Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.138
Filtrar
1.
Gut Microbes ; 16(1): 2369338, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38899682

RESUMEN

Gut bacteria are known to produce bacteriocins to inhibit the growth of other bacteria. Consequently, bacteriocins have attracted increased attention as potential microbiome-editing tools. In this study we examine the inhibitory spectrum of 75 class II bacteriocins against 48 representative gut microbiota species. The bacteriocins were heterologously expressed in Escherichia coli and evaluated in vitro, ex vivo and in vivo. In vitro assays revealed 22 bacteriocins to inhibit at least one species and showed selective inhibition patterns against species implicated in certain disorders and diseases. Three bacteriocins were selected for ex vivo assessment on mouse feces. Based on 16S rRNA sequencing of the cultivated feces we showed that the two bacteriocins: Actifencin (#13) and Bacteroidetocin A (#22) selectively inhibited the growth of Lactobacillus and Bacteroides, respectively. The probiotic: E. coli Nissle 1917 was engineered to express these two bacteriocins in mice. However, the selective inhibitory patterns found in the in vitro and ex vivo experiments could not be observed in vivo. Our study describes a methodology for heterologous high throughput bacteriocin expression and screening and elucidates the inhibitory patterns of class II bacteriocins on the gut microbiota.


Asunto(s)
Antibacterianos , Bacteriocinas , Escherichia coli , Heces , Microbioma Gastrointestinal , Bacteriocinas/genética , Bacteriocinas/farmacología , Bacteriocinas/metabolismo , Bacteriocinas/biosíntesis , Animales , Ratones , Escherichia coli/genética , Escherichia coli/efectos de los fármacos , Escherichia coli/metabolismo , Heces/microbiología , Microbioma Gastrointestinal/efectos de los fármacos , Antibacterianos/farmacología , Antibacterianos/metabolismo , Antibacterianos/biosíntesis , ARN Ribosómico 16S/genética , Lactobacillus/genética , Lactobacillus/metabolismo , Lactobacillus/efectos de los fármacos , Bacterias/genética , Bacterias/efectos de los fármacos , Bacterias/metabolismo , Bacterias/clasificación , Expresión Génica
2.
Arch Microbiol ; 206(7): 315, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38904672

RESUMEN

Exploring probiotics for their crosstalk with the host microbiome through the fermentation of non-digestible dietary fibers (prebiotics) for their potential metabolic end-products, particularly short-chain fatty acids (SCFAs), is important for understanding the endogenous host-gut microbe interaction. This study was aimed at a systematic comparison of commercially available probiotics to understand their synergistic role with specific prebiotics in SCFAs production both in vitro and in the ex vivo gut microcosm model. Probiotic strains isolated from pharmacy products including Lactobacillus sporogenes (strain not labeled), Lactobacillus rhamnosus GG (ATCC53103), Streptococcus faecalis (T-110 JPC), Bacillus mesentericus (TO-AJPC), Bacillus clausii (SIN) and Saccharomyces boulardii (CNCM I-745) were assessed for their probiotic traits including survival, antibiotic susceptibility, and antibacterial activity against pathogenic strains. Our results showed that the microorganisms under study had strain-specific abilities to persist in human gastrointestinal conditions and varied anti-infective efficacy and antibiotic susceptibility. The probiotic strains displayed variation in the utilization of six different prebiotic substrates for their growth under aerobic and anaerobic conditions. Their prebiotic scores (PS) revealed which were the most suitable prebiotic carbohydrates for the growth of each strain and suggested xylooligosaccharide (XOS) was the poorest utilized among all. HPLC analysis revealed a versatile pattern of SCFAs produced as end-products of prebiotic fermentation by the strains which was influenced by growth conditions. Selected synbiotic (prebiotic and probiotic) combinations showing high PS and high total SCFAs production were tested in an ex vivo human gut microcosm model. Interestingly, significantly higher butyrate and propionate production was found only when synbiotics were applied as against when individual probiotic or prebiotics were applied alone. qRT-PCR analysis with specific primers showed that there was a significant increase in the abundance of lactobacilli and bifidobacteria with synbiotic blends compared to pre-, or probiotics alone. In conclusion, this work presents findings to suggest prebiotic combinations with different well-established probiotic strains that may be useful for developing effective synbiotic blends.


Asunto(s)
Ácidos Grasos Volátiles , Microbioma Gastrointestinal , Prebióticos , Probióticos , Simbióticos , Humanos , Probióticos/administración & dosificación , Ácidos Grasos Volátiles/metabolismo , Antibacterianos/farmacología , Fermentación , Tracto Gastrointestinal/microbiología , Lactobacillus/metabolismo , Bacterias/clasificación , Bacterias/metabolismo , Bacterias/genética , Bacterias/aislamiento & purificación , Saccharomyces boulardii/metabolismo
3.
Front Cell Infect Microbiol ; 14: 1403782, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38912205

RESUMEN

Introduction: We assessed the in vitro anti-chlamydial activity of fresh vaginal secretions, deciphering the microbial and metabolic components able to counteract Chlamydia trachomatis viability. Methods: Forty vaginal samples were collected from a group of reproductive-aged women and their anti-chlamydial activity was evaluated by inhibition experiments. Each sample underwent 16S rRNA metabarcoding sequencing to determine the bacterial composition, as well as 1H-NMR spectroscopy to detect and quantify the presence of vaginal metabolites. Results: Samples characterized by a high anti-chlamydial activity were enriched in Lactobacillus, especially Lactobacillus crispatus and Lactobacillus iners, while not-active samples exhibited a significant reduction of lactobacilli, along with higher relative abundances of Streptococcus and Olegusella. Lactobacillus gasseri showed an opposite behavior compared to L. crispatus, being more prevalent in not-active vaginal samples. Higher concentrations of several amino acids (i.e., isoleucine, leucine, and aspartate; positively correlated to the abundance of L. crispatus and L. jensenii) lactate, and 4-aminobutyrate were the most significant metabolic fingerprints of highly active samples. Acetate and formate concentrations, on the other hand, were related to the abundances of a group of anaerobic opportunistic bacteria (including Prevotella, Dialister, Olegusella, Peptostreptococcus, Peptoniphilus, Finegoldia and Anaerococcus). Finally, glucose, correlated to Streptococcus, Lachnospira and Alloscardovia genera, emerged as a key molecule of the vaginal environment: indeed, the anti-chlamydial effect of vaginal fluids decreased as glucose concentrations increased. Discussion: These findings could pave the way for novel strategies in the prevention and treatment of chlamydial urogenital infections, such as lactobacilli probiotic formulations or lactobacilli-derived postbiotics.


Asunto(s)
Chlamydia trachomatis , Lactobacillus , ARN Ribosómico 16S , Vagina , Femenino , Humanos , Vagina/microbiología , ARN Ribosómico 16S/genética , Lactobacillus/aislamiento & purificación , Lactobacillus/genética , Lactobacillus/metabolismo , Chlamydia trachomatis/aislamiento & purificación , Adulto , Streptococcus/aislamiento & purificación , Adulto Joven , Lactobacillus crispatus/aislamiento & purificación , Infecciones por Chlamydia/microbiología
4.
Curr Microbiol ; 81(7): 202, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38829392

RESUMEN

There are massive sources of lactic acid bacteria (LAB) in traditional dairy products. Some of these indigenous strains could be novel probiotics with applications in human health and supply the growing needs of the probiotic industry. In this work, were analyzed the probiotic and technological properties of three Lactobacilli strains isolated from traditional Brazilian cheeses. In vitro tests showed that the three strains are safe and have probiotic features. They presented antimicrobial activity against pathogenic bacteria, auto-aggregation values around 60%, high biofilm formation properties, and a survivor of more than 65% to simulated acid conditions and more than 100% to bile salts. The three strains were used as adjunct cultures separately in a pilot-scale production of Prato cheese. After 45 days of ripening, the lactobacilli counts in the cheeses were close to 8 Log CFU/g, and was observed a reduction in the lactococci counts (around -3 Log CFU/g) in a strain-dependent manner. Cheese primary and secondary proteolysis were unaffected by the probiotic candidates during the ripening, and the strains showed no lipolytic effect, as no changes in the fatty acid profile of cheeses were observed. Thus, our findings suggest that the three strains evaluated have probiotic properties and have potential as adjunct non-starter lactic acid bacteria (NSLAB) to improve the quality and functionality of short-aged cheeses.


Asunto(s)
Queso , Probióticos , Queso/microbiología , Brasil , Microbiología de Alimentos , Lactobacillus/metabolismo , Lactobacillus/fisiología , Lactobacillales/fisiología , Lactobacillales/aislamiento & purificación , Lactobacillales/metabolismo , Lactobacillales/clasificación , Biopelículas/crecimiento & desarrollo , Ácidos Grasos/metabolismo , Fermentación , Ácidos y Sales Biliares/metabolismo
5.
Food Res Int ; 188: 114501, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38823874

RESUMEN

This study investigated the effects of different pickle brines and glycine additions on biogenic amine formation in pickle fermentation. The results showed that the brines with higher biogenic amine content led to the production of more biogenic amines in the simulated pickle fermentation system. This was related to the abundance of biogenic amine-producing microorganisms in the microbial communities of the brines. Metagenome analysis of the brines and metatranscriptome analysis of the fermentation systems showed that putrescine was primarily from Lactobacillus, Oenococcus, and Pichia, while histamine and tyramine were primarily from Lactobacillus and Tetragenococcus. Addition of glycine significantly reduced the accumulation of biogenic amines in the simulated pickle fermentation system by as much as 70 %. The addition of glycine had no inhibitory effect on the amine-producing microorganisms, but it down-regulated the transcription levels of the genes for enzymes related to putrescine synthesis in Pichia, Lactobacillus, and Oenococcus, as well as the histidine decarboxylase genes in Lactobacillus and Tetragenococcus. Catalytic reaction assay using crude solutions of amino acid decarboxylase extracted from Lactobacillus brevis showed that the addition of glycine inhibited 45 %-55 % of ornithine decarboxylase and tyrosine decarboxylase activities. This study may provide a reference for the study and control of the mechanism of biogenic amine formation in pickle fermentation.


Asunto(s)
Aminas Biogénicas , Fermentación , Glicina , Glicina/metabolismo , Aminas Biogénicas/metabolismo , Sales (Química) , Putrescina/metabolismo , Tiramina/metabolismo , Microbiología de Alimentos , Lactobacillus/metabolismo , Lactobacillus/genética , Alimentos Fermentados/microbiología , Pichia/metabolismo , Pichia/genética
6.
Int J Biol Macromol ; 272(Pt 1): 132906, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38851991

RESUMEN

Sourdough bread enriched with soluble fiber (by in-situ exopolysaccharides production) and insoluble fiber (by gazpacho by-products addition) showed prebiotic effects an in vitro dynamic colonic fermentation performance with obese volunteer's microbiota. Bifidobacterium population was maintained whereas Lactobacillus increased throughout the colonic sections. Conversely, Enterobacteriaceae and Clostridium groups clearly decreased. Specific bacteria associated with beneficial effects increased in the ascending colon (Lactobacillus fermentum, Lactobacillus paracasei, Bifidobacterium longum and Bifidobacterium adolescentis) whereas Eubacterium eligens, Alistipes senegalensis, Prevotella copri and Eubacterium desmolans increased in the transversal and descending colon. Additionally, Blautia faecis and Ruminococcus albus increased in the transversal colon, and Bifidobacterium longum, Roseburia faecis and Victivallis vadensis in the descending colon. Bifidobacterium and Lactobacillus fermented the in-situ exopolysaccharides and released pectins from gazpacho by-products, as well as cellulosic degraded bacteria. This increased the short and medium chain fatty acids. Acetic acid, as well as butyric acid, increased throughout the colonic tract, which showed greater increases only in the transversal and descending colonic segments. Conversely, propionic acid was slightly affected by the colonic fermentation. These results show that sourdough bread is a useful food matrix for the enrichment of vegetable by-products (or other fibers) in order to formulate products with microbiota modulatory capacities.


Asunto(s)
Pan , Disbiosis , Fermentación , Pan/microbiología , Humanos , Disbiosis/microbiología , Microbioma Gastrointestinal/efectos de los fármacos , Fibras de la Dieta/metabolismo , Polisacáridos Bacterianos/farmacología , Colon/microbiología , Colon/metabolismo , Bifidobacterium/metabolismo , Masculino , Lactobacillus/metabolismo
7.
Nutrients ; 16(11)2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38892631

RESUMEN

This study investigated the effect of astragalus polysaccharide (APS, an ingredient with hypoglycemic function in a traditional Chinese herbal medicine) on gut microbiota and metabolites of type 2 diabetes mellitus (T2DM) patients using a simulated fermentation model in vitro. The main components of APS were isolated, purified, and structure characterized. APS fermentation was found to increase the abundance of Lactobacillus and Bifidobacterium and decrease the Escherichia-Shigella level in the fecal microbiota of T2DM patients. Apart from increasing propionic acid, APS also caused an increase in all-trans-retinoic acid and thiamine (both have antioxidant properties), with their enrichment in the KEGG pathway associated with thiamine metabolism, etc. Notably, APS could also enhance fecal antioxidant properties. Correlation analysis confirmed a significant positive correlation of Lactobacillus with thiamine and DPPH-clearance rate, suggesting the antioxidant activity of APS was related to its ability to enrich some specific bacteria and upregulate their metabolites.


Asunto(s)
Antioxidantes , Planta del Astrágalo , Diabetes Mellitus Tipo 2 , Heces , Fermentación , Microbioma Gastrointestinal , Polisacáridos , Microbioma Gastrointestinal/efectos de los fármacos , Humanos , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Polisacáridos/farmacología , Planta del Astrágalo/química , Heces/microbiología , Antioxidantes/farmacología , Masculino , Femenino , Persona de Mediana Edad , Tiamina/farmacología , Tiamina/metabolismo , Bifidobacterium/metabolismo , Bifidobacterium/efectos de los fármacos , Lactobacillus/metabolismo , Lactobacillus/efectos de los fármacos , Hipoglucemiantes/farmacología
8.
Proc Natl Acad Sci U S A ; 121(24): e2401686121, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38838019

RESUMEN

S-layers are crystalline arrays found on bacterial and archaeal cells. Lactobacillus is a diverse family of bacteria known especially for potential gut health benefits. This study focuses on the S-layer proteins from Lactobacillus acidophilus and Lactobacillus amylovorus common in the mammalian gut. Atomic resolution structures of Lactobacillus S-layer proteins SlpA and SlpX exhibit domain swapping, and the obtained assembly model of the main S-layer protein SlpA aligns well with prior electron microscopy and mutagenesis data. The S-layer's pore size suggests a protective role, with charged areas aiding adhesion. A highly similar domain organization and interaction network are observed across the Lactobacillus genus. Interaction studies revealed conserved binding areas specific for attachment to teichoic acids. The structure of the SlpA S-layer and the suggested incorporation of SlpX as well as its interaction with teichoic acids lay the foundation for deciphering its role in immune responses and for developing effective treatments for a variety of infectious and bacteria-mediated inflammation processes, opening opportunities for targeted engineering of the S-layer or lactobacilli bacteria in general.


Asunto(s)
Glicoproteínas de Membrana , Ácidos Teicoicos , Ácidos Teicoicos/metabolismo , Ácidos Teicoicos/química , Glicoproteínas de Membrana/metabolismo , Glicoproteínas de Membrana/química , Lactobacillus/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Modelos Moleculares , Lactobacillus acidophilus/metabolismo , Lactobacillus acidophilus/genética
9.
Sci Rep ; 14(1): 14015, 2024 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-38890382

RESUMEN

Optimized production of Aspergillus niger ATCC 26011 endo-ß-mannanase (ManAn) on copra meal resulted in 2.46-fold increase (10,028 U/gds). Purified ManAn (47 kDa) showed high affinity towards guar gum (GG) as compared to konjac gum and locust bean gum with Km 2.67, 3.25 and 4.07 mg/mL, respectively. ManAn efficiently hydrolyzed GG and liberated mannooligosaccharides (MOS). Changes occurring in the rheological and compositional aspects of GG studied using Differential scanning calorimetry (DSC), Thermal gravimetric analysis (TGA) and X-ray diffraction (XRD) revealed increased thermal stability and crystallinity of the partially hydrolyzed guar gum (PHGG). Parametric optimization of the time and temperature dependent hydrolysis of GG (1% w/v) with 100 U/mL of ManAn at 60 °C and pH: 5.0 resulted in 12.126 mg/mL of mannotetraose (M4) in 5 min. Enhanced growth of probiotics Lactobacilli and production of short chain fatty acids (SCFA) that inhibited enteropathogens, confirmed the prebiotic potential of PHGG and M4.


Asunto(s)
Aspergillus niger , Galactanos , Mananos , Oligosacáridos , Gomas de Plantas , Prebióticos , beta-Manosidasa , Mananos/química , Mananos/metabolismo , Gomas de Plantas/química , Galactanos/química , Aspergillus niger/enzimología , Oligosacáridos/química , Hidrólisis , beta-Manosidasa/metabolismo , beta-Manosidasa/química , Concentración de Iones de Hidrógeno , Ácidos Grasos Volátiles/metabolismo , Difracción de Rayos X , Temperatura , Lactobacillus/metabolismo , Probióticos
10.
Food Res Int ; 187: 114345, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38763637

RESUMEN

Long-term consumption of Western-style diet (WSD) can lead to metabolic disorders and dysbiosis of gut microbiota, presenting a critical risk factor for various chronic conditions such as fatty liver disease. In the present study, we investigated the beneficial role of co-fermented whole grain quinoa and black barley with Lactobacillus kisonensis on rats fed a WSD. Male Sprague-Dawley (SD) rats, aged six weeks and weighing 180 ± 10 g, were randomly assigned to one of three groups: the normal control group (NC, n = 7), the WSD group (HF, n = 7), and the WSD supplemented with a co-fermented whole grain quinoa with black barley (FQB) intervention group (HFF, n = 7). The findings indicated that FQB was effective in suppressing body weight gain, mitigating hepatic steatosis, reducing perirenal fat accumulation, and ameliorating pathological damage in the livers and testicular tissues of rats. Additionally, FQB intervention led to decreased levels of serum uric acid (UA), aspartate aminotransferase (AST), and alanine aminotransferase (ALT). These advantageous effects can be ascribed to the regulation of FQB on gut microbiota dysbiosis, which includes the restoration of intestinal flora diversity, reduction of the F/B ratio, and promotion of probiotics abundance, such as Akkermansia and [Ruminococcus] at the genus level. The study employed the UPLC-Q-TOF-MSE technique to analyze metabolites in fecal and hepatic samples. The findings revealed that FQB intervention led to a regression in the levels of specific metabolites in feces, including oxoadipic acid and 20a, 22b-dihydroxycholesterol, as well as in the liver, such as pyridoxamine, xanthine and xanthosine. The transcriptome sequencing of liver tissues revealed that FQB intervention modulated the mRNA expression of specific genes, including Cxcl12, Cidea, and Gck, known for their roles in anti-inflammatory and anti-insulin resistance mechanisms in the context of WSD. Our findings indicate that co-fermented whole-grain quinoa with black barley has the potential to alleviate metabolic disorders and chronic inflammation resulting from the consumption of WSD.


Asunto(s)
Chenopodium quinoa , Dieta Occidental , Fermentación , Microbioma Gastrointestinal , Hordeum , Lactobacillus , Ratas Sprague-Dawley , Animales , Hordeum/química , Masculino , Lactobacillus/metabolismo , Chenopodium quinoa/química , Ratas , Hígado/metabolismo , Disbiosis , Metabolómica , Alimentos Fermentados , Multiómica
11.
Food Res Int ; 186: 114306, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38729707

RESUMEN

The aim of this research was to find out the effect of different combinations of starter and non-starter cultures on the proteolysis of Castellano cheese during ripening. Four cheese batches were prepared, each containing autochthonous lactobacilli and or Leuconostoc, and were compared with each other and with a control batch, that used only a commercial starter. To achieve this, nitrogen fractions (pH 4.4-soluble nitrogen and 12 % trichloroacetic acid soluble nitrogen, polypeptide nitrogen and casein nitrogen), levels of free amino acids and biogenic amines were assessed. Texture and microstructure of cheeses were also evaluated. Significant differences in nitrogen fractions were observed between batches at different stages of ripening. The free amino acid content increased throughout the cheese ripening process, with a more significant increase occurring after the first 30 days. Cheeses containing non-starter lactic acid bacteria exhibited the highest values at the end of the ripening period. Among the main amino acids, GABA was particularly abundant, especially in three of the cheese batches at the end of ripening. The autochthonous lactic acid bacteria were previously selected as non-producers of biogenic amines and this resulted in the absence of these compounds in the cheeses. Analysis of the microstructure of the cheese reflected the impact of proteolysis. Additionally, the texture profile analysis demonstrated that the cheese's hardness intensified as the ripening period progressed. The inclusion of autochthonous non-starter lactic acid bacteria in Castellano cheese production accelerated the proteolysis process, increasing significantly the free amino acids levels and improving the sensory quality of the cheeses.


Asunto(s)
Aminoácidos , Aminas Biogénicas , Queso , Proteolisis , Queso/microbiología , Queso/análisis , Aminoácidos/análisis , Aminoácidos/metabolismo , Aminas Biogénicas/análisis , Microbiología de Alimentos , Manipulación de Alimentos/métodos , Leuconostoc/metabolismo , Leuconostoc/crecimiento & desarrollo , Lactobacillus/metabolismo , Lactobacillus/crecimiento & desarrollo , Nitrógeno/análisis , Calidad de los Alimentos , Fermentación
12.
Sci Rep ; 14(1): 10224, 2024 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-38702368

RESUMEN

The biosynthesis of nanoparticles offers numerous advantages, including ease of production, cost-effectiveness, and environmental friendliness. In our research, we focused on the bioformation of silver nanoparticles (AgNPs) using a combination of Lactobacillus sp. and Bacillus sp. growth. These AgNPs were then evaluated for their biological activities against multidrug-resistant bacteria. Our study involved the isolation of Bacillus sp. from soil samples and Lactobacillus sp. from raw milk in Dhamar Governorate, Yemen. The synthesized AgNPs were characterized using various techniques such as UV-visible spectroscopy, X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), and transmission electron microscopy (TEM). The antibacterial properties of the AgNPs were assessed using the modified Kirby Bauer disk diffusion method against multidrug-resistant strains of Staphylococcus aureus and Pseudomonas aeruginosa. Our results demonstrated that the use of a bacterial mixture for biosynthesis led to faster and more effective production of AgNPs compared to using a single bacterium. The UV-visible spectra showed characteristic peaks indicative of silver nanoparticles, while XRD analysis confirmed the crystalline nature of the synthesized particles. FTIR results suggested the presence of capping proteins that contribute to the synthesis and stability of AgNPs. Furthermore, TEM images revealed the size and morphology of the AgNPs, which exhibited spherical shapes with sizes ranging from 4.65 to 22.8 nm. Notably, the antibacterial activity of the AgNPs was found to be more pronounced against Staphylococcus aureus than Pseudomonas aeruginosa, indicating the potential of these nanoparticles as effective antimicrobial agents. Overall, our study highlights the promising antibacterial properties of AgNPs synthesized by a mixture of Lactobacillus sp. and Bacillus sp. growth. Further research is warranted to explore the potential of utilizing different bacterial combinations for enhanced nanoparticle synthesis.


Asunto(s)
Antibacterianos , Bacillus , Lactobacillus , Nanopartículas del Metal , Pruebas de Sensibilidad Microbiana , Plata , Nanopartículas del Metal/química , Antibacterianos/farmacología , Antibacterianos/química , Antibacterianos/biosíntesis , Plata/química , Plata/farmacología , Bacillus/metabolismo , Lactobacillus/metabolismo , Pseudomonas aeruginosa/efectos de los fármacos , Pseudomonas aeruginosa/crecimiento & desarrollo , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/crecimiento & desarrollo , Espectroscopía Infrarroja por Transformada de Fourier , Difracción de Rayos X
13.
Food Res Int ; 186: 114305, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38729687

RESUMEN

Kefir is a traditional dairy beverage, usually made from cow or goat milk fermented with kefir grains, and has many health benefits. To elucidate the fermentation patterns of animal milk kefirs during the fermentation process and find the optimal milk types, cow, camel, goat, and donkey milk were fermented with kefir grains for 0, 1, 3, 5, and 7 days. Volatile and non-volatile metabolites and microbial changes were dynamically monitored. The results showed that volatile flavor substances were massively elevated in four kefirs on days 1-3. Lipids and carbohydrates gradually decreased, while amino acids, small peptides, and tryptophan derivatives accumulated during fermentation in four kefirs. Besides, four kefirs had similar alterations in Lactobacillus and Acetobacter, while some distinctions existed in low-abundance bacteria. Association analysis of microorganisms and volatile and non-volatile metabolites also revealed the underlying fermentation mechanism. This study found that appropriately extending the fermentation time contributed to the accumulation of some functional nutrients. Furthermore, goat and donkey milk could be the better matrices for kefir fermentation.


Asunto(s)
Equidae , Fermentación , Cabras , Kéfir , Leche , Animales , Kéfir/microbiología , Bovinos , Leche/microbiología , Leche/química , Compuestos Orgánicos Volátiles/análisis , Compuestos Orgánicos Volátiles/metabolismo , Gusto , Camelus , Microbiología de Alimentos , Lactobacillus/metabolismo , Microbiota , Acetobacter/metabolismo , Aminoácidos/metabolismo , Aminoácidos/análisis
14.
Microb Biotechnol ; 17(5): e14484, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38801349

RESUMEN

The human gut hosts numerous ecological niches for microbe-microbe and host-microbe interactions. Gut lactate homeostasis in humans is crucial and relies on various bacteria. Veillonella spp., gut lactate-utilizing bacteria, and lactate-producing bacteria were frequently co-isolated. A recent clinical trial has revealed that lactate-producing bacteria in humans cross-feed lactate to Veillonella spp.; however, their interspecies interaction mechanisms remain unclear. Veillonella dispar, an obligate anaerobe commonly found in the human gut and oral cavity, ferments lactate into acetate and propionate. In our study, we investigated the interaction between V. dispar ATCC 17748T and three representative phylogenetically distant strains of lactic acid bacteria, Lactobacillus acidophilus ATCC 4356T, Lacticaseibacillus paracasei subsp. paracasei ATCC 27216T, and Lactiplantibacillus plantarum ATCC 10241. Bacterial growth, viability, metabolism and gene level adaptations during bacterial interaction were examined. V. dispar exhibited the highest degree of mutualism with L. acidophilus. During co-culture of V. dispar with L. acidophilus, both bacteria exhibited enhanced growth and increased viability. V. dispar demonstrated an upregulation of amino acid biosynthesis pathways and the aspartate catabolic pathway. L. acidophilus also showed a considerable number of upregulated genes related to growth and lactate fermentation. Our results support that V. dispar is able to enhance the fermentative capability of L. acidophilus by presumably consuming the produced lactate, and that L. acidophilus cross-feed not only lactate, but also glutamate, to V. dispar during co-culture. The cross-fed glutamate enters the central carbon metabolism in V. dispar. These findings highlight an intricate metabolic relationship characterized by cross-feeding of lactate and glutamate in parallel with considerable gene regulation within both L. acidophilus (lactate-producing) and V. dispar (lactate-utilizing). The mechanisms of mutualistic interactions between a traditional probiotic bacterium and a potential next-generation probiotic bacterium were elucidated in the production of short-chain fatty acids.


Asunto(s)
Ácidos Grasos Volátiles , Ácido Glutámico , Ácido Láctico , Veillonella , Ácido Láctico/metabolismo , Ácidos Grasos Volátiles/metabolismo , Ácido Glutámico/metabolismo , Veillonella/metabolismo , Veillonella/crecimiento & desarrollo , Veillonella/genética , Simbiosis , Interacciones Microbianas , Humanos , Lactobacillus acidophilus/metabolismo , Lactobacillus acidophilus/crecimiento & desarrollo , Lactobacillus acidophilus/genética , Lactobacillus/metabolismo , Lactobacillus/genética , Lactobacillus/crecimiento & desarrollo , Viabilidad Microbiana , Fermentación
15.
Antonie Van Leeuwenhoek ; 117(1): 85, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38811466

RESUMEN

Kars Kashar cheese is an artisanal pasta-filata type cheese and geographically marked in Eastern Anatolia of Turkey. The aims of this research were to determine for the first time thermophilic lactic acid bacteria (LAB) of Kars Kashar cheese and characterize the technological properties of obtained isolates. In our research, a number of 15 samples of whey were collected from the different villages in Kars. These samples were incubated at 45 °C and used as the source material for isolating thermophilic LAB. A total of 250 colonies were isolated from thermophilic whey, and 217 of them were determined to be presumptive LAB based on their Gram staining and catalase test. A total of 170 isolates were characterized by their phenotypic properties and identified using the MALDI-TOF mass spectrometry method. Phenotypic identification of isolates displayed that Enterococcus and Lactobacillus were the predominant microbiota. According to MALDI-TOF MS identification, 89 isolates were identified as Enterococcus (52.35%), 57 isolates as Lactobacillus (33.53%), 23 isolates as Streptococcus (13.53%), and one isolate as Lactococcus (0.59%). All thermophilic LAB isolates were successfully identified to the species level and it has been observed that MALDI-TOF MS can be successfully used for the identification of selected LAB. The acidification and proteolytic activities of the isolated thermophilic LAB were examined, and the isolates designated for use as starter cultures were also genotypically defined.


Asunto(s)
Queso , Lactobacillales , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Queso/microbiología , Lactobacillales/aislamiento & purificación , Lactobacillales/clasificación , Lactobacillales/genética , Lactobacillales/metabolismo , Suero Lácteo/microbiología , Suero Lácteo/química , Microbiología de Alimentos , Turquía , Lactobacillus/aislamiento & purificación , Lactobacillus/genética , Lactobacillus/clasificación , Lactobacillus/metabolismo , Enterococcus/aislamiento & purificación , Enterococcus/clasificación , Enterococcus/genética , Enterococcus/metabolismo
16.
Bioprocess Biosyst Eng ; 47(6): 957-969, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38717593

RESUMEN

γ-Aminobutyric acid (GABA) is a crucial neurotransmitter with wide application prospects. In this study, we focused on a GABA-producing strain from a traditional Chinese fermented beverage system. Among the six isolates, Lactobacillus hilgardii GZ2 exhibited the greatest ability to produce GABA in the traditional Chinese fermented beverage system. To increase GABA production, we optimized carbon sources, nitrogen sources, temperature, pH, and monosodium glutamate and glucose concentrations and conducted fed-batch fermentation. The best carbon and nitrogen sources for GABA production and cell growth were glucose, yeast extract and tryptone. Gradual increases in GABA were observed as the glucose and monosodium glutamate concentrations increased from 10 g/L to 50 g/L. During fed-batch fermentation, lactic acid was used to maintain the pH at 5.56, and after feeding with 0.03 g/mL glucose and 0.4 g/mL sodium glutamate for 72 h, the GABA yield reached 239 g/L. This novel high-GABA-producing strain holds great potential for the industrial production of GABA, as well as the development of health-promoting functional foods and medical fields.


Asunto(s)
Lactobacillus , Ácido gamma-Aminobutírico , Bebidas , Fermentación , Ácido gamma-Aminobutírico/biosíntesis , Ácido gamma-Aminobutírico/metabolismo , Glucosa/metabolismo , Concentración de Iones de Hidrógeno , Lactobacillus/metabolismo , Lactobacillus/crecimiento & desarrollo , Glutamato de Sodio/metabolismo
17.
Int J Mol Sci ; 25(9)2024 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-38732236

RESUMEN

The use of probiotic lactobacilli has been proposed as a strategy to mitigate damage associated with exposure to toxic metals. Their protective effect against cationic metal ions, such as those of mercury or lead, is believed to stem from their chelating and accumulating potential. However, their retention of anionic toxic metalloids, such as inorganic arsenic, is generally low. Through the construction of mutants in phosphate transporter genes (pst) in Lactiplantibacillus plantarum and Lacticaseibacillus paracasei strains, coupled with arsenate [As(V)] uptake and toxicity assays, we determined that the incorporation of As(V), which structurally resembles phosphate, is likely facilitated by phosphate transporters. Surprisingly, inactivation in Lc. paracasei of PhoP, the transcriptional regulator of the two-component system PhoPR, a signal transducer involved in phosphate sensing, led to an increased resistance to arsenite [As(III)]. In comparison to the wild type, the phoP strain exhibited no differences in the ability to retain As(III), and there were no observed changes in the oxidation of As(III) to the less toxic As(V). These results reinforce the idea that specific transport, and not unspecific cell retention, plays a role in As(V) biosorption by lactobacilli, while they reveal an unexpected phenotype for the lack of the pleiotropic regulator PhoP.


Asunto(s)
Arsénico , Fosfatos , Fosfatos/metabolismo , Arsénico/toxicidad , Arsénico/metabolismo , Lactobacillus/metabolismo , Lactobacillus/efectos de los fármacos , Lactobacillus/genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Proteínas de Transporte de Fosfato/metabolismo , Proteínas de Transporte de Fosfato/genética , Arseniatos/metabolismo , Arseniatos/toxicidad
18.
Microbiol Res ; 285: 127741, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38761487

RESUMEN

Fructooligosaccharides (FOS) are a common prebiotic widely used in functional foods. Meanwhile, Saccharomyces boulardii is a fungal probiotic frequenly used in the clinical treatment of diarrhea. Compared with single use, the combination of prebiotics and probiotics as symbiotics may be more effective in regulating gut microbiota as recently reported in the literature. The present study aimed to investigate the effects of FOS, S. boulardii and their combination on the structure and metabolism of the gut microbiota in healthy primary and secondary school students using an in vitro fermentation model. The results indicated that S. boulardii alone could not effectively regulate the community structure and metabolism of the microbiota. However, both FOS and the combination of FOS and S. boulardii could effectively regulate the microbiota, significantly inhibiting the growth of Escherichia-Shigella and Bacteroides, and controlling the production of the gases including H2S and NH3. In addition, both FOS and the combination could significantly promote the growth of Bifidobacteria and Lactobacillus, lower environmental pH, and enhance several physiological functions related to synthesis and metabolism. Nevertheless, the combination had more unique benefits as it promoted the growth of Lactobacillus, significantly increased CO2 production and enhanced the functional pathways of carbon metabolism and pyruvic acid metabolism. These findings provide guidance for clinical application and a theoretical basis for the development of synbiotic preparations.


Asunto(s)
Fermentación , Microbioma Gastrointestinal , Oligosacáridos , Prebióticos , Probióticos , Saccharomyces boulardii , Estudiantes , Oligosacáridos/metabolismo , Oligosacáridos/farmacología , Microbioma Gastrointestinal/efectos de los fármacos , Saccharomyces boulardii/metabolismo , Humanos , Probióticos/metabolismo , Niño , Masculino , Adolescente , Femenino , Lactobacillus/metabolismo , Lactobacillus/crecimiento & desarrollo , Bacterias/metabolismo , Bacterias/clasificación , Heces/microbiología , Bifidobacterium/metabolismo , Bifidobacterium/crecimiento & desarrollo
19.
mSystems ; 9(6): e0021424, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38780275

RESUMEN

The gut microbiota contributes to skeletal muscle energy metabolism and is an indirect factor affecting meat quality. However, the role of specific gut microbes in energy metabolism and fiber size of skeletal muscle in chickens remains largely unknown. In this study, we first performed cecal microbiota transplantation from Chinese indigenous Jingyuan chickens (JY) to Arbor Acres chickens (AA), to determine the effects of microbiota on skeletal muscle fiber and energy metabolism. Then, we used metagenomics, gas chromatography, and metabolomics analysis to identify functional microbes. Finally, we validated the role of these functional microbes in regulating the fiber size via glucose metabolism in the skeletal muscle of chickens through feeding experiments. The results showed that the skeletal muscle characteristics of AA after microbiota transplantation tended to be consistent with that of JY, as the fiber diameter was significantly increased, and glucose metabolism level was significantly enhanced in the pectoralis muscle. L. plantarum, L. ingluviei, L. salivarius, and their mixture could increase the production of the microbial metabolites protoporphyrin IX and short-chain fatty acids, therefore increasing the expression levels of genes related to the oxidative fiber type (MyHC SM and MyHC FRM), mitochondrial function (Tfam and CoxVa), and glucose metabolism (PFK, PK, PDH, IDH, and SDH), thereby increasing the fiber diameter and density. These three Lactobacillus species could be promising probiotics to improve the meat quality of chicken.IMPORTANCEThis study revealed that the L. plantarum, L. ingluviei, and L. salivarius could enhance the production of protoporphyrin IX and short-chain fatty acids in the cecum of chickens, improving glucose metabolism, and finally cause the increase in fiber diameter and density of skeletal muscle. These three microbes could be potential probiotic candidates to regulate glucose metabolism in skeletal muscle to improve the meat quality of chicken in broiler production.


Asunto(s)
Pollos , Ácidos Grasos Volátiles , Microbioma Gastrointestinal , Glucosa , Lactobacillus , Animales , Pollos/metabolismo , Pollos/microbiología , Glucosa/metabolismo , Microbioma Gastrointestinal/fisiología , Ácidos Grasos Volátiles/metabolismo , Lactobacillus/metabolismo , Músculo Esquelético/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Metabolismo Energético , Trasplante de Microbiota Fecal
20.
mSystems ; 9(5): e0024624, 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38564708

RESUMEN

Dietary fiber deprivation is linked to probiotic extinction, mucus barrier dysbiosis, and the overgrowth of mucin-degrading bacteria. However, whether and how mucin could rescue fiber deprivation-induced intestinal barrier defects remains largely unexplored. Here, we sought to investigate the potential role and mechanism by which exogenous mucin maintains the gut barrier function. The results showed that dietary mucin alleviated fiber deprivation-induced disruption of colonic barrier integrity and reduced spermine production in vivo. Importantly, we highlighted that microbial-derived spermine production, but not host-produced spermine, increased significantly after mucin supplementation, with a positive association with upgraded colonic Lactobacillus abundance. After employing an in vitro model, the microbial-derived spermine was consistently dominated by both mucin and Lactobacillus spp. Furthermore, Limosilactobacillus mucosae was identified as an essential spermine-producing Lactobacillus spp., and this isolated strain was responsible for spermine accumulation, especially after adhering to mucin in vitro. Specifically, the mucin-supplemented bacterial supernatant of Limosilactobacillus mucosae was verified to promote intestinal barrier functions through the increased spermine production with a dependence on enhanced arginine metabolism. Overall, these findings collectively provide evidence that mucin-modulated microbial arginine metabolism bridged the interplay between microbes and gut barrier function, illustrating possible implications for host gut health. IMPORTANCE: Microbial metabolites like short-chain fatty acids produced by dietary fiber fermentation have been demonstrated to have beneficial effects on intestinal health. However, it is essential to acknowledge that certain amino acids entering the colon can be metabolized by microorganisms to produce polyamines. The polyamines can promote the renewal of intestinal epithelial cell and maintain host-microbe homeostasis. Our study highlighted the specific enrichment by mucin on promoting the arginine metabolism in Limosilactobacillus mucosae to produce spermine, suggesting that microbial-derived polyamines support a significant enhancement on the goblet cell proliferation and barrier function.


Asunto(s)
Arginina , Colon , Microbioma Gastrointestinal , Mucosa Intestinal , Mucinas , Espermina , Espermina/metabolismo , Mucinas/metabolismo , Arginina/metabolismo , Arginina/farmacología , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiología , Animales , Microbioma Gastrointestinal/fisiología , Colon/microbiología , Colon/metabolismo , Masculino , Ratones , Lactobacillus/metabolismo , Humanos , Fibras de la Dieta/metabolismo , Ratones Endogámicos C57BL
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA