pathway activation in vivo and in vitro. At the same time, SAA significantly expanded the expression of GPX4, XCT proteins, and the nuclear expression of Nrf2, while the AKT inhibitor SH-6 and the Nrf2 inhibitor ML385 could reduce them to some extent. Therefore, SAA effectively ameliorated ICH-mediated neuronal ferroptosis. Meanwhile, one of the critical mechanisms of SAA inhibiting ferroptosis was activating the Akt/GSK-3ß/Nrf2 signaling pathway.


Asunto(s)
Ácidos Cafeicos , Hemorragia Cerebral , Ferroptosis , Lactatos , Fármacos Neuroprotectores , Animales , Ferroptosis/efectos de los fármacos , Hemorragia Cerebral/tratamiento farmacológico , Hemorragia Cerebral/metabolismo , Ácidos Cafeicos/farmacología , Ácidos Cafeicos/química , Ratas , Lactatos/farmacología , Lactatos/química , Lactatos/uso terapéutico , Masculino , Fármacos Neuroprotectores/farmacología , Ratas Sprague-Dawley , Factor 2 Relacionado con NF-E2/metabolismo , Simulación del Acoplamiento Molecular , Modelos Animales de Enfermedad , Transducción de Señal/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt/metabolismo
9.
Neuroreport ; 35(10): 638-647, 2024 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-38813908

RESUMEN

Danshensu, also known as salvianic acid A, is a primary active compound extracted from a traditional Chinese herb Danshen (Salvia miltiorrhiza). While its antioxidative and neuroprotective effects are well-documented, the underlying mechanisms are poorly understood. In this study, we sought out to investigate if and how Danshensu modulates neuronal excitability and voltage-gated ionic currents in the central nervous system. We prepared brain slices of the mouse brainstem and performed patch-clamp recording in bushy cells in the anteroventral cochlear nucleus, with or without Danshensu incubation for 1 h. QX-314 was used internally to block Na+ current, while tetraethylammonium and 4-aminopyridine were used to isolate different subtypes of K+ current. We found that Danshensu of 100 µm decreased the input resistance of bushy cells by approximately 60% and shifted the voltage threshold of spiking positively by approximately 7 mV, resulting in significantly reduced excitability. Furthermore, we found this reduced excitability by Danshensu was caused by enhanced voltage-gated K+ currents in these neurons, including both low voltage-activated IK,A, by approximately 100%, and high voltage-activated IK,dr, by approximately 30%. Lastly, we found that the effect of Danshensu on K+ currents was dose-dependent in that no enhancement was found for Danshensu of 50 µm and Danshensu of 200 µm failed to cause significantly more enhancement on K+ currents when compared to that of 100 µm. We found that Danshensu reduced neuronal excitability in the central nervous system by enhancing voltage-gated K+ currents, providing mechanistic support for its neuroprotective effect widely seen in vivo.


Asunto(s)
Núcleo Coclear , Lactatos , Neuronas , Animales , Ratones , Neuronas/efectos de los fármacos , Neuronas/fisiología , Lactatos/farmacología , Núcleo Coclear/efectos de los fármacos , Núcleo Coclear/fisiología , Técnicas de Placa-Clamp , Potenciales de Acción/efectos de los fármacos , Potenciales de Acción/fisiología , Masculino , Canales de Potasio/efectos de los fármacos , Canales de Potasio/metabolismo , Ratones Endogámicos C57BL
10.
Shock ; 61(5): 748-757, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38662612

RESUMEN

ABSTRACT: Cardiac fibrosis, characterized by excessive collagen accumulation in heart tissues, poses a significant clinical challenge in various heart diseases and complications. Although salvianolic acid A (Sal A) from Danshen ( Salvia miltiorrhiza ) has shown promise in the treatment of ischemic heart disease, myocardial infarction, and atherosclerosis, its effects on cardiac fibrosis remain unexplored. Our study investigated the efficacy of Sal A in reducing cardiac fibrosis and elucidated its underlying molecular mechanisms. We observed that Sal A demonstrated significant cardioprotective effects against Angiotensin II (Ang II)-induced cardiac remodeling and fibrosis, showing a dose-dependent reduction in fibrosis in mice and suppression of cardiac fibroblast proliferation and fibrotic protein expression in vitro . RNA sequencing revealed that Sal A counteracted Ang II-induced upregulation of Txnip, and subsequent experiments indicated that it acts through the inflammasome and ROS pathways. These findings establish the antifibrotic effects of Sal A, notably attenuated by Txnip overexpression, and highlight its significant role in modulating inflammation and oxidative stress pathways. This underscores the importance of further research on Sal A and similar compounds, especially regarding their effects on inflammation and oxidative stress, which are key factors in various cardiovascular diseases.


Asunto(s)
Angiotensina II , Proteínas Portadoras , Fibrosis , Lactatos , Transducción de Señal , Tiorredoxinas , Animales , Ratones , Transducción de Señal/efectos de los fármacos , Proteínas Portadoras/metabolismo , Masculino , Lactatos/farmacología , Lactatos/uso terapéutico , Ácidos Cafeicos/farmacología , Ácidos Cafeicos/uso terapéutico , Ratones Endogámicos C57BL , Miocardio/metabolismo , Miocardio/patología , Proteínas de Ciclo Celular/metabolismo
11.
Cell Calcium ; 119: 102854, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38430790

RESUMEN

The necroptotic effector molecule MLKL accumulates in neurons over the lifespan of mice, and its downregulation has the potential to improve cognition through neuroinflammation, and changes in the abundance of synaptic proteins and enzymes in the central nervous system. Notwithstanding, direct evidence of cell-autonomous effects of MLKL expression on neuronal physiology and metabolism are lacking. Here, we tested whether the overexpression of MLKL in the absence of cell death in the neuronal cell line Neuro-2a recapitulates some of the hallmarks of aging at the cellular level. Using genetically-encoded fluorescent biosensors, we monitored the cytosolic and mitochondrial Ca2+ levels, along with the cytosolic concentrations of several metabolites involved in energy metabolism (lactate, glucose, ATP) and oxidative stress (oxidized/reduced glutathione). We found that MLKL overexpression marginally decreased cell viability, however, it led to reduced cytosolic and mitochondrial Ca2+ elevations in response to Ca2+ influx from the extracellular space. On the contrary, Ca2+ signals were elevated after mobilizing Ca2+ from the endoplasmic reticulum. Transient elevations in cytosolic Ca2+, mimicking neuronal stimulation, lead to higher lactate levels and lower glucose concentrations in Neuro-2a cells when overexpressing MLKL, which suggest enhanced neuronal glycolysis. Despite these alterations, energy levels and glutathione redox state in the cell bodies remained largely preserved after inducing MLKL overexpression for 24-48 h. Taken together, our proof-of-concept experiments are consistent with the hypothesis that MLKL overexpression in the absence of cell death contributes to both Ca2+ and metabolic dyshomeostasis, which are cellular hallmarks of brain aging.


Asunto(s)
Lactatos , Neuronas , Ratones , Animales , Neuronas/metabolismo , Línea Celular , Muerte Celular , Lactatos/metabolismo , Lactatos/farmacología , Glucosa/metabolismo , Proteínas Quinasas/metabolismo
12.
Plant Foods Hum Nutr ; 79(2): 526-530, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38530542

RESUMEN

The antiglycation mechanisms of three structurally different salvianolic acids (Sals) including salvianolic acid A (Sal-A), salvianolic acid B (Sal-B) and salvianolic acid C (Sal-C) were investigated using the bovine serum albumin (BSA)-fructose model. The results showed that the three compounds could inhibit the formation of glycation products, maintain protein structural stability, mitigate the development of amyloid fibrils and scavenge radicals. Notably, Sal-A possessed the highest anti-glycated activity compared with Sal-B and Sal-C. This may be related to the fact that Sal-A contained the most molecules of caffeic acid (Sal-A, Sal-B, and Sal-C possessing two, one, and zero caffeic acid units, respectively), and caffeic acid played a leading role in the antiglycation properties relative to Danshensu. Moreover, these compounds quenched the intrinsic fluorescence intensity of BSA in a static mode, with the binding constants in the order of Sal-A > Sal-B > Sal-C. Obviously, Sal-A possessed the strongest binding affinity among these compounds, which may be one of the reasons why it exhibited the optimal antiglycation capability. Furthermore, molecular docking demonstrated that the three Sals exerted protective effects on BSA by preventing glycation modification of lysine and arginine residues. These findings would provide valuable insights into the potential application of Sals for alleviating non-enzymatic glycation of protein.


Asunto(s)
Benzofuranos , Ácidos Cafeicos , Lactatos , Polifenoles , Albúmina Sérica Bovina , Albúmina Sérica Bovina/química , Ácidos Cafeicos/farmacología , Ácidos Cafeicos/química , Glicosilación/efectos de los fármacos , Polifenoles/farmacología , Polifenoles/química , Benzofuranos/farmacología , Benzofuranos/química , Lactatos/farmacología , Lactatos/química , Alquenos/farmacología , Alquenos/química , Animales , Productos Finales de Glicación Avanzada/química , Productos Finales de Glicación Avanzada/metabolismo , Bovinos , Simulación del Acoplamiento Molecular , Depsidos
13.
Commun Biol ; 7(1): 325, 2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38486093

RESUMEN

Regulating metabolic disorders has become a promising focus in treating intervertebral disc degeneration (IDD). A few drugs regulating metabolism, such as atorvastatin, metformin, and melatonin, show positive effects in treating IDD. Glutamine participates in multiple metabolic processes, including glutaminolysis and glycolysis; however, its impact on IDD is unclear. The current study reveals that glutamine levels are decreased in severely degenerated human nucleus pulposus (NP) tissues and aging Sprague-Dawley (SD) rat nucleus pulposus tissues, while lactate accumulation and lactylation are increased. Supplementary glutamine suppresses glycolysis and reduces lactate production, which downregulates adenosine-5'-monophosphate-activated protein kinase α (AMPKα) lactylation and upregulates AMPKα phosphorylation. Moreover, glutamine treatment reduces NP cell senescence and enhances autophagy and matrix synthesis via inhibition of glycolysis and AMPK lactylation, and glycolysis inhibition suppresses lactylation. Our results indicate that glutamine could prevent IDD by glycolysis inhibition-decreased AMPKα lactylation, which promotes autophagy and suppresses NP cell senescence.


Asunto(s)
Degeneración del Disco Intervertebral , Ratas , Animales , Humanos , Degeneración del Disco Intervertebral/tratamiento farmacológico , Degeneración del Disco Intervertebral/metabolismo , Ratas Sprague-Dawley , Glutamina , Proteínas Quinasas Activadas por AMP , Autofagia , Lactatos/farmacología , Lactatos/uso terapéutico
14.
Anesth Analg ; 138(5): 929-936, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38358109

RESUMEN

Serum renin increases in response to sympathetic nerve activation and hypotension. Recent studies have reported the association of serum renin levels with adverse clinical outcomes in acute care settings. This scoping review aimed to systematically review the available literature on renin as a prognostic marker in intensive care and perioperative patients. We searched for studies published since inception until March 31, 2023, which assessed the association between serum renin levels and clinical outcomes or the effect of synthetic angiotensin II administration on serum renin levels in critically ill and perioperative patients in PubMed, Embase, and the Cochrane Library. The primary outcome was mortality at the longest follow-up; the secondary outcomes were adverse renal outcomes (ie, acute kidney injury, the need for renal replacement therapy, and major adverse kidney events), hemodynamic instability, outcomes to angiotensin II administration, and prognostic performance for mortality when compared with lactate. Among the 2081 studies identified, we included 16 studies with 1573 patients (7 studies on shock, 5 on nonspecific critical illness, 2 on cardiac surgery, 1 on noncardiac surgery, and 1 on coronavirus disease 2019). A significant association between serum renin levels and poor outcomes was identified in 14 studies, with 10 studies demonstrating an association with mortality. One post hoc analysis found that angiotensin II administration reduced mortality in patients with markedly elevated renin values. Two studies showed that renin was superior to lactate as a prognostic marker of mortality. Our scoping review showed that elevated serum renin levels may be associated with clinically relevant outcomes among various perioperative and intensive care populations. Increased serum renin levels may identify patients in which synthetic angiotensin II administration improves clinical outcomes and may outperform serum lactate in predicting mortality.


Asunto(s)
Inhibidores de la Enzima Convertidora de Angiotensina , Renina , Humanos , Renina/farmacología , Pronóstico , Angiotensina II , Cuidados Críticos , Lactatos/farmacología , Sistema Renina-Angiotensina
15.
J Med Chem ; 67(5): 3339-3357, 2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38408027

RESUMEN

Triple-negative breast cancer (TNBC) is a deadly breast cancer with a poor prognosis. Pyruvate kinase M2 (PKM2), a key rate-limiting enzyme in glycolysis, is abnormally highly expressed in TNBC. Overexpressed PKM2 amplifies glucose uptake, enhances lactate production, and suppresses autophagy, thereby expediting the progression of oncogenic processes. A high mortality rate demands novel chemotherapeutic regimens at once. Herein, we report the rational development of an imidazopyridine-based thiazole derivative 7d as an anticancer agent inhibiting PKM2. Nanomolar range PKM2 inhibitors with favorable drug-like properties emerged through enzyme assays. Experiments on two-dimensional (2D)/three-dimensional (3D) cell cultures, lactate release assay, surface plasmon resonance (SPR), and quantitative real-time polymerase chain reaction (qRT-PCR) validated 7d preclinically. In vivo, 7d outperformed lapatinib in tumor regression. This investigation introduces a lead-based approach characterized by its clear-cut chemistry and robust efficacy in designing an exceptionally potent inhibitor targeting PKM2, with a focus on combating TNBC.


Asunto(s)
Antineoplásicos , Neoplasias de la Mama Triple Negativas , Humanos , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Piruvato Quinasa , Lapatinib/farmacología , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Lactatos/farmacología , Línea Celular Tumoral , Glucólisis , Proliferación Celular
16.
J Drug Target ; 32(3): 241-257, 2024 12.
Artículo en Inglés | MEDLINE | ID: mdl-38251656

RESUMEN

Metabolic heterogeneity is one of the characteristics of tumour cells. In order to adapt to the tumour microenvironment of hypoxia, acidity and nutritional deficiency, tumour cells have undergone extensive metabolic reprogramming. Metabolites involved in tumour cell metabolism are also very different from normal cells, such as a large number of lactate and adenosine. Metabolites play an important role in regulating the whole tumour microenvironment. Taking metabolites as the target, it aims to change the metabolic pattern of tumour cells again, destroy the energy balance it maintains, activate the immune system, and finally kill tumour cells. In this paper, the regulatory effects of metabolites such as lactate, glutamine, arginine, tryptophan, fatty acids and adenosine were reviewed, and the related targeting strategies of nano-medicines were summarised, and the future therapeutic strategies of nano-drugs were discussed. The abnormality of tumour metabolites caused by tumour metabolic remodelling not only changes the energy and material supply of tumour, but also participates in the regulation of tumour-related signal pathways, which plays an important role in the survival, proliferation, invasion and metastasis of tumour cells. Regulating the availability of local metabolites is a new aspect that affects tumour progress. (The graphical abstract is by Figdraw).


Metabolic heterogeneity is one of the important characteristics of tumour cells, and the metabolites of tumour cells are very different from those of normal cells.Lactate, fatty acids, glutamine, arginine, tryptophan and adenosine are all important metabolites in tumour metabolism.Nano-medicines are used to regulate tumour metabolites, affecting the energy and material supply of tumour cells, thus achieving therapeutic effects.


Asunto(s)
Neoplasias , Humanos , Neoplasias/metabolismo , Metabolismo Energético , Redes y Vías Metabólicas , Lactatos/farmacología , Lactatos/uso terapéutico , Adenosina , Microambiente Tumoral
17.
Adv Sci (Weinh) ; 11(15): e2309204, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38239040

RESUMEN

The chemo-regulation abilities of chemotherapeutic medications are appealing to address the low immunogenicity, immunosuppressive lactate microenvironment, and adaptive immune resistance of colorectal cancer. In this work, the proteolysis targeting chimera (PROTAC) of BRD4 (dBET57) is found to downregulate colorectal cancer glycolysis through the transcription inhibition of c-Myc, which also inhibits the expression of programmed death ligand 1 (PD-L1) to reverse immune evasion and avoid adaptive immune resistance. Based on this, self-delivery nano-PROTACs (designated as DdLD NPs) are further fabricated by the self-assembly of doxorubicin (DOX) and dBET57 with the assistance of DSPE-PEG2000. DdLD NPs can improve the stability, intracellular delivery, and tumor targeting accumulation of DOX and dBET57. Meanwhile, the chemotherapeutic effect of DdLD NPs can efficiently destroy colorectal cancer cells to trigger a robust immunogenic cell death (ICD). More importantly, the chemo-regulation effects of DdLD NPs can inhibit colorectal cancer glycolysis to reduce the lactate production, and downregulate the PD-L1 expression through BRD4 degradation. Taking advantages of the chemotherapy and chemo-regulation ability, DdLD NPs systemically activated the antitumor immunity to suppress the primary and metastatic colorectal cancer progression without inducing any systemic side effects. Such self-delivery nano-PROTACs may provide a new insight for chemotherapy-enabled tumor immunotherapy.


Asunto(s)
Antígeno B7-H1 , Neoplasias Colorrectales , Humanos , Quimera Dirigida a la Proteólisis , Proteínas Nucleares , Línea Celular Tumoral , Factores de Transcripción , Doxorrubicina/uso terapéutico , Doxorrubicina/farmacología , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/metabolismo , Inmunoterapia , Lactatos/farmacología , Microambiente Tumoral , Proteínas que Contienen Bromodominio , Proteínas de Ciclo Celular
18.
J Nutr Biochem ; 125: 109558, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38185349

RESUMEN

Idiopathic pulmonary fibrosis (IPF) is a progressive and fatal interstitial lung disease. Up to now, no treatment can stop the progression of IPF. Vitamin D3 (VD) reduces experimental lung fibrosis in murine models and depletion of vitamin D3 might be associated with the reduced survival of patients with IPF. In this context, we determined if VD can prevent the pro-fibrotic functions of human lung fibroblasts (HLFs) isolated from patients with IPF. IPF and control HLFs were derived from surgical lung biopsies collected from patients with IPF or with primary lung cancer, respectively. VD (3-100 nM) markedly reduced the basal and PDGF-induced proliferation of HLFs. VD also altered cell cycle by increasing the percentage of IPF HLFs arrested in the G0/G1 phase, and by downregulating the expression of various cell cycle regulatory proteins. In addition, VD barely prevented the TGF-ß1-induced differentiation in HLFs. At 100 nM, VD slightly reduced the expression of the pro-fibrotic marker α-smooth muscle actin, and had no effect on fibronectin and collagen-1 expression. In contrast, 100 nM VD strongly inhibited the aerobic glycolytic metabolism induced by TGF- ß1. Finally, VD reduced both the secretion of lactate, the levels of lactate deshydrogenase mRNA and the activity of intracellular LDH in IPF HLFs. In conclusion, our study shows that VD reduced pro-fibrotic functions of HLFs. These findings suggest that it might be interesting to assess the potential clinical benefits of vitamin D supplementation in patients with IPF, especially on lung function decline.


Asunto(s)
Fibrosis Pulmonar Idiopática , Pulmón , Humanos , Animales , Ratones , Fibrosis Pulmonar Idiopática/tratamiento farmacológico , Fibrosis Pulmonar Idiopática/metabolismo , Fibrosis Pulmonar Idiopática/patología , Fibroblastos/metabolismo , Diferenciación Celular , Lactatos/farmacología
19.
Int Endod J ; 57(2): 164-177, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37947494

RESUMEN

AIM: To develop a new coculture system that allows exposure of dental pulp cells (DPCs) to Streptococcus mutans and dentine matrix proteins (eDMP) to study cellular interactions in dentine caries. METHODOLOGY: Dental pulp cells and S. mutans were cocultured with or without eDMP for 72 h. Cell proliferation and viability were assessed by cell counting and MTT assays, while bacterial growth and viability were determined by CFU and LIVE/DEAD staining. Glucose catabolism and lactate excretion were measured photometrically as metabolic indicators. To evaluate the inflammatory response, the release of cytokines and growth factors (IL-6, IL-8, TGF-ß1, VEGF) was determined by ELISA. Non-parametric statistical analyses were performed to compare all groups and time points (Mann-Whitney U test or Kruskal-Wallis test; α = .05). RESULTS: While eDMP and especially S. mutans reduced the number and viability of DPCs (p ≤ .0462), neither DPCs nor eDMP affected the growth and viability of S. mutans during coculture (p > .0546). The growth of S. mutans followed a common curve, but the death phase was not reached within 72 h. S. mutans consumed medium glucose in only 30 h, whereas in the absence of S. mutans, cells were able to catabolize glucose throughout 72 h, resulting in the corresponding amount of l-lactate. No change in medium pH was observed. S. mutans induced IL-6 production in DPCs (p ≤ .0011), whereas eDMP had no discernible effect (p > .7509). No significant changes in IL-8 were observed (p > .198). TGF-ß1, available from eDMP supplementation, was reduced by DPCs over time. VEGF, on the other hand, was increased in all groups during coculture. CONCLUSIONS: The results show that the coculture of DPCs and S. mutans is possible without functional impairment. The bacterially induced stimulation of proinflammatory and regenerative cytokines provides a basis for future investigations and the elucidation of molecular biological relationships in pulp defence against caries.


Asunto(s)
Caries Dental , Pulpa Dental , Humanos , Técnicas de Cocultivo , Factor de Crecimiento Transformador beta1 , Streptococcus mutans , Factor A de Crecimiento Endotelial Vascular/metabolismo , Interleucina-6/farmacología , Interleucina-8 , Caries Dental/microbiología , Citocinas , Glucosa/farmacología , Lactatos/farmacología
20.
Theriogenology ; 215: 113-124, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38029686

RESUMEN

If a mechanism of more efficient glycolysis depending on pyruvate is present in stallion spermatozoa, detrimental effects of higher glucose concentrations that are common in current commercial extenders could be counteracted. To test this hypothesis, spermatozoa were incubated in a 67 mM Glucose modified Tyrode's media in the presence of 1- or 10-mM pyruvate and in the Tyrode's basal media which contains 5 mM glucose. Spermatozoa incubated for 3 h at 37 °C in 67 mM Tyrode's media with 10 mM pyruvate showed increased motility in comparison with aliquots incubated in Tyrode's 5 mM glucose and Tyrode's 67 mM glucose (57.1 ± 3.5 and 58.1 ± 1.9 to 73.0 ± 1.1 %; P < 0.01). Spermatozoa incubated in Tyrode's with 67 mM glucose 10 mM pyruvate maintained the viability along the incubation (64.03 ± 15.4 vs 61.3 ± 10.2), while spermatozoa incubated in 67 mM Glucose-Tyrode's showed a decrease in viability (38.01 ± 11.2, P < 0.01). 40 mM oxamate, an inhibitor of the lactate dehydrogenase LDH, reduced sperm viability (P < 0.05, from 76 ± 5 in 67 mM Glucose/10 mM pyruvate to 68.0 ± 4.3 %, P < 0.05). Apoptotic markers increased in the presence of oxamate. (P < 0.01). UHPLC/MS/MS showed that 10 mM pyruvate increased pyruvate, lactate, ATP and NAD+ while phosphoenolpyruvate decreased. The mechanisms that explain the improvement of in presence of 10 mM pyruvate involve the conversion of lactate to pyruvate and increased NAD+ enhancing the efficiency of the glycolysis.


Asunto(s)
Ácido Pirúvico , Semen , Masculino , Animales , Caballos , Ácido Pirúvico/farmacología , Ácido Pirúvico/metabolismo , NAD/farmacología , NAD/metabolismo , Espectrometría de Masas en Tándem/veterinaria , Motilidad Espermática , Espermatozoides , Lactatos/metabolismo , Lactatos/farmacología , Glucosa/farmacología , Glucosa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...